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Existence of solutions for the equations modeling
the motion of rigid bodies in an ideal fluid

Jean Gabriel Houot∗ Jorge San Martin† Marius Tucsnak‡

January 17, 2010

Abstract
In this paper, we study the motion of rigid bodies in a perfect incom-

pressible fluid. The rigid-fluid system fils a bounded domain in R3. Adapt-
ing the strategy from Bourguignon and Brezis [1], we use the stream lines
of the fluid and we eliminate the pressure by solving a Neumann problem.
In this way, the system is reduced to an ordinary differential equation on a
closed infinite dimensional manifold. Using this formulation, we prove the
local in time existence and uniqueness of strong solutions.

Notation. Throughout this paper Ω denotes an open bounded and connected
subset of R3 and S0 is a closed set with nonempty interior and with smooth
boundary such that S0 ⊂ Ω. We denote as usual by SO3(R) the special orthogonal
group on R3. We will often use functions defined from a time interval to R3

or to SO3(R). these functions will be denoted using bold characters, such as
h : [0, T ] → R3 or R : [0, T ] → SO3(R). The same kind of notation will be
used for three other time dependent vector fields k, ω, η and ξ which will be
defined in the sequel. The five time dependent fields mentioned above will define
the state z of the fluid-solid system. A vector from R3 or a matrix from SO3(R)
will be denoted by h or by R, respectively. The transposed of a matrix will be
denoted by ∗ so that the column vector of components a and b is denoted either(

a
b

)
or by (a, b)∗. Differentiation with respect to time is often denoted a dot.

The vector, respectively the inner, product of v, w ∈ R3 will be denoted by v∧w
and v · w, respectively . The Jacobian matrix of a vector field y 7→ f(y) defined
on an open subset of R3 will be denoted by Dyf or simply by Df .
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1 Introduction
The interaction of rigid bodies and of ideal fluids is a topic which was probably
first tackled by d’Alembert, Kelvin and Kirchhoff, who considered the case of a
potential fluid (sometimes called inviscid fluid), with the solid-fluid system filling
the whole space. In this case the governing equations can be reduced to system
of ODE’s on a finite dimensional manifold. We refer to the book of Lamb [9,
chapter 6] for a detailed presentation of this early contributions and to Kanso,
Marsden, Rowley and Melli-Huber [8] for the application of the above theory to
self-propelled motions of solids in an inviscid fluid. Recently Houot and Munnier
in [7] used shape sensitivity analysis techniques to deal with either bounded or
unbounded domains. They also tackled the special case of a cylinder in a half
space. They showed in particular that, unlike the case of a viscous fluid (see San
Martin, Starovoitov and Tucsnak [15], Hillairet [6], Hesla [5]), the cylinder can
touch the wall in finite time with non zero velocity. The damping effect of the
wall on the cylinder is also studied.

In the general case the system is genuinely infinite dimensional, so it cannot
be reduced to ODE’s on finite dimensional manifolds. As usual in fluid-solid
interaction problems, a major difficulty comes from the fact that the equations
for the fluid (Euler’s equations in our case) hold in a time dependent domain, so
that we have a free boundary value problem. As far as we know, the first papers
tackling the case of a non potential flow are Ortega, Rosier and Takahashi [12]
and [13]. The main result in these works asserts the existence and uniqueness of
classical solutions in two space dimensions and with the rigid-fluid system filling
the whole space. More recently, Rosier and Rosier in [14] proved the existence
of strong solutions in the case in which the solid is a ball, with the fluid-rigid
system filling Rn, with n > 2.

The aim of the present work is to prove the existence an uniqueness of strong
solutions in three space dimensions, with a bounded fluid-rigid domain and with
the possibility of considering more than one solid. An idea which seems attractive,
since it yields a transformed problem written in a fixed domain, is the use of
groups of diffeomorphisms as proposed in Ebin and Marsden [3]. Our approach,
based on this idea, follows more closely Bourguignon and Brezis [1]. The first new
difficulty we need to tackle is that, the fluid domain being variable and the normal
velocity of the fluid being different from zero on the fluid-solid interface we are not
able to apply the Leray projector. Therefore, in order to eliminate the pressure
we need to solve non-homogeneous Neumann problems for the Laplacian. The
second difficulty consists in the fact that we need to compare solutions of these
Neumann problems in different domains and to show that they depend smoothly
on some geometric parameters.

To be more precise, the motion of the fluid is described by the classical Euler
equations, whereas the motion of the rigid bodies is governed by the balance
equations for linear and angular momentum (Newton’s laws). For the sake of
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simplicity we state and prove our results in the case of a single rigid body, but our
methods can be easily be adapted to the case of several rigid bodies. Assume that
the system fluid-rigid body fills the domain Ω in R3 and that at t = 0 the solid is
located at S0 (see the paragraph on notation from the beginning of the paper for
the properties of Ω and S0). The position of the solid at instant t > 0 is denoted
by S(t). We assume that the solid is surrounded by a perfect homogeneous
incompressible fluid filling, for each t > 0, the domain F (t) = Ω \ S(t). In this
work we study the following initial and boundary value problem:

ρF
∂u

∂t
+ ρF (u · ∇)u +∇p = 0 x ∈ F (t), t > 0, (1.1a)

div u = 0 x ∈ F (t), t > 0, (1.1b)
u · n = 0 x ∈ ∂Ω, t > 0, (1.1c)

u · n = (ḣ + ω ∧ (x− h)) · n x ∈ ∂S(t), t > 0, (1.1d)

msḧ =

∫

∂S(t)

pn dx, t > 0, (1.1e)

d

dt
(Jω) =

∫

∂S(t)

p(x− h) ∧ n dx, t > 0, (1.1f)

Ṙ(t) = A(ω(t))R(t), t > 0, (1.1g)
u(0, x) = u0(x) x ∈ F (0) , (1.1h)

h(0) = h0, ḣ(0) = k0, R(0) = IdM3 , ω(0) = ω0, (1.1i)

where the unknowns are u (the Eulerian velocity field of the fluid), p (the pressure
of the fluid), h (the trajectory of the mass center of the rigid body), R (the time
variation of the orthogonal matrix giving the orientation of the solid) and ω (the
time variation of the angular velocity of the rigid body). The density of the
fluid ρF is supposed to be a constant. The fluid occupies, at t = 0, the domain
F0 = Ω \ S0. The domain S(t) is defined by

S(t) = {h(t) + R(t)(y − h0) | y ∈ S0, t > 0} .

The domain occupied by the fluid at instant t is F (t) = Ω \ S(t). The skew-
symmetric matrix A(ω) is given by

A(ω) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (ω ∈ R3). (1.2)

The notation ms stands for the mass of the solid and J(t) designs its inertia
matrix defined by

Ji,j(t) = ρs

∫

S(t)

[(x− h(t)) ∧ ei] · [(x− h(t)) ∧ ej] dx (i, j ∈ {1, 2, 3}), (1.3)
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where the constant ρs stands for the density of the solid and (ek)k=1,2,3 is the
canonical basis in R3. It is easy to check that J(t) = R(t)J0R

∗(t) for every t > 0,
where J0 is the matrix defined by

(J0)i,j = ρS

∫

S0

[(y − h0) ∧ ei] · [(y − h0) ∧ ej] dy, (1.4)

for every i, j ∈ {1, 2, 3}. Notice that the matrix J0 does not depend on the
position of the solid and that the last formula easily implies that

d

dt
(Jω) = ω ∧ (Jω) + Jω̇. (1.5)

Moreover, we have denoted by ∂S(t) the boundary of the rigid body at instant t
and by n(t, x) the unit normal to ∂S(t) at the point x directed to the interior of
the rigid body.

Throughout this paper we assume that the considered boundaries are smooth
in the sense that there exist the functions δ0, δ1 ∈ C∞(R3,R) such that

∂Ω =
{
x ∈ R3 | δ0(x) = 0

}
, ∂S(0) =

{
x ∈ R3 | δ1(x) = 0

}
, (1.6)

n(x) = −∇δ0(x), x ∈ ∂Ω, n(x) = −∇δ1(x), x ∈ ∂S(0). (1.7)

An important role in this work will be played by the set P (Ω, S0), defined as
follows:

Definition 1.1. The set of all admissible solid configurations from the solid po-

sition S0, denoted P (Ω, S0), is the set of all pairs
(

h1

R1

)
∈ R3 × SO3(R) such

that there exist functions

h ∈ C([0, 1];R3), R ∈ C([0, 1]; SO3(R)),

with
h(0) = h0, h(1) = h1, R(0) = Id3, R(1) = R1,

h(t) + R(t)(y − h0) ∈ Ω (t ∈ [0, 1], y ∈ S0).

