

Automating Fine

Concurrency Control in

Object-Oriented Databases

Carmelo MALTA
José MARTINEZ

OUTLINE

HYPOTHESIS ON THE DATABASE

FOUR PROBLEMS

A SOLUTION

 AT COMPILE-TIME

 AT LINK-TIME

 AT RUN-TIME

A COMPARISON

CONCLUSION

HYPOTHESIS ON THE DATABASE

+ on the data:

 - classes (but no meta-classes)

- (multiple) inheritance (inclusion and constraint)

 - mono-instanciation

+ on the methods:

 - encapsulation (mandatory)

 - overriding
 - late binding

FOUR PROBLEMS
m1(p 1) i s

 send m2(p1) to se l f;

 send m3 to se l f;

m2(p 1) i s

 f1 := expr(f1,f2,p1);

m3 i s

 i f f2

 then send m to f3;

 f1 : integer;

 f2 : boolean ;

 f3 : c3;

m2(p 1) i s redefined

 send c1 .m2(p1) to se l f;

 f4 := expr(f5,p1);

m4(p 1,p2) i s

 i f co nd(f5,p1)

 then f6 := expr(f6,p2);

 f4 : integer;

 f5 : integer;

 f6 : strin g;

c1

c2

c3
m is

 ...

+ when determining commutativity of methods
 (m1, m2, m3) in c1

 (m1, m2, m3, m4) in c2

 (m1, m2, m3, m4, ...) in cn

+ repeated controls
 controlling m1, next m2, then m3 when using m1 in c1

+ lock escalation
 m1 just needs READ access

 but then m2 requires WRITE access

+ pseudo-conflicts
 m2 and m4 in c2 should be allowed concurrently

A SOLUTION

At compile-time

 analysis of the code of the methods

At link-time

 construction of the late binding resolution graph (for self-

directed messages only)

 using this graph for calculating transitive access vectors

 translating access vectors into mere access modes

At run-time

 using these access modes in the locking protocol “as usual”

AT COMPILE-TIME

+ determining DAV (Direct Access Vectors)
 For each method, determine which instance

variables are respectively read and/or written.

+ determining DSC (Direct Self-Calls)

 For each method, extract the names of the direct

messages which are sent to self (i. e., send M to self).

+ determining PSC (Prefixed Self-Calls)

 For each method, extract the names of the classes
and the names of the prefixed messages which are sent

to self (i. e., send C.M to self).

class method analysis

c1 m1(p1) is

 send m2(p1) to self;

 send m3 to self;

DAV = ()
DSC = {m2,m3}
PSC = Ø

 m2(p1) is
 f1 := expr(f1,f2,p1);

DAV = (Write f1, Read f2)
DSC = Ø
PSC = Ø

 m3 is

 if f2

 then send m to f3;

DAV = (Read f2, Read f3)
DSC = Ø
PSC = Ø

c2 m1 is inherited

 m2(p1) is redefined

 send c1.m2(p1) to self;
 f4 := expr(f5,p1);

DAV = (Write f4, Read f5)
DSC = Ø
PSC = {c1.m2}

 m3 is inherited

 m4(p1,p2) is

 if cond(f5,p1)

 then f6 := expr(f6,p2);

DAV = (Read f5, Write f6)
DSC = Ø
PSC = Ø

AT LINK-TIME

+ constructing the late binding resolution graph
 DSCc2,m1 = {m2, m3}

 PSCc2,m2 = {c1.m2}

c1.m2

c2.m2

c2.m3

c2.m1

c2.m4

(W f1, R f2)

(W f4, R f5)

(R f2, R f3)

()

(R f5, W f6)
(W f1, R f2, W f4, R f5)

(W f1, R f2, R f3, W f4, R f5)

Late binding resolution graph for proper instances of class c2

+ calculating TAV (Transitive Access Vectors)
 TAVc1,m2 = DAVc1,m2

 TAVc2,m3 = DAVc2,m3

 TAVc2,m4 = DAVc2,m4

 TAVc2,m2 = DAVc2,m2 + TAVc1,m2

 TAVc2,m1 = DAVc2,m1 + TAVc2,m2 + TAVc2,m3

+ Translating vectors into access modes

 m1 m2 m3 m4

m1 yes yes

m2 yes yes

m3 yes yes yes yes

m4 yes yes yes

Commutativity of methods in class c2

AT RUN-TIME

Access modes + Hierarchical locking

c1

c2

T1:m1

T1: m1

T1 accesses to s ome

proper instances of c1

c1

c2

T2:m2

T2:m2

T2 acces ses to every

general ins tance of c1

c1

c2T4:m4

T4 acces ses to every

general ins tance of c2

c1

c2

T3: m3

T3: m3

T3:m3

T3:m3

T3:m3

T3 acces ses to some

general ins tances of c1

A COMPARISON
 m1 m2 m3 m4

M1 yes/no yes/no

M2

M3 yes/no yes

M4

Compatibility of methods in class c2

c1

c2

T1:m1

T1: m1

T2:m2
T3: m3

T3: m3

T3:m3

T3:m3

T3:m3

T4:m4

Commutativity

 either T1 || T3 || T4

 or T2 || T3 || T4

Compatibility

 either T1 || T3

 or T1 || T4

T2:m2

f1 f2 f3 f4 f5 f6f1

R1 R2

T1:W

T2:W

T1: W

T1: W

T3:R

T1:W

T3:R

T3:R

T4:W

T3: R

either T1 || T3

or T3 || T4

with OIDs

 T1 || T3 || T4

CONCLUSION

+ Commutativity  compatibility � simple technique

+ This proposition > CC on inheritance graph
 This proposition > CC in relational databases

FURTHER RESEARCHES

+ About composition: multi-level transactions and recovery

+ About the many relationships among objects: inheritance,

composition, versioning, composite objects, etc

