
HAL Id: hal-00462338
https://hal.science/hal-00462338

Submitted on 9 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating Fine Concurrency Control in
Object-Oriented Databases

Carmelo Malta, José Martinez

To cite this version:
Carmelo Malta, José Martinez. Automating Fine Concurrency Control in Object-Oriented Databases.
IEEE 9th International Conference on Data Engineering (ICDE’93), Apr 1993, Vienn, Austria. pp.
253-260, �10.1109/ICDE.1993.344057�. �hal-00462338�

https://hal.science/hal-00462338
https://hal.archives-ouvertes.fr

Proceedings of the IEEE 9
th

 Int'l Conf. on Data Engineering (ICDE'93), Vienna, Austria, April 19-23, 1993, pp. 253-

260

 1

1063-6382/93 $03.00 © 1993 IEEE

Automating Fine Concurrency Control in Object-Oriented Databases

Carmelo Malta and José Martinez

Université des Sciences et Techniques du Languedoc

Laboratoire de Systèmes Informatiques

860, rue de Saint-Priest, 34090 Montpellier, FRANCE

e-mail: {malta, martinez}@crim.crim.fr

Abstract

Several propositions were done to provide adapted

concurrency control to object-oriented databases.

However, most of these proposals miss the fact that

considering solely read and write access modes on

instances may lead to less parallelism than in relational

databases! This paper cope with that issue, and

advantages are numerous: (1) commutativity of

methods is determined a priori and automatically by the

compiler, without measurable overhead, (2) run-time

checking of commutativity is as efficient as for

compatibility, (3) inverse operations need not be

specified for recovery, (4) this scheme does not

preclude more sophisticated approaches, and, last but

not least, (5) relational and object-oriented

concurrency control schemes with read and write

access modes are subsumed under this proposition.

1. Introduction

Several proposals were done to offer concurrency

control methods fitted to object-oriented databases.

Basically, three propositions consider classical read and

write access modes on instances [5, 8, 17], whereas [1]

takes into account a finer view of operations by

providing instance variable accesses. We argue that

considering exclusively read and write accesses on

instances is insufficient in an object-oriented database.

We must take advantage of commutativity of methods,

as several authors did with abstract data types [23, 25].

However, commutativity has the same inherent

limitations as compatibility [18]. Then, it is worth

conceiving “simple” concurrency control techniques for

arbitrary objects. The form of commutativity that we

introduce is related to the one of [1, 19] but is more

conservative. However simple it is, it eliminates four

problems which, to our knowledge, have not been

addressed in the literature: First, it is unthinkable to put

the burden of determining commutativity of every pair

of methods (and providing inverse operations, for

recovery, of every method) on the application

programmer. Also, code reuse leads to locking

overhead, several lock escalations and deadlocks.

Lastly, with read and write access modes alone,

unreasonable conflicts occur because several of these

do not appear in relational databases!

The organization of the paper is as follows: First, we

introduce the basic concepts of object-oriented

databases, relevant to a number of currently

implemented systems. Then, we detail the four major

problems which make read and write accesses to

instances unsatisfactory. Next, section 4 defines direct

access vectors and provides the outline of an efficient

algorithm to compute transitive access vectors, the

solution to the mentioned problems. In section 5, we

describe the use of transitive access vectors in the

locking protocol of an inheritance graph. Lastly, we

compare our work to previous ones. Section 7

concludes this paper.

2. An object-oriented database

To be useful for a majority of object-oriented

systems, we consider the highest common factor of

object-oriented data models. We shall insist on the

calling mechanism which brings into play inheritance,

overriding, and late binding.

2.1. Data model

The most commonly described object-oriented data

model is class-based. It distinguishes instances and

classes, (but not meta-classes.) Instances pertain to

exactly one class. Classes are related by simple or

multiple inheritance. These are the basic concepts

introduced by Smalltalk [9], which can be found in
ORION [3], O2 [16], GemStone [4], ObjectStore [15],

or VBASE [2]. Neither IRIS [7] nor G-BASE [22] are

directly concerned since the former allows multiple

This work was supported in part by the PRCs BD3 and C3
coordinated by the Centre National de la Recherche
Scientifique (CNRS), and in part by the Ministère de la
Recherche et de la Technologie (MRT).

instanciation, whereas the latter deals with meta-classes.