Remark 1.2. For each t > 0 the position of the solid and the domain filled by
the fluid are completely described by the pair (h(t),R(t))∗ ∈ P (Ω, S0). Therefore,
the evolution of the domains F (t) and S(t) is totally described by the function
q ∈ C2([0, T ],P(Ω, S0)) defined by q(t) = (h(t),R(t))∗. Consequently, in the
remaining part of this work, we use the notation Fq(t) and Sq(t) instead of F (t)
and S(t). We also denote q0 = (h0, IdM3)

∗ = q(0). More generally, for every
q = (h,R)∗ ∈ P (Ω, S0) we denote

Sq = {h + R(y − h0) | y ∈ S0}, Fq = Ω \ Sq. (1.8)
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In order to give a precise statement of our main result we first introduce some
spaces. For an open set O ⊂ R3 we denote

Nm(O) =
{
q ∈ Hm(O) | ∫

O q(x)dx = 0
}

. (1.9)

We next defines some spaces of functions defined on time variable domains. Let
q ∈ C2([0,∞),P(Ω, S0)) and let Ψ : [0,∞) × R3 → R3 be such that for every
t ∈ [0, T ], the map x 7→ Ψ(t, x) is a C∞ diffeomorphism from F0 to Fq(t).

Let v(t, ·), t ≥ 0 be a family of functions with v(t, ·) : Fq(t) → R3 for every
t > 0. Denote vΨ(t, y) = v(t, Ψ(t, y)), for all t > 0 and for all y ∈ F0. With the
above notation we introduce the following function spaces:

Ck([0, T ], Hm(Fq)) = {v | vΨ ∈ Ck([0, T ], Hm(F0))},
Ck([0, T ], Nm(Fq)) = {v | vΨ ∈ Ck([0, T ], Nm(F0)},

where k ∈ {0, 1}, m > 0 is an integer and Hm are the usual Sobolev spaces. It is
not difficult to check that the above definitions are independent of the choice of
the diffeomorphism Ψ.

We can now state the main result in this paper.

Theorem 1.3. Let m > 3 be an integer. Let S0 ⊂ Ω be as in the notational
preamble of this work and let h0 = 1

vol (S0)

∫
S0

x dx. Let k0 ∈ R3, ω0 ∈ R3 and
u0 ∈ Hm(F0,R3) satisfy:

div u0(x) = 0 x ∈ F0,

u0(x) · n(x) = (k0 + ω0 ∧ (x− h0)) · n(x) x ∈ ∂S0,

u0(x) · n(x) = 0 x ∈ ∂Ω.

Then there exists T0 > 0 such that (1.1) admits a unique solution (q, u, p) with

q ∈ C2
(
[0, T0), P (Ω, S0)

)
, (1.10)

u ∈ C
(
[0, T0), H

m(Fq)
) ∩ C1

(
[0, T0), H

m−1(Fq)
)
, (1.11)

p ∈ C
(
[0, T0), N

m+1(Fq)
)
. (1.12)

2 Idea of the proof of Theorem 1.3
As already mentioned, the basic idea of the proof, borrowed from Bourguignon
and Brezis [1], consists in reducing (1.1) to an ODE on an infinite dimensional
manifold. In this section we briefly describe this reduction process and we give

the main steps of the proof of Theorem 1.3. Let q =

(
h
R

)
and u be functions

satisfying (1.10) and (1.11) for some T0 > 0, with div u = 0. We introduce the
flow η associated to u, which is defined as the solution of

∂η

∂t
(t, y) = u(t, η(t, y)), η(0, y) = y for all y ∈ F0. (2.1)
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By the Cauchy-Lipschitz Theorem η(t, ·) is a diffeomorphism from F0 onto Fq(t).
Moreover, since div u = 0, by Liouville’s Theorem (see, for instance, Hartman [4,
p.96]), we have

det[Dyη(t, y)] = 1, (t ∈ [0, T0), y ∈ F0).

Moreover, we set
∂η

∂t
(t, y) = ξ(t, y) (t > 0, y ∈ F0). (2.2)

Notice that u can be expressed in terms of η and ξ by

u(t, x) = ξ(t, η−1(t, x)) (t ∈ [0, T0), y ∈ F0). (2.3)

In order to express (1.1) as a first-order ordinary differential equation we note
that from the formula

∂ξ

∂t
(t, y) =

∂u

∂t
(t, η(t, y)) + (u · ∇)u(t, η(t, y)),

it follows that u satisfies (1.1a) iff

∂ξ

∂t
(t, y) = −∇p(t, η(t, y)), (y ∈ F0, t ∈ [0, T0)). (2.4)

Consider the function k ∈ C1([0, T0),R3) defined by

ḣ(t) = k(t) (t ∈ [0, T0)). (2.5)

Define ω ∈ C1([0, T0),R3) by

Ṙ(t) = A(ω(t))R(t) (t ∈ [0, T0)). (2.6)

As it will be shown in Sections 3 and 4, by solving appropriate Neuman prob-
lems, the pressure p can be expressed, for each t ∈ [0, T0) as a function of
z = (η,q, ξ,k,ω)∗, so that, using (2.4), (2.5) and (2.6), the system (1.1) can
be written in the equivalent form

ż(t) = L(z(t)), z(0) = z0,

where L : Fm → Em, with

Em = Hm(F0,R3)× R3 ×M3(R)×Hm(F0,R3)× R3 × R3, (2.7)

and Fm is a closed subset of Em.
The norm of z ∈ Em is defined by

‖z‖2
Em = ‖η‖2

Hm(F0,R3) + ‖h‖2 + ‖R‖2 + ‖ξ‖2
Hm(F0,R3) + ‖k‖2 + ‖ω‖2,
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where ‖ · ‖ stand for the Euclidean norm on Rn. Endowed with this norm Em is
a Hilbert space.

For (q, u, p) satisfying (1.10)-(1.12) we define

z(t) =




η(t, ·)
q(t)
ξ(t, ·)
k(t)
ω(t)




, (2.8)

where ξ(t, ·), η(t, ·), k(t) and ω(t) are defined by (2.1), (2.2), (2.5) and (2.6),
respectively.

To define Fm we introduce, for every q ∈ P (Ω, S0), the sets

Diffm(F0, Fq) =
{
η : F0 → Fq

∣∣ η invertible, η ∈ Hm(F0,R3),

η−1 ∈ Hm(Fq,R3) and det[Dy(η(y))] = 1
}

, (2.9)

Σm(Ω, S0) =

{
σ =

(
η
q

) ∣∣∣∣ q ∈ P (Ω, S0) and η ∈ Diffm(F0, Fq)

}
, (2.10)

where P (Ω, S0) has been defined in Definition 1.1 and Fq is given in (1.8). The
set Σm(Ω, S0), simply denoted by Σm in the sequel, is formed by the admissible

positions of the system. The set of admissible velocities from a position σ =

(
q
η

)

describes the tangent space to Σm at the point σ, which is given by

TσΣm =
{

(ξ, k, ω)∗ ∈ Hm(F0,R3)× R3 × R3
∣∣ u = ξ ◦ (η−1) ∈ Hm(Fq,R3),

div u = 0 in Fq, u · n = 0 on ∂Ω, u · n = [k + ω ∧ (x− h)] · n on ∂Sq} . (2.11)

The subset Fm of Em is defined by

Fm = {z ∈ Em | σ = (η, q)∗ ∈ Σm, (ξ, k, ω)∗ ∈ TσΣm}. (2.12)

It is not difficult to check that Fm is a locally closed subset of Em, in the sense
that for every z ∈ Fm there exists a closed ball B of Fm centered at z such that
Fm ∩B is a closed subset of Em. Moreover, as it will be shown in Section 6, Σm

is an infinite-dimensional manifold and Fm is its tangent bundle.
The precise definition of L requires some preparation, so it is postponed to

Sections 3 and 4. In order to prove the main result we show in Section 5 that L
satisfies the assumptions of the following version of the Cauchy-Lipschitz theorem,
which is a particular case of Theorem 2 from Martin [11].

Proposition 2.1. Let F be a locally closed subset of a Hilbert space E and let
L : [0, T )× F → E be such that

7



a) L is a locally Lipschitz in z and continuous in t;

b) lim
s→0+

1

s
dist

(
z + sL

(
t
z

)
; F

)
= 0

((
t
z

)
∈ [0, T )× F

)
.

Then for every z0 ∈ F there exists T0 > 0 such that the equation

ż(t) = L(t, z(t)), z(0) = z0

admits a unique solution z ∈ C1([0, T0), F ).

