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Abstract 

Several propositions were done to provide adapted 

concurrency control to object-oriented databases.  

However, most of these proposals miss the fact that 

considering solely read and write access modes on 

instances may lead to less parallelism than in relational 

databases!  This paper cope with that issue, and 

advantages are numerous:  (1) commutativity of 

methods is determined a priori and automatically by the 

compiler, without measurable overhead, (2) run-time 

checking of commutativity is as efficient as for 

compatibility, (3) inverse operations need not be 

specified for recovery, (4) this scheme does not 

preclude more sophisticated approaches, and, last but 

not least, (5) relational and object-oriented 

concurrency control schemes with read and write 

access modes are subsumed under this proposition. 

 

1. Introduction 

Several proposals were done to offer concurrency 

control methods fitted to object-oriented databases.  

Basically, three propositions consider classical read and 

write access modes on instances [5, 8, 17], whereas [1] 

takes into account a finer view of operations by 

providing instance variable accesses.  We argue that 

considering exclusively read and write accesses on 

instances is insufficient in an object-oriented database.  

We must take advantage of commutativity of methods, 

as several authors did with abstract data types [23, 25].  

However, commutativity has the same inherent 

limitations as compatibility [18].  Then, it is worth 

conceiving “simple” concurrency control techniques for 

arbitrary objects.  The form of commutativity that we 

introduce is related to the one of [1, 19] but is more 

conservative.  However simple it is, it eliminates four 

problems which, to our knowledge, have not been 

addressed in the literature:  First, it is unthinkable to put 

the burden of determining commutativity of every pair 

of methods (and providing inverse operations, for 

recovery, of every method) on the application 

programmer.  Also, code reuse leads to locking 

overhead, several lock escalations and deadlocks.  

Lastly, with read and write access modes alone, 

unreasonable conflicts occur because several of these 

do not appear in relational databases! 

 

The organization of the paper is as follows:  First, we 

introduce the basic concepts of object-oriented 

databases, relevant to a number of currently 

implemented systems.  Then, we detail the four major 

problems which make read and write accesses to 

instances unsatisfactory.  Next, section 4 defines direct 

access vectors and provides the outline of an efficient 

algorithm to compute transitive access vectors, the 

solution to the mentioned problems.  In section 5, we 

describe the use of transitive access vectors in the 

locking protocol of an inheritance graph.  Lastly, we 

compare our work to previous ones.  Section 7 

concludes this paper. 

2. An object-oriented database 

To be useful for a majority of object-oriented 

systems, we consider the highest common factor of 

object-oriented data models.  We shall insist on the 

calling mechanism which brings into play inheritance, 

overriding, and late binding. 

2.1. Data model 

The most commonly described object-oriented data 

model is class-based.  It distinguishes instances and 

classes, (but not meta-classes.)  Instances pertain to 

exactly one class.  Classes are related by simple or 

multiple inheritance.  These are the basic concepts 

introduced by Smalltalk [9], which can be found in 
ORION [3], O2 [16], GemStone [4], ObjectStore [15], 

or VBASE [2].  Neither IRIS [7] nor G-BASE [22] are 

directly concerned since the former allows multiple 
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instanciation, whereas the latter deals with meta-classes. 

A class is composed of a tuple describing instance 

variables, which we shortly call fields, and of a set of 

methods, only way to manipulate instances.  We 

differentiate fields which are base types, such as 

integers or characters, from those which reference other 

instances (e. g., instances of class “Person” may have a 

field “Father” which references another instance of the 
same domain.)  Some databases, as O2, offer complex 

types, i. e., fields may be tuples, sets, bags, lists, but we 

do not investigate that issue [11]. 

Fields and methods are inherited by a subclass from 

its superclasses.  The subclass can add new fields and 

new methods to its definition.  Also, the code of an 

inherited method can be overridden in a subclass.  This 

feature complicates our technique and deserves further 

presentation. 

2.2. Calling methods 

The message paradigm of object-oriented 

programming consists in sending messages to objects 

rather than applying procedures or manipulating them 

directly.  This paradigm achieves encapsulation.  A 

message is linked at run-time to a method, depending on 

the class of the instance.  This is the late binding 

mechanism.  The receiver is particularized in the code 

of the method;  when explicitly required, it is generally 

named self. 