A class is composed of a tuple describing instance

variables, which we shortly call fields, and of a set of

methods, only way to manipulate instances. We

differentiate fields which are base types, such as

integers or characters, from those which reference other

instances (e. g., instances of class “Person” may have a

field “Father” which references another instance of the
same domain.) Some databases, as O2, offer complex

types, i. e., fields may be tuples, sets, bags, lists, but we

do not investigate that issue [11].

Fields and methods are inherited by a subclass from

its superclasses. The subclass can add new fields and

new methods to its definition. Also, the code of an

inherited method can be overridden in a subclass. This

feature complicates our technique and deserves further

presentation.

2.2. Calling methods

The message paradigm of object-oriented

programming consists in sending messages to objects

rather than applying procedures or manipulating them

directly. This paradigm achieves encapsulation. A

message is linked at run-time to a method, depending on

the class of the instance. This is the late binding

mechanism. The receiver is particularized in the code

of the method; when explicitly required, it is generally

named self.

In the code of a method, we are not at all interested

in control structures. Then, the code is abstracted as a

sequence of assignments, expressions and messages.

Messages are further divided into two subcases: simple

and prefixed messages.

The first form is the more usual. Self-directed

messages are linked to the more appropriate method, e.

g., one which is located in the nearest ancestor class of

the instance class. We use the syntactic form “send M

to f” where M is a method name and f the instance

(variable) on which M is requested.

The prefixed form is to be found when a method is

redefined not completely, but as an extension of the

replaced one. Then, the code of the overriding method

contains a call to the overridden one. We note it with

“send C.M to f” where C is an ancestor class of the

proper class of f from where the method M is to be

taken.

3. The four problems

In this section, we highlight four problems related to

concurrency control in object-oriented databases,

namely difficulty to provide ad hoc commutativity

relations, locking overhead, lock escalation, and

pseudo-conflicts.

commutativity of methods

Several abstract data types (ADTs) can be

implemented once. It is of interest to assign to their

operations fine and ad hoc commutativity relations [21].

Examples of such ADTs are sets, maps, stacks,

counters, etc [23, 25].

Classes have a direct relationship with ADTs but

they also have a meaningful difference: They are

related to each other by the inheritance relationship.

Therefore, two methods with the same name may have

distinct properties of commutativity. Also, modifying a

method in a given class may modify several of its

subclasses.

From this observation, we conclude that automation

of the determination of commutativity is primordial in

object-oriented databases when methods are frequently

added, removed, or updated. Moreover, it is

unthinkable to put the burden of determining

commutativity of every pair of methods (and providing

inverse operations, for recovery, of every method) on

the application programmer.

Note that we do not discard the use of ad hoc

commutativity relations. It is of interest for predefined

types or classes, as the “Integer” type or the

“Collection” class, to be delivered with high

commutativity performances (See, for example, [20].)

We introduce the example of Figure 1 to illustrate

the three other problems. It represents a rather simple

but instructive hierarchy. We note that fields are either

of a predefined type, as integer or boolean, or reference
instances of other classes, as f3.

We then turn our attention to methods. Some of them
are quite general, as m1 in c1; implementation details

are deferred to other methods, m2 and m3, which may

be overridden in subclasses, as m2 in c2, to specialize

the algorithm. Sometimes, a method is overridden not

completely but as an extension of the inherited version;
it is the case for m2 in c2. All this is code reuse. This

kind of object-oriented programming is powerful but

leads to a great number of self-directed messages. A last

remark about methods is that they appear arbitrarily at
different levels in the hierarchy, as m4 which is not

defined in c1.

All this seems trivial, but examining it from the

concurrency point of view shows that propositions

which only recognize read and write access modes are
insufficient. In that case, m1 and m3 are readers while

m2 is a writer in class c1. In class c2, m1 and m3 cannot

change since they are inherited, and m2 and m4 are

writers. We have three problems:

 (i) one instance can be controlled several times for

what can be considered one actual access;

 (ii) deadlocks can occur due to lock escalation;

 (iii) two methods, both classified as writer, but

manipulating different fields, conflict unnecessarily.

Proceedings of the IEEE 9
th

 Int'l Conf. on Data Engineering (ICDE'93), Vienna, Austria, April 19-23, 1993, pp. 253-

260

 3

locking overhead

Code reuse leads to self-directed messages. Since it

is a powerful programming technique, one should

expect it to be often used in an object-oriented database.