3 Study of the pressure
The study of the pressure p is the key point in order to reduce (1.1) to a system
of ordinary differential equations. In this section we write the pressure as the
sum of two terms, each of them satisfying a Neumann problem for the Laplacian.
We first introduce some function spaces and we recall classical results related to
Neumann problems. Let O be a bounded domain in R3 with smooth boundary
∂O, m ∈ N and n ∈ N. Recall the definition of Nm(O) from (1.9) and let V m(O)
the space defined by

V m(O) =
{
(f, g)∗ ∈ Hm(O)×Hm+1/2(∂O)

∣∣
∫

O
f(x)dx +

∫

∂O
g(x)dσx = 0

}
. (3.1)

The following classical result on the wellposedness of the Neumann problem for
the Laplace operator can be found in the book of Lions and Magenes [10, Chapter
5].

Theorem 3.1. Let m ∈ N. Then, for every
(

f
g

)
∈ V m(O), the boundary value

problem

−∆ϕ(x) = f(x) x ∈ O,

∂ϕ

∂n
(x) = g(x) x ∈ ∂O,

admits a unique solution ϕ ∈ Nm+2(O). Moreover, ϕ satisfies
∫

O
∇ϕ · ∇ψ dx =

∫

O
fψ dx +

∫

∂O
gψdσx (ψ ∈ Hm+2(O)), (3.2)

and there exists a constant C (depending only on O and m) such that

||∇ϕ||Hm+1(O) ≤ C(||f ||Hm(O + ||g||Hm+1/2(∂O))

((
f
g

)
∈ V m(O

)
.

8



In order to prove that the boundary value problem for the pressure is well
posed, we need several technical results. Let q ∈ P (Ω, S0). We first note that,
thanks to the smoothness of ∂Fq, the map x 7→ n(x), defined on ∂Fq, can be
extended to Fq by a function in Hm(Fq). This extension is not unique so that the
partial derivatives of n on ∂Fq are not uniquely determined. However, it can be
easily checked that for every vector field τ which is tangent to ∂Fq, the quantity∑3

j=1 τj
∂ni

∂xj
, with i ∈ {1, 2, 3} does not depend on the choice of the extension.

Proposition 3.2. Let m ≥ 3 be an integer, let q ∈ P (Ω, S0) and assume that
w ∈ Hm(Fq,R3), w · n = 0 on ∂Fq. Then the function x 7→ ∑

i,j
∂wj

∂xi

∂wi

∂xj
, is in

Hm−1(Fq) whereas the function x 7→ ∑
i,j wiwj

∂ni

∂xj
, is in Hm−1/2(Γ), where Γ is

either ∂Ω or ∂Sq.

Proof. The first property follows from the fact that, under our assumptions,
Hm−1(Fq) is an algebra.

To prove the second property we notice that it suffices to use the fact that
Hm(Fq) is an algebra, the smoothness of the map x 7→ ∂ni

∂xj
(x) defined on Fq and

the trace theorem.

The above lemma allows us to introduce, for every q ∈ P (Ω, S0), the operators:

Fq : Hm(Fq,R3) → Hm−1(Fq), Fq(u) =
∑
i,j

∂uj

∂xi

∂ui

∂xj

, (3.3)

Gq : Hm(Fq,R3) → Hm−1/2(Γ), Gq(u) =
∑
i,j

uiuj
∂ni

∂xj

|Γ, (3.4)

where Γ is either ∂Ω or ∂Sq.
An important ingredient allowing to write (1.1) as an ordinary differential

equation is the following result:

Proposition 3.3. Let T0 > 0, let m ≥ 3 be an integer, let
(

h
R

)
= q ∈ C2

(
[0, T0],P(Ω, S0)

)
,

u ∈ C
(
[0, T0), H

m(Fq)
) ∩ C1

(
[0, T0), H

m−1(Fq)
)
,

p ∈ C
(
[0, T0), N

m+1(Fq)
)
.

Assume that u satisfies

(div u)(t, x) = 0 x ∈ Fq(t), t ∈ [0, T0),

(u · n)(t, x) = 0 x ∈ ∂Ω, t ∈ [0, T0),

(u · n)(t, x) = v(t, x) · n(t, x) x ∈ ∂Sq(t), t ∈ [0, T0),
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where

v(t, x) = ḣ(t) + ω(t) ∧ (x− h(t)), for all x ∈ Fq(t), t ∈ [0, +∞). (3.5)

Moreover, assume that u, p and q satisfy (1.1a). Then, for very t ∈ [0, T0), we
have

−∆p(t, x) = ρFFq(t)(u)(t, x) (x ∈ Fq(t)), (3.6)

∂p

∂n
(t, x) = ρFGq(t)(u)(t, x) (x ∈ ∂Ω), (3.7)

∂p

∂n
(t, x) = ρFGq(t)(u− v)(t, x) + 2ρF (u− v) · (ω(t) ∧ n(t, x))

−ρF

[
ḧ(t) + ω̇(t) ∧ (x− h(t)) + ω(t) ∧ (ω(t) ∧ (x− h(t)))

]
·n(t, x) (x ∈ ∂Sq(t)),

(3.8)

where Fq and Gq are defined by (3.3) and (3.4) and v stands for the velocity of
the solid defined by (3.5).

Proof. Assume that u, p, q satisfy (1.1a). By applying the div operator to (1.1a)
we get that p satisfies, for every t ∈ [0, T0),

−∆p(t, x) = ρF div

[
∂u

∂t
(t, x) + (u(t, x) · ∇)u(t, x)

]
(x ∈ Fq(t)). (3.9)

By using the fact that div u ≡ 0, the right-hand side of the above relation can be
expressed as

div

[
∂u

∂t
(t, x) + (u · ∇)u(t, x)

]
=

∑
i,j

∂uj

∂xi

∂ui

∂xj

(t, x) + u.∇div (u)(t, x)

=
∑
i,j

∂uj

∂xi

∂ui

∂xj

(t, x).

The above formula and (3.9) imply (3.6).
On the other hand, by taking normal traces of all the terms in (1.1a) we

obtain

∂p

∂n
(t, x) = ρF

[
−∂u

∂t
(t, x)− (u · ∇)u(t, x)

]
· n(t, x) (x ∈ Γ), (3.10)

where Γ = ∂Ω or Γ = Sq(t). The above boundary conditions can be expressed in
terms of the velocity and of the position of the solid. First note that

n(t, x) = n(0, x) (x ∈ ∂Ω, t ∈ [0, T0)).
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Additionally, note that, for every t ∈ [0, T0) and y ∈ ∂S0, we have

n(t, Ψ(t, y)) = R(t)n(0, y),

and
u(t, Ψ(t, y)) · (R(t)n(0, y)) = v(t, Ψ(t, y)) · (R(t)n(0, y)), (3.11)

where
x = Ψ(t, y) = h(t) + R(t)(y − h0) (y ∈ ∂S0),

and v is the solid velocity given in (3.5). By taking the derivative with respect
to t of the two sides of (3.11), we obtain that for every t ∈ [0, T0) and x ∈ ∂Sq(t)

we have:
{

∂u

∂t
(t, x) + [(v · ∇)u(t, x)]

}
· n(t, x) + u(t, x) · (ω(t) ∧ n(t, x))

=

{
∂v

∂t
(t, x) + [(v · ∇)v(t, x)]

}
· n(t, x) + v(t, x) · (ω(t) ∧ n(t, x)). (3.12)

Using in the above formula the fact (easy to check) that

[(v(t, x) · ∇)v(t, x)] · n(t, x) = −v(t, x) · (ω(t) ∧ n(t, x)),

we obtain that for every t ∈ [0, T0) and x ∈ ∂Sq(t) we have:
{[

∂u

∂t
+ (u · ∇)u

]
· n

}
(t, x) = [(u− v) · ∇](u− v) · n(t, x)

− 2(u− v) · (ω ∧ n(t, x)) +

[
(v · ∇)v +

∂v

∂t

]
· n(t, x) (3.13)

Using again the relation (u− v) · n = 0 on Sq(t), we have

[(u− v) · ∇](u− v) · n(t, x) = −Gq(t)(u− v)(t, x). (3.14)

By combining (3.13) and (3.14) and (3.10) we obtain (3.8).
To obtain (3.7) it suffices to apply (3.10) with v = 0 (so that ω = 0).

From Proposition 3.3 (more precisely from (3.8)) we note that the pressure
depends on ḧ and on ω̇. In order to make this dependence more precise we
introduce, for every q ∈ P (Ω, S0), the potential functions Φi for i = 1, . . . , 6
which are solutions of the Neumann problems:

−∆Φi(q; x) = 0 x ∈ Fq, (3.15a)
∂Φi

∂n
(q; x) = 0 x ∈ ∂Ω, (3.15b)

∂Φi

∂n
(q; x) = Ki(q; x) x ∈ ∂Sq, (3.15c)
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where
Ki(q; x) = ni(x) for i = 1, 2, 3,
Ki(q; x) = [(x− h) ∧ n(x)]i−3 for i = 4, 5, 6.