In the code of a method, we are not at all interested 

in control structures.  Then, the code is abstracted as a 

sequence of assignments, expressions and messages.  

Messages are further divided into two subcases:  simple 

and prefixed messages. 

The first form is the more usual.  Self-directed 

messages are linked to the more appropriate method, e. 

g., one which is located in the nearest ancestor class of 

the instance class.  We use the syntactic form “send M 

to f” where M is a method name and f the instance 

(variable) on which M is requested. 

The prefixed form is to be found when a method is 

redefined not completely, but as an extension of the 

replaced one.  Then, the code of the overriding method 

contains a call to the overridden one.  We note it with 

“send C.M to f” where C is an ancestor class of the 

proper class of f from where the method M is to be 

taken. 

3. The four problems 

In this section, we highlight four problems related to 

concurrency control in object-oriented databases, 

namely difficulty to provide ad hoc commutativity 

relations, locking overhead, lock escalation, and 

pseudo-conflicts. 

commutativity of methods 

Several abstract data types (ADTs) can be 

implemented once.  It is of interest to assign to their 

operations fine and ad hoc commutativity relations [21].  

Examples of such ADTs are sets, maps, stacks, 

counters, etc [23, 25]. 

Classes have a direct relationship with ADTs but 

they also have a meaningful difference:  They are 

related to each other by the inheritance relationship.  

Therefore, two methods with the same name may have  

distinct properties of commutativity.  Also,  modifying a 

method in a given class may modify several of its 

subclasses. 

From this observation, we conclude that automation 

of the determination of commutativity is primordial in 

object-oriented databases when methods are frequently 

added, removed, or updated.  Moreover, it is 

unthinkable to put the burden of determining 

commutativity of every pair of methods (and providing 

inverse operations, for recovery, of every method) on 

the application programmer. 

Note that we do not discard the use of ad hoc 

commutativity relations.  It is of interest for predefined 

types or classes, as the “Integer” type or the 

“Collection” class, to be delivered with high 

commutativity performances (See, for example, [20].) 

 

We introduce the example of Figure 1 to illustrate 

the three other problems.  It represents a rather simple 

but instructive hierarchy.  We note that fields are either 

of a predefined type, as integer or boolean, or reference 
instances of other classes, as f3. 

We then turn our attention to methods. Some of them 
are quite general, as m1 in c1;  implementation details 

are deferred to other methods, m2 and m3, which may 

be overridden in subclasses, as m2 in c2, to specialize 

the algorithm.  Sometimes, a method is overridden not 

completely but as an extension of the inherited version;  
it is the case for m2 in c2.  All this is code reuse.  This 

kind of object-oriented programming is powerful but 

leads to a great number of self-directed messages. A last 

remark about methods is that they appear arbitrarily at 
different levels in the hierarchy, as m4 which is not 

defined in c1. 

All this seems trivial, but examining it from the 

concurrency point of view shows that propositions 

which only recognize read and write access modes are 
insufficient.  In that case, m1 and m3 are readers while 

m2 is a writer in class c1. In class c2, m1 and m3 cannot 

change since they are inherited, and m2 and m4 are 

writers.  We have three problems: 

 (i) one instance can be controlled several times for 

what can be considered one actual access; 

 (ii) deadlocks can occur due to lock escalation; 

 (iii) two methods, both classified as writer, but 

manipulating different fields, conflict unnecessarily. 
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locking overhead 

Code reuse leads to self-directed messages.  Since it 

is a powerful programming technique, one should 

expect it to be often used in an object-oriented database.  

This must not become a bottleneck for object-oriented 

concurrency control.  If each message wants control, 
then invoking m1 on an instance of c1 or c2 leads to 

controlling concurrency thrice. 

lock escalation and deadlocks 

System R measurements are often cited [14]:  97 % 

of deadlocks are due to lock escalation from read to 

write mode;  up to 76 % of these deadlocks are avoided 

by announcing the more exclusive access mode. 
It is exactly what happens with m1: it acquires a read 

lock on a given instance, then, the message m2 is sent 

which requires, (at least for instances of c1 and c2), a 

write lock.  This write lock could have been requested 
immediately when m1 was sent, which would have 

eliminated some risks of deadlocks. 

pseudo-conflicts 

It is reasonable to expect a method which has been 

classified as a writer (respectively a reader) to find its 

overriding counterparts classified in the same set.  It is 
true for method m2.  But, new methods appear in 

subclasses, some of which manipulate exclusively added 

fields.  The dichotomy between readers and writers does 
not take into account this reality.  It is the case with m2 

and m4 in class c2:  m4 does not exist in c1 and it 

accesses only to fields defined in c2.  Nevertheless, m2 

and m4 conflict, which is unreasonable! 