This must not become a bottleneck for object-oriented

concurrency control. If each message wants control,
then invoking m1 on an instance of c1 or c2 leads to

controlling concurrency thrice.

lock escalation and deadlocks

System R measurements are often cited [14]: 97 %

of deadlocks are due to lock escalation from read to

write mode; up to 76 % of these deadlocks are avoided

by announcing the more exclusive access mode.
It is exactly what happens with m1: it acquires a read

lock on a given instance, then, the message m2 is sent

which requires, (at least for instances of c1 and c2), a

write lock. This write lock could have been requested
immediately when m1 was sent, which would have

eliminated some risks of deadlocks.

pseudo-conflicts

It is reasonable to expect a method which has been

classified as a writer (respectively a reader) to find its

overriding counterparts classified in the same set. It is
true for method m2. But, new methods appear in

subclasses, some of which manipulate exclusively added

fields. The dichotomy between readers and writers does
not take into account this reality. It is the case with m2

and m4 in class c2: m4 does not exist in c1 and it

accesses only to fields defined in c2. Nevertheless, m2

and m4 conflict, which is unreasonable!

In point of fact, this problem does not appear in
relational databases. Let us represent c1 and c2 in a

relational schema: they become respectively relations r1

and r2. Assuming that field f1 is the primary key of r1,

r2 contains the fields defined in class c2 plus f1 as a

foreign key. If a transaction accesses to all the fields of
class c2, then a join operation is executed, and r1 and r2

are submitted to concurrency control. By contrast, if a
transaction just accesses to the fields defined in c2, then

only r2 will be locked, therefore allowing a concurrent

transaction to access to r1. This concurrent execution is

obtained in a relational database without considering a

smaller granule of locking than the tuple. In object-

oriented databases, it is mandatory to take a smaller

granule of locking than the instance.

In this section, we have highligthed four problems

which have not been addressed in the literature. The

last one is certainly the most important. Our proposition

eliminates these four problems thanks to a quite simple

analysis of the source code of methods at compile-time

and an efficient algorithm based on determination of

strong components in directed graphs. One access

mode per method per class is generated and used as a

conventional access mode [13]. Consequently, no

performance penalty is incurred at run-time.

Roughly speaking, the technique consists in

associating to each method a direct access vector. A

class is a cartesian product of the domains of its

different fields. To each method in each class where it

is defined, we associate a vector of the same dimension

as the cartesian product. Each value composing this

vector will denote the most restrictive access mode used

by the method when accessing to the corresponding

field. Commutativity of methods is determined by

comparing access vectors. (Recovery uses access

vectors as projection patterns for extracting the

modified parts of instances, but it is not discussed here.)

Direct access vectors eliminate the first and fourth

inconveniences. To eliminate the second and third ones,

transitive access vectors have to be constructed.

4. Constructing access vectors

The task of computing transitive access vectors is not

completely obvious even when solely ADTs are

involved because methods can call each other

recursively. Inheritance further complicates the

situation: we have to deal with multiple inheritance,

overriding, and late binding. Therefore, access vectors

are defined in a less straightforward way than informally

method m1(p1) is

 send m2(p1) to self

 send m3 to self

method m2(p1) is

 f1 := expr(f1,f2,p1)

method m3 is

 if f2 then send m to f3

instance variables are

 f1 : integer

 f2 : boolean

 f3 : c3

method m2(p1) is redefined as

 send c1.m2(p1) to self

 f4 := expr(f5,p1)

method m4(p1,p2) is

 if cond(f5,p1) then f6 := expr(f6,p2)

instance variables are

 f4 : integer

 f5 : integer

 f6 : string

c1

c2

c3 method m is

 .. .

Figure 1: An example of object-oriented programming

introduced.

4.1. Preliminary definitions

First of all, the notion of source code of a method is

not formalized since we just need to detect field

assignments, expressions and messages sent to the

current instance itself. Therefore, we rely on an

informal meaning of source code.

definition 1

Each class is a pair composed of a set of fields and of

a set of methods, respectively denoted FIELDS(C) and

METHODS(C) for a given class C. The notation

FIELDS(a) is also used with access vectors. Also, we

note ANCESTORS(C) the set of classes from which C

inherits, directly or transitively.

definition 2
We call cMODES the binary compatibility relation on

MODES, given in extension in Table 1, where MODES

= {Null, Read, Write} with Null < Read < Write.

 Null Read Write

Null yes yes yes

Read yes yes no

Write yes no no

Table 1: Classical compatibility relation

The order relation on MODES is directly deduced

from the compatibility relation by inclusion of rows and

columns [13]. We will use the join operator () of the

theory of lattices on MODES. (On a total order, join is

equivalent to max, e. g., Read  Write = Write.)

definition 3

An access vector for a method M in a class C is a

bag of modes indexed by the fields of C:

AVC,M = (mf  MODES)f  FIELDS(C)

For example, the direct access vector of m2 in c1 is

(Writef1, Readf2, Nullf3).