(3.16)

Denote Φ = (Φ1, · · · , Φ6)
∗.

These functions have been introduced in the book of Lamb [9] and they were
used, in particular, in the work of Houot and Munnier [7] to describe the motion
of rigid bodies in a perfect fluid undergoing a potential flow. From Theorem 3.1
on the Neumann problem, it is easy to check that Φ ∈ C∞(Fq;R6). Moreover,
the following properties are proved in [7].

Proposition 3.4. For every q0 ∈ P (Ω, S0), there exists a neighborhood O of q0

of such that

• the mapping q 7→ Φ(q; ·) from O to C∞(Fq;R6) is of class C2;

• for all i, j ∈ {1, . . . , 6} the mappings

q 7→ Ii,j(q) =

∫

Fq

∇Φi(q; x) · ∇Φj(q; x)dx,

are of class C2 on O.

We also need a potential µ, defined as follows. For z = (η, q, ξ, k, ω)∗ ∈ Fm,
where Fm has been defined in (2.12), we set u(z; x) = ξ(η−1(x)), with x ∈ Fq.
The potential µ is defined as the solution of the boundary value problem

−∆µ(z; x) = Fq(u(z; x)) (x ∈ Fq), (3.17a)
∂µ

∂n
(z; x) = Gq(u(z; x)) (x ∈ ∂Ω), (3.17b)

∂µ

∂n
(z; x) = Gq(u− v)(x) + 2(u(z; x)− v(z; x)) · (ω ∧ n(x))

− [ω ∧ (ω ∧ (x− h))] · n(x) (x ∈ ∂Sq), (3.17c)

where
v(z; x) = k + ω ∧ (x− h),

and Fq, Gq are defined in (3.3), (3.4).

Remark 3.5. With the above notation for Φ and µ, if (u, p,q) satisfy (3.6)–(3.8)
and z(t) is defined by (2.8), then the pressure can be written

p(z(t); x) = ρF µ(z(t); x)− ρF Φ(q(t); x) · (ḧ(t), ω̇(t))∗, (3.18)

where · stands for the inner product in R6.
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4 An equivalent form of the governing equations
Throughout this section we assume that m > 3 and

q ∈ C2([0, T ),P(Ω, S0)),

u ∈ C([0, T ), Hm(Fq(·)) ∩ C1([0, T ), Hm−1(Fq(·)),

p ∈ C([0, T ), Nm+1(Fq(t))).

At this point we need the virtual mass of the solid (see, for instance, [7])
which is the six by six matrix K(q) defined, for every for every q ∈ P (Ω, S0), by

K(q) = KS(q) +KF (q), KS(q) =

(
msId3 0

0 J

)
,

KF (q) =

(
ρF

∫

Fq

∇Φi(q; x) · ∇Φj(q; x)dx

)

1≤i,j≤6

, (4.1)

where J = J(q) is the inertia matrix of the solid (1.3). It is easy to check that
KS(q) is strictly positive and KF (q) is positive so that K(q) is invertible.

The result below shows that equations (1.1e) and (1.1f) can be rewritten as
equations giving ḧ(t) and ω̇(t), in terms of z(t) defined in (2.8).

Proposition 4.1. Assume that u, p,q satisfy (1.1). Then
(

ḧ(t)
ω̇(t)

)

= [K(q(t))]−1

[(
0

(J(t)ω(t)) ∧ ω(t)

)
+ ρF

∫

Fq(t)

∇µ(z(t); x) · ∇Φ(q(t); x)dx

]
.

(4.2)

In the above formula, the notation ∇µ ·∇Φ stands for the six dimensional vector
of components (∇µ · ∇Φi)16i66, where µ is the solution of (3.17) and (Φi)16i66

are defined by (3.15).

Proof. The decomposition of the pressure (3.18), the formulae (1.1e) and (1.1f)
imply that, for every t ∈ [0, T0) we have

msḧj(t) = ρF

∫

∂Sq(t)

µ(z(t); x)Kj(q(t); x)dσx

− ρF

3∑
i=1

ḧi(t)

∫

∂Sq(t)

Φi(q(t); x)Kj(q(t); x)dσx

− ρF

3∑
i=1

ω̇i(t)

∫

∂Sq(t)

Φi+3(q(t); x)Kj(q(t); x)dσx, (4.3)
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3∑
i=1

Ji,j(t)ω̇i(t) = (J(t)ω(t) ∧ ω(t))j + ρF

∫

∂Sq(t)

µ(z(t); x)Kj+3(q(t); x)dσx

− ρF

3∑
i=1

ḧi(t)

∫

∂Sq(t)

Φi(q(t); x)Kj+3(q(t); x)dσx

− ρF

3∑
i=1

ω̈i(t)

∫

∂Sq(t)

Φi+3(q(t); x)Kj+3(q(t); x)dσx, (4.4)

where Kj have been defined in (3.16).
On the other hand, using (3.15), (3.17) and Green’s formula we get

∫

∂Sq(t)

Φi(q(t); x)Kj(q(t); x)dσx =

∫

∂Sq(t)

Φi(q(t); x)
∂φj

∂n
(x)dσx,

=

∫

Fq(t)

∇Φi(q(t); x) · ∇Φj(t, x)dx,

∫

∂Sq(t)

µ(z(t); x)Kj(q(t); x)dσx =

∫

∂Sq(t)

µ(z(t); x)
∂φj

∂n
(x)dσx,

=

∫

Fq(t)

∇µ(z(t); x) · ∇Φj(q(t); x)dx,

Using the last two formulas in (4.3) and (4.4) we obtain the conclusion (4.2).

Recall the definition of Em and Fm from (2.7) and (2.12), respectively, and
let LF : Fm → Hm(Ω,R3) be defined by

LF (z)(y) = ρF∇Φ(q; η) · LS(z)(y)− ρF∇µ(z; η(y)) (y ∈ F0), (4.5)

for every z = (η, q, ξ, k, ω)∗ ∈ Fm, where Φ is the solution of the Neumann
problem (3.15), µ is solution of (3.17) and

LS(z) = [K(q)]−1

[(
0

(J(ω) ∧ ω

)
+ ρF

∫

Fq

∇µ(z; x) · ∇Φ(q; x)dx

]
. (4.6)

Let L : Fm → Em be defined by

L(z) =




ξ
k

A(ω)R
LF (z)
LS(z)




. (4.7)
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In the last part of this section we show that the system (1.1) is equivalent to the
ordinary differential equation

dz

dt
(t) = L(z(t)), z(0) = (IdFq0

, h0, Id3, u0, k0, ω0)
∗. (4.8)

In the following Proposition we prove that every solution of (1.1) generates a
solution of (4.8).

Proposition 4.2. Let m > 3 an integer, assume that (h0, Id3)
∗ ∈ P (Ω, S0) and

(u0, k0, ω0)
∗ ∈ Tσ0Σ where σ0 = (IdFq0

, h0, Id3). Moreover, assume that

q ∈ C2
(
[0, T ), P (Ω, S0)

)
,

u ∈ C
(
[0, T ), Hm(Fq)

) ∩ C1
(
[0, T ), Hm−1(Fq)

)
,

p ∈ C
(
[0, T ), Nm+1(Fq)

)

satisfy the system (1.1). Then z defined by (2.8) satisfies (4.8).

Proof. The equations for η,h,R in (4.8) are nothing else but the definitions of
ξ, k and ω from (2.2), (2.5) and (2.6), respectively. The fact that the equations
for ξ, k and ω hold follows from (2.4), Proposition 4.1 and from (3.18).

We still have to show that every solution of (4.8) generates a strong solution
of (1.1).

Proposition 4.3. Let m > 3 an integer, assume that (h0, Id3)
∗ ∈ P (Ω, S0) and

(u0, k0, ω0)
∗ ∈ Tσ0Σ where σ0 = (IdFq0

, h0, Id3)
∗. Moreover, assume that

z = (η,h,R, ξ,k, ω)∗ ∈ C([0, T0); F
m) ∩ C1([0, T0); E

m),

is a solution of (4.8). Let q, u, p be defined by q = (h,R)∗,

u(t, x) = ξ(t, η−1(t, x)), t ∈ [0, T0), x ∈ Fq(t),

and let the pressure p be defined by (3.18). Then q, u, p satisfy the smoothness
conditions (1.10)-(1.12) and the system (1.1).