In point of fact, this problem does not appear in 
relational databases.  Let us represent c1 and c2 in a 

relational schema:  they become respectively relations r1 

and r2. Assuming that field f1 is the primary key of r1, 

r2 contains the fields defined in class c2 plus f1 as a 

foreign key.  If a transaction accesses to all the fields of 
class c2, then a join operation is executed, and r1 and r2 

are submitted to concurrency control.  By contrast, if a 
transaction just accesses to the fields defined in c2, then 

only r2 will be locked, therefore allowing a concurrent 

transaction to access to r1.  This concurrent execution is 

obtained in a relational database without considering a 

smaller granule of locking than the tuple.  In object-

oriented databases, it is mandatory to take a smaller 

granule of locking than the instance. 

 

In this section, we have highligthed four problems 

which have not been addressed in the literature.  The 

last one is certainly the most important.  Our proposition 

eliminates these four problems thanks to a quite simple 

analysis of the source code of methods at compile-time 

and an efficient algorithm based on determination of 

strong components in directed graphs.  One access 

mode per method per class is generated and used as a 

conventional access mode [13].  Consequently, no 

performance penalty is incurred at run-time. 

Roughly speaking, the technique consists in 

associating to each method a direct access vector.  A 

class is a cartesian product of the domains of its 

different fields.  To each method in each class where it 

is defined, we associate a vector of the same dimension 

as the cartesian product.   Each value composing this 

vector will denote the most restrictive access mode used 

by the method when accessing to the corresponding 

field.  Commutativity of methods is determined by 

comparing access vectors.  (Recovery uses access 

vectors as projection patterns for extracting the 

modified parts of instances, but it is not discussed here.) 

Direct access vectors eliminate the first and fourth 

inconveniences.  To eliminate the second and third ones, 

transitive access vectors have to be constructed. 

4. Constructing access vectors 

The task of computing transitive access vectors is not 

completely obvious even when solely ADTs are 

involved because methods can call each other 

recursively.  Inheritance further complicates the 

situation:  we have to deal with multiple inheritance, 

overriding, and late binding.  Therefore, access vectors 

are defined in a less straightforward way than informally 

method  m1(p1) is  

     send  m2(p1) to self  

     send  m3 to self  

method  m2(p1) is  

     f1  := expr(f1,f2,p1) 

method  m3 is  

     if  f2 then  send  m to  f3

instance variables are  

     f1  : integer  

     f2  : boolean  

     f3  : c3

method  m2(p1) is  redefined as 

     send  c1.m2(p1)  to self  

     f4  := expr(f5,p1) 

method  m4(p1,p2) is  

     if  cond(f5,p1) then  f6 := expr(f6,p2)

instance variables are  

     f4  : integer  

     f5  : integer  

     f6  : string

c1

c2

c3 method  m  is 

     .. .

 
Figure 1:  An example of object-oriented programming 



introduced. 

4.1. Preliminary definitions 

First of all, the notion of source code of a method is 

not formalized since we just need to detect field 

assignments, expressions and messages sent to the 

current instance itself.  Therefore, we rely on an 

informal meaning of source code. 

definition 1 

Each class is a pair composed of a set of fields and of 

a set of methods, respectively denoted  FIELDS(C) and 

METHODS(C) for a given class C.  The notation 

FIELDS(a) is also used with access vectors.  Also, we 

note ANCESTORS(C) the set of classes from which C 

inherits, directly or transitively. 

definition 2 
We call cMODES the binary compatibility relation on 

MODES, given in extension in Table 1, where MODES 

= {Null, Read, Write} with Null < Read < Write. 