We extend the join operator on MODES to access

vectors.

definition 4

Let a’ et a” be access vectors, the join operator on

them is defined over:

(mf  MODES)f  FIELDS(a’)  FIELDS(a”)

such that:

a’  a” = (m’f  m”f)f  FIELDS(a’)  FIELDS(a”) 

 (m’f)f  FIELDS(a’) \ FIELDS(a”) 
 (m”f)f  FIELDS(a”) \ FIELDS(a’)

Calculating the join of two access vectors is

collecting all the fields and taking the most restrictive
access mode for common fields. For example, (WriteX,

ReadY, ReadZ)  (ReadX, NullY, ReadT) = (WriteX,

ReadY, ReadZ, ReadT).

The algorithm of subsection 4.3 requires the

following straightforward property.

property 1

The join operator on access vectors is idempotent,

commutative, and associative.

We end off this subsection with the unsurprising

definition of commutativity of access vectors.

definition 5

Let a’ and a” be access vectors, then we note c the

commutativity relation given by:

a’ c a” 

 f  FIELDS(a’)  FIELDS(a”), m’f cMODES m”f

4.2. Compiling methods

To determine commutativity of methods, their source

codes are parsed. In this subsection, we give three

definitions which are the specifications of the

information which must be extracted by the compiler

from any method. Definition 6 gives the direct access

vectors of a method. The sets of definitions 7 and 8

serve to construct, in the following subsection, the late

binding resolution graph of each class, a prerequisite for

calculating transitive access vectors.

definition 6

Let C be a class, then to each method M in

METHODS(C), we associate a direct access vector,
DAVC,M, such that:

(i) if M is inherited from a superclass C’, then:

 DAVC,M = DAVC’,M  (Nullf)f  FIELDS(C)
(ii) otherwise, if M is defined for the first time or

overridden in C, then:

 f  FIELDS(C),

Writef  DAVC,M  there is an assignment of

the form “f := <expression>” in the code of

M;

Readf  DAVC,M  there is no such

assignment, but “f” appears in some

expression, including messages;

Nullf  DAVC,M  “f” appears nowhere in M.

In point of fact, distributing the fields of an instance

over several relations, as done in section 3, and then

locking the relations separately, is creating a coarse

access vector: When answering to a request, each

accessed relation will be locked either exclusively, or in

shared mode, whereas unuseful relations are not

accessed, i. e., “Null-locked.”

definition 7

Let C be a class, then to each method M in

Proceedings of the IEEE 9
th

 Int'l Conf. on Data Engineering (ICDE'93), Vienna, Austria, April 19-23, 1993, pp. 253-

260

 5

METHODS(C), we associate a set of direct self-calls,
DSCC,M, defined as follows:

(i) if M is inherited from C’, then:
DSCC,M = DSCC’,M

(ii) otherwise:

DSCC,M = { M’  METHODS(C) | the message

“send M’ to self” appears in the code of M }

It is the sets of direct self-calls which solve, at

compile-time, late bindings which occur at run-time!

The reader is requested to wait until the following

subsection.

definition 8

Let C be a class, then to each method M in

METHODS(C), we associate a set of prefixed self-calls,
PSCC,M, defined as follows:

(i) if M is inherited from C’:
PSCC,M = PSCC’,M

(ii) otherwise:

PSCC,M = { (C’,M’) | C’  ANCESTORS(C),

M’  METHODS(C’), and the message

“send C’.M’ to self” appears in the code of M

}

Note how simple it is, for a compiler, to construct the

direct access vector (DAV) as well as the direct (DSC)

and prefixed self-calls (PSC) sets of any method.

Direct access vectors of definition 6 may be

sufficient for ADTs, but with object-oriented

programming we cannot just rely on them. As

mentioned in section 3, it is worth controlling

concurrency only once per instance, i. e., solely when

the top message is sent. Hence, we have to construct

transitive access vectors.

4.3. An algorithm

In this subsection we just give the parameter of the

algorithm because its core is the well-known problem of

determining strong components of a directed graph,

which has been solved efficiently a long time ago [24].