Proof. First remark that, since z ∈ C([0, T ); Fm) ∩ C1([0, T ); Em), we have

(div u)(t, x) = 0 (t ∈ [0, T0), x ∈ Fq(t)),

u(t, x) · n(t, x) = 0 (t ∈ [0, T0), x ∈ ∂Ω),

u(t, x) · n(t, x) = v(t, x) · n(t, x) (t ∈ [0, T0), x ∈ ∂Sq(t)),

so that equations (1.1b), (1.1c), (1.1d) are satisfied. From the definition (4.8) of
L we obtain that Ṙ = A(ω)R and
(

ḧ(t)
ω̇(t)

)
= [K(q(t)]−1

[(
0

(J(t)ω(t)) ∧ ω(t)

)
+ ρF

∫

Fq(t)

∇µ(t, x) · ∇Φ(t, x)dx

]
,

ξ̇(t) = ρF∇Φ(t, η(t, y)) · LS(t, z(t))− ρF∇µ(t, η(t, y)),
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where K(q) is given by (4.1). The Newton’s laws (1.1e) and (1.1f) come from the
definition of the pressure (3.18) in the same way as in the proof of Proposition
4.1. Finally, using the relation ξ = u ◦ η and (3.18), we obtain that (1.1a) also
holds.

5 Locally Lipschitz property of L
In this section we tackle a key point of our approach, which consists in proving
that the map L is locally Lipschitz. We frequently use below results and meth-
ods from [1] combined with techniques specific to our problem, which require to
compare functions defined on two different open sets.

Recall that the manifold Fm is defined by

Fm =



z =

(
σ
ν

)
∈ Em

∣∣∣∣∣∣
σ =

(
η
q

)
∈ Σm,




ξ
k
ω


 ∈ TσΣm



 ,

where Σm is defined by (2.10) and TσΣm by (2.11). For an element z ∈ Fm, the
first three components σ = (η, h, R)∗ ∈ Σm define the “position” of the system
whereas ν = (ξ, k, ω)∗ ∈ TσΣm defines the velocity. The key point in this section

is the study of the application µ from (3.17). Recall the notation q =

(
h
R

)
.

The main new issue we need to tackle is the study the dependence of the
solution µ of (3.17) with respect to the geometric parameter q. The dependence
of µ with respect to ξ and η is studied using the ideas in [1].

We first introduce several functions which are useful for the remaining part
of this section. Let α, β0, β and τ be the mappings on Fm defined by

α(z; y) = Fq(ξ ◦ η−1)(η(y)) (y ∈ F0), (5.1)

β0(z; y) = Gq(ξ ◦ η−1)(η(y)) (y ∈ ∂Ω), (5.2)

β(z; y) = Gq(ξ ◦ η−1 − v)(η(y)) (y ∈ ∂S0), (5.3)

τ(z; y) = 2(ξ(y)− v(η(y))) · ω ∧RN(ỹ)

− [(v · ∇)v(η(y))− ω ∧ k] ·RN(ỹ) (y ∈ ∂S0), (5.4)

where ỹ = h0 + R∗(η(y) − h), Fq and Gq have been defined in (3.3) and (3.4),
whereas N is a smooth extension of the unit normal vector of ∂F0 to F0.

Remark 5.1. According to a result from Takahashi [17] and Cumsille and Tuc-
snak [2], for every q = (h,R)∗ ∈ P (Ω, S0) and ε > 0 small enough there exists a
C∞ diffeomorphism Ψq : F0 → Fq such that det[DΨq(y)] = 1 for all y ∈ F0 and

Ψq(y) = y if d(y, ∂Ω) 6 ε, Ψq(y) = h+R(y−h0) if d(y, ∂Sq) 6 ε. (5.5)
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Using Ψq the unit normal vector field on ∂Fq can be extended to Fq such that

Dn(x) = DN(x) x ∈ ∂Ω, (5.6)
Dn(x) = RDN(h0 + R∗(x− h))R∗ x ∈ ∂Sq. (5.7)

Moreover, the construction of Ψ in [17] shows that Ψ is C∞ with respect to q.

Proposition 5.2. Let m > 3 be an integer. Then the mappings α, β0, β and
τ are locally Lipschitz (with respect to z) from Fm to Hm−1(F0), Hm−1/2(∂Ω),
Hm−1/2(∂S0) and Hm−1/2(∂S0), respectively.

Proof. Let z0 = (σ0, ν0)
∗ ∈ Fm with

σ0 =




IdF0

h0

Id3


 ∈ Σm, ν0 =




u0

k0

ω0


 ∈ Tσ0Σ

m.

For r > 0 we define Bm(r) ⊂ Fm by

Bm(r) = {z ∈ Fm | ‖z − z0‖Em 6 r} .

We first note that, by the chain rule, we have

α(z; y) = tr
{
([Dξ(y)][Dη(y)]−1)2

}
(y ∈ F0).

Since Hm−1(F0) is a Banach algebra, to show that α is Lipschitz on Bm(r) it
suffices to check that the maps

z 7→ Dξ, z 7→ [Dη]−1,

are Lipschitz from Bm(r) to [Hm−1(F0)]
9. The first map above is obviously

Lipschitz whereas for the second one it suffices to use the fact that for every
3× 3 matrices A,B of determinant equal to 1 we have

A−1 −B−1 = A−1(B − A)B−1, A−1 = cof(A)t,

where cof(A) is the signed cofactors matrix of A.
For β0 we remark that, using again the chain rule combined with (5.6), we

have
β0(z; y) = [DN(η(y)))]ξ(y) · ξ(y) (y ∈ ∂Ω).

By applying Lemma A.3 from [1] it follows that the mapping z 7→ DN ◦ η is
Lipschitz Bm(r) to [Hm(F0)]

9. Using again the fact that Hm(F0) is a Banach
algebra it follows that β0 is Lipschitz from Bm(r) to Hm(F0). By the trace
theorem it follows that β0 is Lipschitz from Bm(r) to Hm−1/2(∂Ω).

For β we note that

β(z; y) = R[DN(η(y))]R∗(ξ(y)− v(η(y))) · (ξ(y)− v(η(y))) (y ∈ F0).
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The fact that β is Lipschitz from Bm(r) to Hm−1/2(∂Ω) can now be proved in
the same way as for β0.

Finally for τ we notice that for every x ∈ Fq we have

(v · ∇)v(x)− ω ∧ k = ω ∧ [ω ∧ (x− h)].

Inserting the above formula in (5.4) and applying again Lemma A.3 from [1], the
claimed Lipschitz property of τ easily follows.

We also need the following classical result (see, for instance, [1, Lemma 5]):

Proposition 5.3. Let m > 3 be an integer and let Ω be bounded domain of R3

with smooth boundary. Then for every u ∈ Hm(Ω,R3) there exists a constant K,
which depends on m and on Ω, such that

‖u‖Hm(Ω,R3) ≤ K
[‖div u‖Hm−1(Ω,R3) + ‖curl(u)‖Hm−1(Ω,R3)

+‖u · n‖Hm−1/2(∂Ω,R3) + ‖u‖Hm−1(Ω,R3)

]
.

where
(curl u)i,j =

∂ui

∂xj

− ∂uj

∂xi

(i, j ∈ {1, 2, 3}).

Moreover if ||| · ||| is a norm on Hm−1(Ω,R3) such that

|||u||| ≤ C‖u‖Hm−1(F0,R3)

(
u ∈ Hm−1(F0,R3)

)
(5.8)

for some C > 0 then there exists a constant K > 0 such that

‖u‖Hm(Ω,R3) ≤ K
[‖div u‖Hm−1(Ω,R3) + ‖curl u‖Hm−1(Ω,R3)

+‖u · n‖Hm−1/2(∂Ω,R3) + |||u|||] .

We are now in a position to give the main ingredient needed to prove that L
is locally Lipschitz. This result concerns the potential µ introduced in (3.17).

Proposition 5.4. For every integer m > 3, the function χ defined on Fm by

χ(z)(y) = ∇µ(z)(η(y)) (y ∈ F0), (5.9)

is locally Lipschitz from Fm to Hm−1(F0,R3).

Proof. Let z0 = (σ0, ν0)
∗ ∈ Fm with

σ0 = (IdF0 , h0, Id3)
∗ ∈ Σm, ν0 = (u0, k0, w0)

∗ ∈ Tσ0Σ
m.