 

 Null Read Write 

Null yes yes yes 

Read yes yes no 

Write yes no no 

Table 1:  Classical compatibility relation 

 

The order relation on MODES is directly deduced 

from the compatibility relation by inclusion of rows and 

columns [13].  We will use the join operator () of the 

theory of lattices on MODES.  (On a total order, join is 

equivalent to max, e. g., Read  Write = Write.) 

definition 3 

An access vector for a method M in a class C is a 

bag of modes indexed by the fields of C: 

AVC,M = (mf  MODES)f  FIELDS(C) 

 
For example, the direct access vector of m2 in c1 is 

(Writef1, Readf2, Nullf3). 

We extend the join operator on MODES to access 

vectors. 

definition 4 

Let a’ et a” be access vectors, the join operator on 

them is defined over: 

(mf  MODES)f  FIELDS(a’)  FIELDS(a”) 

such that: 

a’  a” = (m’f  m”f)f  FIELDS(a’)  FIELDS(a”)  

 (m’f)f  FIELDS(a’) \ FIELDS(a”)  
 (m”f)f  FIELDS(a”) \ FIELDS(a’) 

 

Calculating the join of two access vectors is 

collecting all the fields and taking the most restrictive 
access mode for common fields.  For example, (WriteX, 

ReadY, ReadZ)  (ReadX, NullY, ReadT) = (WriteX, 

ReadY, ReadZ, ReadT). 

 

The algorithm of subsection 4.3 requires the 

following straightforward property. 

property 1 

The join operator on access vectors is idempotent, 

commutative, and associative. 

 

We end off this subsection with the unsurprising 

definition of commutativity of access vectors. 

definition 5 

Let a’ and a” be access vectors, then we note c the 

commutativity relation given by: 

a’ c a”  

 f  FIELDS(a’)  FIELDS(a”), m’f cMODES m”f 

4.2. Compiling methods 

To determine commutativity of methods, their source 

codes are parsed.  In this subsection, we give three 

definitions which are the specifications of the 

information which must be extracted by the compiler 

from any method.  Definition 6 gives the direct access 

vectors of a method.  The sets of definitions 7 and 8 

serve to construct, in the following subsection, the late 

binding resolution graph of each class, a prerequisite for 

calculating transitive access vectors. 

definition 6 

Let C be a class, then to each method M in 

METHODS(C), we associate a direct access vector, 
DAVC,M, such that: 

(i) if M is inherited from a superclass C’, then: 

 DAVC,M = DAVC’,M  (Nullf)f  FIELDS(C) 
(ii) otherwise, if M is defined for the first time or 

overridden in C, then: 

 f  FIELDS(C), 

Writef  DAVC,M  there is an assignment of 

the form “f := <expression>” in the code of 

M; 

Readf  DAVC,M  there is no such 

assignment, but “f” appears in some 

expression, including messages; 

Nullf  DAVC,M  “f” appears nowhere in M. 

 

In point of fact, distributing the fields of an instance 

over several relations, as done in section 3, and then 

locking the relations separately, is creating a coarse 

access vector:  When answering to a request, each 

accessed relation will be locked either exclusively, or in 

shared mode, whereas unuseful relations are not 

accessed, i. e., “Null-locked.” 

definition 7 

Let C be a class, then to each method M in 
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METHODS(C), we associate a set of direct self-calls, 
DSCC,M, defined as follows: 

(i) if M is inherited from C’, then: 
DSCC,M = DSCC’,M 

(ii) otherwise: 

DSCC,M = { M’  METHODS(C) | the message 

“send M’ to self” appears in the code of M } 

 

It is the sets of direct self-calls which solve, at 

compile-time, late bindings which occur at run-time!  

The reader is requested to wait until the following 

subsection. 

definition 8 

Let C be a class, then to each method M in 

METHODS(C), we associate a set of prefixed self-calls, 
PSCC,M, defined as follows: 

(i) if M is inherited from C’: 
PSCC,M = PSCC’,M 

(ii) otherwise: 

PSCC,M = { (C’,M’) | C’  ANCESTORS(C), 

M’  METHODS(C’), and the message 

“send C’.M’ to self” appears in the code of M 

} 

 

Note how simple it is, for a compiler, to construct the 

direct access vector (DAV) as well as the direct (DSC) 

and prefixed self-calls (PSC) sets of any method. 