We use again the notation from the proof of Proposition 5.2, i.e., for r > 0 we set

Bm(r) = {z ∈ Fm | ‖z − z0‖Em ≤ r} .
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In the the remaining part of this proof, z1 and z2 are generic points in Bm(r) and
we denote by K(r) any Lipschitz constant obtained in Proposition 5.2. With the
notation from this section, it is not difficult to check that the Neumann problem
(3.17) can be rewritten as:

−∆µ(z; x) = α(z; η−1(x)) (x ∈ Fq), (5.10a)
∂µ

∂n
(z; x) = β0(z; η−1(x)) (x ∈ ∂Ω), (5.10b)

∂µ

∂n
(z; x) = β(z; η−1(x)) + τ(z; η−1(x)) (x ∈ ∂Sq), (5.10c)

where α, β0, β and τ have been defined in (5.1), (5.2), (5.3) and (5.4). The main
difficulty consists in the fact that the functions µ1 = µ(z1; ·) and µ2 = µ(z2; ·) are
not defined on the same domain. Using Lemma A.4 from [1] we have

‖χ(z1)− χ(z2)‖Hm(F0,R3) = ‖∇µ1 ◦ η1 −∇µ2 ◦ η2‖Hm(F0,R3)

6 K(r)‖∇µ1 ◦ η −∇µ2‖Hm(Fq2 ,R3),

where η = η1 ◦ η−1
2 . By applying Proposition 5.3 we obtain

‖∇µ1 ◦ η −∇µ2‖Hm(Fq2 ,R3) ≤ K(r)(I1 + I2 + I3 + I4),

where Ii, with i ∈ {1, 2, 3, 4}, are given by

I1 = ‖div (∇µ1 ◦ η −∇µ2)‖Hm−1(Fq2 ) ,

I2 = ‖curl (∇µ1 ◦ η −∇µ2)‖Hm−1(Fq2 ,M3(R)) ,

I3 = ‖(∇µ1 ◦ η −∇µ2) · n‖Hm−1/2(∂Fq2 ) ,

I4 = |||∇µ1 ◦ η −∇µ2|||,
where ||| · ||| is the norm on Hm−1(Fq2 ,R3) defined by

|||u||| = sup

{∫

Fq2

u(x) · γ(x)dx | γ ∈ Cm(Fq2 , R3),

γ(x) = 0 for all x ∈ ∂Fq2 , ‖γ‖Cm(Fq2 ,R3) 6 1
}

, (5.11)

which clearly satisfies (5.8). Using Lemma A.4 from [1] and (5.10) we have

I1 ≤ K(r)
(
‖div (∇µ1 ◦ η)−∆µ1 ◦ η‖Hm−1(Fq2 ,R3) + ‖α(z1)− α(z2)‖Hm−1(Fq0 ,R3)

)
.

Using Lemmas A.4 and 4 from [1] we obtain

‖div (∇µ1 ◦ η)−∆µ1 ◦ η‖Hm−1(Fq2 ) 6 K(r)
∥∥η − IdFq2

∥∥
Hm(Fq2 )

‖∇µ1‖Hm(Fq1) ,

6 K(r) ‖η1 − η2‖Hm(F0) ‖∇µ1‖Hm(Fq1 ) .
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On the other hand, using again Lemma A.4 and Theorem 3.1 we have

‖∇µ1‖Hm(Fq1 ) ≤ K(r)(‖α(z1)‖Hm−1(F0) + ‖β0(z1)‖Hm−1/2(∂Ω)

+ ‖β(z1) + τ(z1)‖Hm−1/2(∂Sq0 ) 6 K̃(r) (z1 ∈ Bm(r)). (5.12)

The last two estimates and the locally Lipschitz property of α proved in Propo-
sition 5.2 imply that

I1 ≤ K(r)‖z1 − z2‖Em (z1, z2 ∈ Bm(r)). (5.13)

Using the fact that curl(∇f) = 0 together with arguments completely similar to
those used for I1, we obtain a constant K(r) such that

I2 ≤ K(r)‖z1 − z2‖Em (z1, z2 ∈ Bm(r)). (5.14)

To tackle I3, let ni the unit normal vector to ∂Fqi
, with i ∈ {1, 2}. We have

I3 ≤
[
∥∥(∇µ1 ◦ η) · (n2 − n1 ◦ η)

)∥∥
Hm−1/2(∂Fq2 )

+

∥∥∥∥
∂µ1

∂n1
◦ η − ∂µ2

∂n2

∥∥∥∥
Hm−1/2(∂Fq2 )

]
.

Using trace inequalities, estimate (5.12) and Lemma A.4 from [1] we obtain that

I3 ≤ K(r)

[
∥∥n2(η2)− n1(η1)

∥∥
Hm−1/2(∂F0)

+

∥∥∥∥
∂µ1

∂n1
◦ η1 − ∂µ2

∂n2
◦ η2

∥∥∥∥
Hm−1/2(∂F0)

]

= K(r)

[
∥∥n2(η2)− n1(η1)

∥∥
Hm−1/2(∂F0)

+ ‖β0(z1)− β0(z2)‖Hm−1/2(∂Ω)

+ ‖β(z1) + τ(z1)− β(z2)− τ(z2)‖Hm−1/2(∂S0)

]
.

Applying Lemma A.3 from [1] to the extensions of ni to Fqi
(these extensions

have been defined in Remark 5.1, it follows that
∥∥n2(η2)− n1(η1)

∥∥
Hm−1/2(∂F0,R3)

≤ K(r)‖z1 − z2‖Em (z1, z2 ∈ Bm(r)).

The last two estimates and the Lipschitz properties of α, β0, β and τ imply that

I3 ≤ K(r)‖z1 − z2‖Em (z1, z2 ∈ Bm(r)). (5.15)

To study I4 we first note that, for every γ ∈ Cm(Fq2 ,R3) with γ = 0 of ∂Fq2 we
have
∫

Fq2

[∇µ1 ◦ η(x)−∇µ2(x)]·γ(x)dx =

∫

Fq1

∇µ1·γ◦η−1(x)dx−
∫

Fq2

∇µ2(x)·γ(x)dx.

(5.16)
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Consider the functions ψk : Fqk
→ R, defined as the solutions of the Neumann

problems:

−∆ψ1 = −div (γ ◦ η−1), in Fq1 , (5.17a)
∂ψ1

∂n
= 0 on ∂Fq1 . (5.17b)

−∆ψ2 = −div γ, in Fq2 , (5.18a)
∂ψ2

∂n
= 0 on ∂Fq2 . (5.18b)

Taking the inner product in L2(Fq1) (respectively in L2(Fq2)) of the first equation
in (5.17) (respectively in (5.18)) by µ1 (respectively by µ2) and the subtracting
side by side, we obtain that
∫

Fq1

∇ψ1·∇µ1 dx−
∫

Fq2

∇ψ2·∇µ2 dx =

∫

Fq1

∇µ1·γ◦η−1(x)dx−
∫

Fq2

∇µ2(x)·γ(x)dx.

The above formula and (5.16) yield that
∫

Fq2

[∇µ1 ◦ η(x)−∇µ2(x)] · γ(x)dx =

∫

Fq1

∇ψ1 · ∇µ1 dx−
∫

Fq2

∇ψ2 · ∇µ2 dx.

Using the variational formulation of the Neumann problem (5.10) we obtain that,
for i ∈ {1, 2}, we have

∫

Fqi

∇µi · ∇ψi dx =

∫

Fqi

α(zi; η
−1
i (x))ψi(x)dx +

∫

∂Ω

β0(zi; η
−1
i (x))ψi(x) dσx

+

∫

∂Sqi

[
β(zi; η

−1
i (x)) + τ(zi; η

−1
i (x))

]
ψi(x)dσx.

The last two formulas imply that
∫

Fq2

[∇µ1 ◦ η(x)−∇µ2(x)] · γ(x)dx

=

∫

Fq1

α(z1; η
−1
1 (x))ψ1(x)dx−

∫

Fq2

α(z2; η
−1
2 (x))ψ2(x)dx

+

∫

∂Ω

β0(z1; η
−1
1 (x))ψ1(x) dσx −

∫

∂Ω

β0(z2; η
−1
2 (x))ψ2(x) dσx

+

∫

∂Sq1

β(z1; η
−1
1 (x)) dσx −

∫

∂Sq2

β(z2; η
−1
2 (x)) dσx

+

∫

∂Sq1

τ(z1; η
−1
1 (x))ψ1(x)dσx −

∫

∂Sq2

τ(z2; η
−1
2 (x))ψ2(x)dσx. (5.19)
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To estimate the difference of the first two terms in the right-hand side of the
above formula, we note that

∫

Fq1

α(z1; η
−1
1 (x))ψ1(x)dx−

∫

Fq2

α(z2; η
−1
2 (x))ψ2(x)dx

=

∫

Fq0

[α(z1; y)(ψ1 ◦ η1)(y)dy − α(z2; y)(ψ2 ◦ η2)(y)] dy

6 ‖α(z1; ·)− α(z2; ·)‖ ‖ψ1 ◦ η1‖+ ‖α(z2; ·)‖ ‖ψ1 ◦ η1 − ψ2 ◦ η2‖, (5.20)

where all the norms above are in L2(Fq0). The first term in the right-hand side
of the above relation is readily estimated by using Proposition 5.2 to get

‖α(z1; ·)− α(z2; ·)‖ ‖ψ1 ◦ η1‖ 6 K(r)‖z1 − z2‖Em ‖γ‖Cm(Fq2 ;R3), (5.21)

for every z1, z2 ∈ Bm(r). To estimate the second term in the right-hand side
of (5.20) we remark that, using the variational formulations of (5.17) and (5.18)
and a simple change of variables we have, for k ∈ {1, 2},
∫

Fq0

(∇ψk ◦ ηk) · (∇ϕk ◦ ηk) dy =

∫

Fq0

(γ ◦ η2) · (∇ϕk ◦ ηk) dy (ϕk ∈ Hm(Fqk
)).

Denoting ψ̃k = ψk ◦ ηk the last formula becomes
∫

Fq0

(Dη−1
k )(Dη−1

k )∗∇ψ̃k ·∇ϕ dy =

∫

Fq0

(Dη−1
k )(γ◦η2)·∇ϕ dy, (ϕ ∈ Hm(Fq0)).

Subtracting side by side the formulas corresponding to k = 1 and k = 2 it is not
difficult to see that, for every

γ ∈ Cm(Fq2 , R3), γ = 0 on ∂Fq2 ,

we have
∫

Fq0

|∇ψ̃1 −∇ψ̃2|2 dy 6 K(r)‖z1 − z2‖2
Em (z1, z2 ∈ Bm(r)).

The above estimate, combined to (5.20) and (5.21) imply that
∫

Fq1

α(z1; η
−1
1 (x))ψ1(x)dx−

∫

Fq2

α(z2; η
−1
2 (x))ψ2(x)dx

6 K(r)‖z1 − z2‖2
Em (z1, z2 ∈ Bm(r)).

The other terms in the right-hand side of (5.19) can be estimated in a similar
way. In order to keep this paper of reasonable length we skip the proof of the
corresponding estimates.
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We are now in position to prove that L is locally Lipschitz.

Proposition 5.5. The mappings LS, LF and L are locally Lipschitz on Fm.

Proof. We begin by showing that LS is locally Lipschitz in Bm(r) for a given
r. From Proposition 3.4 the mapping q → K(q) is C2 from P (Ω, S) to M6(R)
(recall that K(q) is the virtual mass matrix defined in (4.1)). Using Proposition
3.4 together with Lemmas A.2 and A.3 from [1], it follows that the mapping
z 7→ ∇Φ ◦ η is Lipschitz from Bm(r) to Hm(F0,M3×6(R)), where (Φk)k∈{1,...,6}
satisfy (3.15). Moreover, the mapping z 7→ (03, (Jω)∧ω)∗ is Lipschitz from Bm(r)
to R6. Using the notation in Proposition 4.1, the last term in the right-hand side
of (4.2) writes

∫

Fq

∇µ(x) · ∇Φ(x) dx =

∫

F0

∇µ(η(y)) · ∇Φ(η(y)) dy,

so that, using Proposition 5.4 and Proposition 3.4, we obtain that that this term
defines a Lipschitz function from Bm(r) to R6. Using next the smoothness of the
map q 7→ K(q), it follows that LS is Lipschitz from Bm(r) to R6.

Finally, the fact that LF is locally Lipschitz readily follows from (4.5) and the
corresponding properties of Φ, LS and µ.

6 L is tangent to Fm

In this section we show that the vector field defined by the operator L from (4.7)
is tangent to the closed set Fm which has been defined in (2.12). More precisely,
the main result of this section is

Proposition 6.1. Let m > 3 an integer and let z0 ∈ Fm. Then

lim
r→0

1

r
dist(z0 + rL(z0); F

m) = 0.

In order to prove the above proposition we need some notation and several
auxiliary results. Throughout this section e0 denotes the identity map on F0

and q0 =

(
h0

Id3

)
. Moreover z0 =

(
σ0

ν0

)
denotes a generic element of Fm, where

σ0 =




η0

h0

R0


 ∈ Σm and ν0 =




ξ0

k0

ω0


 ∈ Tσ0Σ

m. Let

σ =




η
h
R


 ∈ Hm(F0,R3)× P (Ω, S0),
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and recall the properties (1.6) and (1.7) of ∂Ω. We define the map

ϑ(σ) =

(
ϑ1

ϑ2

)
(σ)

(
(σ ∈ Hm(F0,R3)× P (Ω, S0)

)
, (6.1)

where

ϑ1(σ)(y) = det(Dη)(y)− 1

|F0|
∫

F0

det(Dη(x)) dx− 1

|F0|
∫

∂Ω

δ0(η(x)) dσx

− 1

|F0|
∫

∂S0

δ(h0+R∗(η(y)−h)) dσx

(
σ ∈ Hm(F0,R3)× P (Ω, S0), y ∈ F0

)
,

(6.2)

ϑ2(σ)(y) =

{
δ0(η(y)) (σ ∈ Hm(F0,R3)× P (Ω, S0), y ∈ ∂Ω) ,

δ(h0 + R∗(η(x)− h)) (σ ∈ Hm(F0,R3)× P (Ω, S0), y ∈ ∂S0) .

(6.3)
Since we obviously have

∫

F0

ϑ1 dy +

∫

∂F0

ϑ2 dσy = 0,

it follows that ϑ maps Hm(F0,R3) × P (Ω, S0) into V m−1(F0) (see (3.1) for the
definition of this space).

Lemma 6.2. The function ϑ defined above is of class Ck for all integer k ≥ 1
and we have

∂ηϑ

(
e0

q0

)
(V ) =

(
div V

−V · n|∂F0

) (
V ∈ Hm(F0,R3)

)
. (6.4)

Moreover, ∂ηϑ

(
e0

q0

)
maps Hm(F0,R3) onto V m−1(F0).

Proof. Since m ≥ 3, it follows that Hm−1 is an algebra so that the map η 7→
det(Dη) is of class Ck from Hm(F0,R3) to Hm−1(F0,R) for every k ≥ 1. It is
easy to check that the other terms in the definition of ϑ2 and are smooth functions
so that ϑ is of class Ck for every k ≥ 1.

Using (1.7) it follows that, for every σ ∈ Hm(F0,R3)×P (Ω, S0), V ∈ Hm(F0,R3),
we have

(∂ηϑ2)(σ)(V )(y) =

{
−V (y) · n(η(y)) (y ∈ ∂Ω) ,

−R∗V (y) · n(h0 + R∗(η(y)− h)) (y ∈ ∂S0) .
(6.5)

On the other hand, using the fact that the differential of A 7→ det(A) is the
linear map H 7→ tr(cof(A)H), where cof(A) is the signed cofactors matrix of A,
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we obtain that, for every σ ∈ Hm(F0,R3)× P (Ω, S0), V ∈ Hm(F0,R3), we have

∂ηϑ1(σ)(V )(y) = tr(cof(Dη)DV )(y)− 1

|F0|
∫

F0

tr(cof(Dη)DV ))(y) dy

+
1

|F0|
∫

∂Ω

V (y) · n(η(y))dσy +
1

|F0|
∫

∂S0

R∗V (y) · n(h0 + R∗(η(y)− h)) dσy.

Taking h = h0, R = Id3 and η = e0 in the above formula and by using (6.5) we
obtain (6.4). Finally, the fact that the right-hand side of (6.4) defines a map from
Hm(F0,R3) onto V m−1(F0) is classical, see for instance, Lemma 2.4.1 in Sohr [16,
page 79].

The above lemma can be used, in particular, to show that Σm is an infinite-
dimensional manifold over Hm(F0,R3)×R3×M3(R) and to compute its tangent
space at σ0.

Proposition 6.3. We have

Σm =

{(
η
q

)
∈ Hm(F0,R3)× P (Ω, S0)

∣∣∣∣ ϑ

(
q
η

)
= 0

}
. (6.6)

Moreover, the tangent space to Σm at every σ =

(
η
q

)
∈ O ∩ Σm(Ω, S0) is the

space TσΣm defined in (2.11).

Proof. The fact that the set in the left-hand side of (6.6) is a subset of the set
int the right-hand side is obvious. To prove the converse inclusion, we first note
from ϑ1(q, η) = 0 it follows that det (Dη) is constant in F0. On the other hand,
from ϑ2(q, η) = 0 it follows that η(q)(∂F0) ⊂ ∂Fq. These assertions, combined to
the fact that F0 and Fq have the same volume, imply that det (Dη) = 1 in F0.
Moreover, the above properties enable us to apply the global inverse mapping
theorem of Caccioppoli (see, for instance, Zeidler [18, Theorem 4.G. page 174])
to obtain that η ∈ Diffm(F0, Fq). This concludes the proof of (6.6).