 

Direct access vectors of definition 6 may be 

sufficient for ADTs, but with object-oriented 

programming we cannot just rely on them.  As 

mentioned in section 3, it is worth controlling 

concurrency only once per instance, i. e., solely when 

the top message is sent.  Hence, we have to construct 

transitive access vectors. 

4.3. An algorithm 

In this subsection we just give the parameter of the 

algorithm because its core is the well-known problem of 

determining strong components of a directed graph, 

which has been solved efficiently a long time ago [24]. 

From the informations extracted after parsing the 

codes of all the methods of a class C and of its 

ancestors, we construct the late binding resolution 

graph which is applicable to any proper instance of C. 

definition 9 

Let C be a class, then GC(V,) is its late binding 

resolution graph, where: 
 

V = { {C}  METHODS(C) } 

      METHODS(C) PSC*
C,M 

 

 (C’,M’)  V, 

 (C’,M’) = { {C}  DSCC’,M’ }  PSCC’,M’ 

where PSC* is the reflexo-transitive closure of PSC. 

 

To illustrate this awkward definition, let us construct 
the late binding resolution graph of class c2.  Each set of 

prefixed self-calls is empty except PSCc2,m2 which is 

equal to {(c1,m2)}, and to its reflexo-transitive closure 

too since PSCc1,m2 is empty.  Hence, V is equal to 

{(c2,m1), (c2,m2), (c2,m3), (c2,m4)}  {(c1,m2)}.  

Also, the sets of direct self-calls are all empty but 
DSCc2,m1 which is equal to {m2, m3}.  It serves to 

construct the edges ((c2,m1), (c2,m2)) and ((c2,m1), 

(c2,m3)), while the edge ((c2,m2), (c1,m2)) is given 

directly by PSCc2,m2.  Figure 2 is the resulting graph. 

 

c2,m1

c2,m2 c2,m3

c1,m2

c2,m4

 
Figure 2:  The late binding resolution graph of class c2 

 

Transitive access vectors are easily computable from 

this graph. 

definition 10 

Let C be a class and M a method defined in C, then 
we define the transitive access vector, TAVC,M, as 

follows: 

TAVC,M = DAVC,M  (C’,M’)    *(C, M) DAVC’,M’ 

where * is the reflexo-transitive closure of . 

 

The definition of the value of the transitive access 

vector of a method M in a class C is quite simple:  it is 

the join of the direct access vectors of all the methods 

which may be executed when M is sent to a proper 

instance of C.  The algorithm is a depth-first search 

whose time complexity is in O(|V| + ||), i. e., linear in 

the size of the graph.  Transitive access vectors are 

calculated from the sinks, with the obvious equality 

between TAV and DAV, up to the sources. 

With the graph of Figure 2, the transitive access 
vectors of (c1,m2), (c2,m3), and (c2,m4) are equal to 

their respective direct access vectors, i. e., (Writef1, 

Readf2, Nullf3), (Nullf1, Readf2, Readf3, Nullf4, Nullf5, 

Nullf6), and (Nullf1, Nullf2, Nullf3, Nullf4, Readf5, 

Writef6).  Then, the transitive access vector of (c2,m2) 

is the join of its direct access vector, (Nullf1, Nullf2, 

Nullf3, Writef4, Readf5, Nullf6), and of the transitive 



access vector of (c1,m2), which gives (Writef1, Readf2, 

Nullf3, Writef4, Readf5, Nullf6).  At last, TAVc2,m1 is 

computed from TAVc2,m2 and TAVc2,m3, giving 

(Writef1, Readf2, Readf3, Writef4, Readf5, Nullf6). 

Since a method can call itself recursively through 

other methods, directed cycles can appear in these 

graphs.  We make the obvious observation that 

transitive access vectors of vertices pertaining to a 

common directed cycle are necessarily equal since their 

respective * are identical.  Hence, we can still 

calculate transitive access vectors with a single depth-

first search by using the algorithm of [24] for 

determining strong components.  Thanks to property 1, 

cyclic dependencies are computable (idempotence) in 

any order (commutativity and associativity.) 