In order to prove the second assertion in the proposition, we first note that
for every σ = (η, h, R)∗ ∈ Σm and every (ξ, k ω)∗ ∈ Hm(F0,R3) × R3 × R3, we
have

Dϑ1(σ)




ξ
k
ω


 (y) = tr

(
Dη−1 Dξ

)
(y ∈ F0),

Dϑ2(σ)




ξ
k
ω


 (y)

=

{
−ξ · n(η(y)) (y ∈ ∂Ω) ,

−R∗ [ξ(y)− k − A(ω)(η(y)− h)] · n(h0 + R∗(η(y)− h)) (y ∈ ∂S0) ,
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where A(ω) has been defined in (1.2). Since η is a diffeomorphism from F0 to Fq,
denoting u = ξ ◦ η−1 and making the change of variable x = η(y), we obtain

Dϑ1(σ)




ξ
k
ω


 (η−1(x)) = (div u)(x) (x ∈ Fq),

Dϑ2(σ)




ξ
k
ω


 (η−1(x)) =

{
−u · n(x) (x ∈ ∂Ω) ,

− [u(x)− k − ω ∧ (x− h)] · n(x) (x ∈ ∂Sq) .

From the above formulas it follows that the kernel of Dφ(σ) is TσΣm so that we
obtain the second assertion in the proposition.

Proposition 6.4. Let σ0 =




e0

h0

Id3


 ∈ Σm, ν0 =




u0

k0

ω0


 ∈ Tσ0Σ

m and let

γ0 =




Γ
L
M


 ∈ Hm(F (0),R3)× R3 × R3

such that

div(Γ)(y) = F(u0(y)) (y ∈ F0), (6.7a)
Γ · n(y) = −G(u0(y)) (y ∈ ∂Ω), (6.7b)
Γ · n(y) = −G(u0(y)− v0(y))− 2(u0 − v0) · (ω0 ∧ n)

+ [L + M ∧ (y − h0) + ω0 ∧ (w0 ∧ (y − h0))] · n (y ∈ ∂S0), (6.7c)

where v0(y) = k0 + ω0 ∧ (y − h0). Then there exists ε > 0 and a curve

σ =




η
h
R


 ∈ C2([0, ε]; Σm(Ω, S0))

satisfying

σ(0) = σ0, σ̇(0) =




u0

k0

A(ω0)


 σ̈(0) =




Γ
L

A(M) + [A(ω0)]
2


 . (6.8)

Proof. According to Proposition 6.3 the curve σ is contained in Σm iff ϑ(σ(t)) = 0
for every t ∈ [0, ε].

We begin by constructing the “rigid displacement part”
(

h
R

)
of the curve σ.

To do that, we define h, ω : R→ R3

h(t) = h0 + tk0 +
t2

2
L, ω(t) = ω0 + tM t ∈ R, (6.9)
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and R : R→ SO3(R) is defined as the solution of the initial value problem

R(0) = Id3, Ṙ(t) = A(ω(t))R(t), (6.10)

where A(ω) is the skew-adjoint matrix defined in (1.2). Note that

Ṙ(0) = A(ω0), R̈(0) = A(M) + [A(ω0)]
2. (6.11)

The above functions being continuous, it follows that there exists ε′ > 0 such
that

q(t) =

(
h(t)
R(t)

)
∈ P (Ω, S0) t ∈ [0, ε′].

In order to construct the “fluid part” η of the curve σ we first note that, since(
e0

q(0)

)
∈ Σm, we have ϑ

(
e0

q(0)

)
= 0. Therefore, by combining Lemma 6.2

with a version of the implicit function theorem (see, for instance, Zeidler [18,
Theorem 4.H. page 171]) it follows that there exists ε ∈ (0, ε′] and a function
η : [0, ε] → Hm(F0,R3) such that η(0) = e0 and

ϑ

(
η(t)
q(t)

)
= 0, P

(
η(t)− tu0 − t2

2
Γ

)
= 0 (t ∈ [0, ε]), (6.12)

where P is the orthogonal projector from Hm(F0,R3) onto Ker ∂nϑ

(
e0

q(0)

)
. Note

that, according to Lemma 6.2, we have

Ker ∂nϑ

(
e0

q(0)

)
=

{
u ∈ Hm(F0,R3) | div u = 0 u · n = 0 on ∂F0

}
(6.13)

In the remaining part of the proof we show that, with the above choice of η, h
and R, the curve

σ(t) =




η(t)
h(t)
R(t)


 (t ∈ [0, ε])

satisfies (6.8). We first note that from (6.9) it follows that

h(0) = h0, ḣ(0) = k0, ḧ(0) = L.

From the above formula combined with (6.10) and (6.11) we see that, in order to
prove (6.8), we have only to check that

η̇(0) = u0, η̈(0) = Γ. (6.14)

Taking the derivative with respect to t of the formula det (Dη(t)) = 1 we obtain
that

tr((Dη(t))−1 Dη̇(t)) = 0 (t ∈ [0, ε]). (6.15)
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Using next the fact that δ0(η(t)) = 0 on ∂Ω it follows that

η̇(t) · n(η(t)) = 0 (on ∂Ω). (6.16)

Moreover, since δ(h0 + R∗(t)(η(t)− h(t))) = 0 on ∂S0, we have

(η̇(t)− ḣ(t)−ω(t)∧(η(t)−h(t))) ·R(t)n(h0+R∗(t)(η(t)−h(t))) = 0 (on ∂S0).
(6.17)

On the other hand, taking the derivative of the second formula in (6.12) with
respect to t we obtain

P(η̇(t)− u0 − tΓ) = 0 (t ∈ [0, ε]). (6.18)

Taking t = 0 in (6.15)–(6.18) we obtain

div (η̇(0)) = 0, (in F0),

η̇(0) · n = 0 (on ∂Ω),

η̇(0) · n = (k0 + ω0 ∧ (y − h0)) (y ∈ ∂S0),

P(η̇(0)) = P(u0).

The above relations clearly imply that the first equality in (6.14) holds.
In order to prove the second equality in (6.14) we take the derivative of (6.15)–

(6.18) and then we make t = 0. In this way we obtain

div η̈(0) = F(u0) (in F0),

η̈(0) · n = −G(u0) (on ∂Ω),

η̈(0) · n = −G(u0 − v0)− 2(u0 − v0) · (ω0 ∧ n)

+ [L + M ∧ (y − h0) + ω0 ∧ (ω0 ∧ (y − h0))] · n (y ∈ ∂S0),

P(η̈(0)) = P(Γ),

where v0 has been defined in the statement of this proposition. Using (6.7) it
follows that the second equality in (6.14) also holds.

We are now in a position to prove the main result of this section.

Proof of Proposition 6.1. Recall the notation for z0 from the beginning of this
section. We first note (by using an appropriate change of variables) that it suffices
to prove the result for η0 = e0 and R0 = Id3. This will be done by constructing
a curve Z(·) in Fm such that

lim
r→0

1

r
dist(z0 + rL(z0);Z(r)) = 0. (6.19)

The main tool of the proof is Proposition 6.4, with an appropriate choice of Γ,
L and M . More precisely, u0, k0 and ω0 are chosen to be those in (1.1) and we
take

Γ = LF (z0),

(
L
M

)
= LS(z0), (6.20)
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where LF and LS have been defined in (4.5) and (4.6), respectively. The fact
that Γ, L and M chosen above satisfy the assumptions in Proposition 6.4 follows
from (3.15) and (3.17). Define

Z(t) =




σ(t)
η̇(t)

ḣ(t)
ω0 + tM


 ,

where σ(t) = (η(t),h(t),R(t))∗ is the curve constructed in Proposition 6.4. By
combining (6.8) and (6.20) it follows that

Z(0) = z0, Ż(0) = L(z0),

which imply (6.19).

The proof of our main result in Theorem 1.3 can be now written as follows.

Proof of Theorem 1.3. The assumptions in Theorem 1.3 imply that

z0 = (e0, h0, Id3, u0, k0, ω0)
∗ ∈ Fm.

Therefore, we can combine Propositions 5.5, 6.1 and 2.1 to obtain that the initial
value problem

ż = L(z), z(0) = z0, (6.21)

admits an unique solution

z = (η,h,R, ξ,k, ω)∗ ∈ C0
(
[0, T0); F

m)
) ∩ C1

(
[0, T0); E

m)
)
.

According to Proposition 4.3, q, u defined by q = (h,R)∗,

u(t, x) = ξ(t, η−1(t, x)) (t ∈ [0, T0), x ∈ Fq(t)),

and the pressure p defined by (3.18) define a strong solution of (1.1). We have
thus shown the announced existence result.

To prove the uniqueness, it suffices to note that, according to Proposition 4.2,
any strong solution of (1.1) defines a solution of (6.21) and to apply Proposition
2.1.
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