 

One might object that such graphs are perhaps 

unbearable to manage.  We just remark that a more 
complex graph is proposed in O2 [26].  Not solely 

classes related by inheritance are concerned but also 

classes related by composition;  this huge structure is 

called the method dependency graph.  Thus, our 

proposition can be merged elegantly with previous 

works. 

 

In this section we achieved to deliver a distinct 

access mode to each method, rather than just classifying 

it as a reader or a writer.  Besides, we showed that there 

exists an efficient algorithm to calculate transitive 

access vectors which take into account not solely the 

code of a method but its whole pattern of execution on 

the current instance, self.  This decreases significantly 

the number of controls. 

A disadvantage of transitive access vectors is that 

they are very conservative.  They even represent 

impossible executions because they forget alternatives 

in the analysis of the source codes.  This is not so much 

a problem when, and it is often the case in a database, 

methods are applied to sets of instances, because each 

pattern of execution of the method is probable.  

Furthermore, hierarchical locking [10] would have been 

impossible otherwise. 

5. Locking in an inheritance graph 

[8] and [17] elaborated locking protocols on 

inheritance graphs which can lock implicitly some 

classes.  This was possible only because access modes 

on instances were mere reads and writes and, 

consequently, characterized any method in any class.  

Now, we have an access mode per method per class, 

and, consequently, they are no longer defined on any 

class.  Thus, we have to rely on explicit locking of 

classes.  (Note that this justifies, a posteriori, the 

“somewhat arbitrary” (sic) choice made for ORION 

[12].)  For locking to be cheap, access vectors will be 

first translated into access modes. 

5.1. From access vectors to access modes 

Using transitive access vectors as locks leads to an 

overhead, compared to read and write locks, due to their 

length.  To eliminate this drawback, access vectors are 

translated into access modes.  One commutativity 

relation per class is created;  an access mode per method 

is produced.  Two access modes commute if, and only 

if, their respective transitive access vectors commute 

according to definition 5.  The commutativity relation of 
class c2 is given in Table 2.  (Commutativity relation of 

class c1 is obtained, in this example, as the restriction of 

Table 2 to m1, m2, and m3.)  From the principle of 

construction of access modes, we know that the 

parallelism which is allowed by access modes is exactly 

the one which is permitted by access vectors. 

 

 m1 m2 m3 m4 

m1 no no yes yes 

m2 no no yes yes 

m3 yes yes yes yes 

m4 yes yes yes no 

Table 2:  Commutativity relation of class c2 

5.2. The locking protocol 

We rely on strict two-phase locking [6].  Accesses to 

instances can be classified as: 

 (i) accesses to one instance of one class; 

 (ii) accesses to a majority of instances, if not all, 

of one class; 

 (iii) accesses to some instances of all the classes 

rooted at C, i. e., pertaining to a common domain; 

 (iv) accesses to a majority or all the instances of 

all the classes of domain C. 

Since, at the class level, implicit locking is no longer 

feasible, locking an individual class or all the classes 

belonging to the same domain is essentially the same.  

Nonetheless, at the instance level, implicit locking is 

still useful.  If a transaction accesses to all the instances 

of a class, then it is worth locking uniquely the class in 

hierarchical mode instead of each instance individually.  

Therefore, an access mode is also a lock on instances, 

but a lock on a class is a pair composed of an access 

mode and of a boolean indicating whether locking is 

hierarchical (as S and IS, X and IX in [10].) 

access to one instance 
When transaction T1 sends the message m1 to an 

instance i of c1, the lock m1 is acquired on i, and the 

lock (m1,false) on c1. 

access to all instances of a class 
When the message m1 is sent by transaction T2 to the 
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extension of class c1, no lock is acquired on any 

instance, but the lock (m1,true) is requested on c1 and 

c2.  As the lock held by T1 is intentional while the one 

asked for by T2 is hierarchical, commutativity depends 

on the access modes which are incompatible (See Table 
2.)  Hence, T2 and T1 cannot be concurrent. 

access to some instances of a domain 
Another transaction, T3, is sending the message m3 

to several instances of the domain rooted at c1.  Then, 

classes c1, c2, and other subclasses of c1, are locked 

with (m3,false).  Each actually used instance will be 

locked with m3.  T3 can run concurrently either with T1 

(if they do not access to common instances), or with T2. 

access to all instances of a domain 
A last transaction, T4, wants to send m4 to all 

instances of the domain rooted at c2.  The lock (m4,true) 

has to be acquired on every classes of domain c2.  

Neither of the preceding transactions can block T4. 

 

Therefore, thanks to transitive access vectors, either 
T1||T3||T4, or T2||T3||T4 are allowed. 

 

With read and write access modes alone, either 
T1||T3 would have been allowed since both use 

intentional locking, or T1||T4 because they do not share 

any instance. 

In the associated relational schema (See section 3), 
T1 locks one tuple of r1 in write mode and the 

associated tuple of r2 in write mode too (because f1, the 

primary and foreign key is modified), T2 locks both 

relations in write mode, T3 locks r1 in read mode, and 

T4 locks r2 in write mode.  Consequently, either T1||T3, 

or T3||T4 are allowed. 

Note that permitted concurrent executions are 

incomparable.  In point of fact, the kind of separations 

which are achieved by inheritance and first normal form 

are orthogonal:  the former offers a kind of predicative 

locking, and the latter a rough form of field locking.  

Both previous concurrency control schemes are 

subsumed whithin our framework. 
Another important remark is that T1||T3||T4 (but not 

T2||T3||T4) would have been allowed in the relational 

schema if m2 did not modify the key field.  This is why 

object-oriented databases implemented on top of 

relational databases, like IRIS [7], do not feel the need 

for a special concurrency control method, because 

object identifiers (OIDs) play the role of primary and 

foreign keys. 

6. Related works 

Historically, access vectors were already proposed 

by [6] in conjunction with predicative locking.  In 

System R, predicative locking was abandoned and field 

locking alone was no longer considered.  Some reasons 

may be that (1) it is expensive to parse each SQL 

request, at run-time, to construct access vectors, (2) it is 

also expensive to lock with access vectors of varying 

length, and (3), as seen in sections 3 and 4.2, first 

normal form decomposition looks like coarse access 

vectors. 

We saw in section 3 that we need access vectors to 

obtain some parallelism which occurs in relational 

databases.  Thanks to the fact that classes encapsulate 

both data and methods, access vectors are determined at 

compile-time.  At last, access vectors are translated into 

mere access modes, hence this method does not incur 

locking overhead at run-time.  None of the problems 

mentioned above remains in object-oriented databases. 

 

Very recently, [1] proposed field locking.  Basically, 

the method consists in associating to each class two set 

ADTs:  one for the methods, one for the fields 

(according to definition 1.)  When a message is sent, the 

activated method is locked in the method set ADT.  

Then, each field accessed by this method must be 

locked in the field set ADT.  Obviously, this technique 

achieves field granularity locking.  As field locking is 

done individually at run-time, this technique incurs a 

much higher overhead.  Also, the problems of multiple 

controls and deadlocks due to escalation are not 

resolved.  In counterpart, this approach is less 

conservative than ours. 

We think that the choice between this technique and 

ours depends on the frequency of updates.  For 

continuously evolving schemas, the framework of [1] is 

largely preferable (though schema evolutions are quite 

exclusive operations.)  For applications which do not 

change perpetually but solely at regular intervals of 

time, ours is to be chosen.  In point of fact, it is the same 

as choosing between an interpreter (e. g., ORION and 
Lisp) and a compiler (e. g., O2 and C.) 

7. Conclusion 

In this paper we have highlighted four important 

problems which render some previous propositions less 

effective.  The most important of all is that some 

parallelism is lost in object-oriented databases with 

respect to relational ones.  All of these problems can be 

solved by providing a simple form of commutativity.  

This kind of commutativity is syntactically extracted 

from the source codes of the methods at compile-time.  

Then, an efficient (linear) algorithm calculate what we 

called transitive access vectors.  Finally, transitive 

access vectors are translated into classical access modes 

in order not to incur performance penalty at run-time. 

What makes this proposition so attractive is that the 

whole technique is easily implementable and efficient.  



This is a major advantage in the field of object-oriented 

databases when methods are expected to be regularly 

created, deleted, or updated.  At last, finer techniques 

are not discarded of our framework. 
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