From the informations extracted after parsing the

codes of all the methods of a class C and of its

ancestors, we construct the late binding resolution

graph which is applicable to any proper instance of C.

definition 9

Let C be a class, then GC(V,) is its late binding

resolution graph, where:

V = { {C}  METHODS(C) } 

      METHODS(C) PSC*
C,M

 (C’,M’)  V,

 (C’,M’) = { {C}  DSCC’,M’ }  PSCC’,M’

where PSC* is the reflexo-transitive closure of PSC.

To illustrate this awkward definition, let us construct
the late binding resolution graph of class c2. Each set of

prefixed self-calls is empty except PSCc2,m2 which is

equal to {(c1,m2)}, and to its reflexo-transitive closure

too since PSCc1,m2 is empty. Hence, V is equal to

{(c2,m1), (c2,m2), (c2,m3), (c2,m4)}  {(c1,m2)}.

Also, the sets of direct self-calls are all empty but
DSCc2,m1 which is equal to {m2, m3}. It serves to

construct the edges ((c2,m1), (c2,m2)) and ((c2,m1),

(c2,m3)), while the edge ((c2,m2), (c1,m2)) is given

directly by PSCc2,m2. Figure 2 is the resulting graph.

c2,m1

c2,m2 c2,m3

c1,m2

c2,m4

Figure 2: The late binding resolution graph of class c2

Transitive access vectors are easily computable from

this graph.

definition 10

Let C be a class and M a method defined in C, then
we define the transitive access vector, TAVC,M, as

follows:

TAVC,M = DAVC,M  (C’,M’)  *(C, M) DAVC’,M’

where * is the reflexo-transitive closure of .

The definition of the value of the transitive access

vector of a method M in a class C is quite simple: it is

the join of the direct access vectors of all the methods

which may be executed when M is sent to a proper

instance of C. The algorithm is a depth-first search

whose time complexity is in O(|V| + ||), i. e., linear in

the size of the graph. Transitive access vectors are

calculated from the sinks, with the obvious equality

between TAV and DAV, up to the sources.

With the graph of Figure 2, the transitive access
vectors of (c1,m2), (c2,m3), and (c2,m4) are equal to

their respective direct access vectors, i. e., (Writef1,

Readf2, Nullf3), (Nullf1, Readf2, Readf3, Nullf4, Nullf5,

Nullf6), and (Nullf1, Nullf2, Nullf3, Nullf4, Readf5,

Writef6). Then, the transitive access vector of (c2,m2)

is the join of its direct access vector, (Nullf1, Nullf2,

Nullf3, Writef4, Readf5, Nullf6), and of the transitive

access vector of (c1,m2), which gives (Writef1, Readf2,

Nullf3, Writef4, Readf5, Nullf6). At last, TAVc2,m1 is

computed from TAVc2,m2 and TAVc2,m3, giving

(Writef1, Readf2, Readf3, Writef4, Readf5, Nullf6).

Since a method can call itself recursively through

other methods, directed cycles can appear in these

graphs. We make the obvious observation that

transitive access vectors of vertices pertaining to a

common directed cycle are necessarily equal since their

respective * are identical. Hence, we can still

calculate transitive access vectors with a single depth-

first search by using the algorithm of [24] for

determining strong components. Thanks to property 1,

cyclic dependencies are computable (idempotence) in

any order (commutativity and associativity.)

One might object that such graphs are perhaps

unbearable to manage. We just remark that a more
complex graph is proposed in O2 [26]. Not solely

classes related by inheritance are concerned but also

classes related by composition; this huge structure is

called the method dependency graph. Thus, our

proposition can be merged elegantly with previous

works.

In this section we achieved to deliver a distinct

access mode to each method, rather than just classifying

it as a reader or a writer. Besides, we showed that there

exists an efficient algorithm to calculate transitive

access vectors which take into account not solely the

code of a method but its whole pattern of execution on

the current instance, self. This decreases significantly

the number of controls.

A disadvantage of transitive access vectors is that

they are very conservative. They even represent

impossible executions because they forget alternatives

in the analysis of the source codes. This is not so much

a problem when, and it is often the case in a database,

methods are applied to sets of instances, because each

pattern of execution of the method is probable.

Furthermore, hierarchical locking [10] would have been

impossible otherwise.

5. Locking in an inheritance graph

[8] and [17] elaborated locking protocols on

inheritance graphs which can lock implicitly some

classes. This was possible only because access modes

on instances were mere reads and writes and,

consequently, characterized any method in any class.

Now, we have an access mode per method per class,

and, consequently, they are no longer defined on any

class. Thus, we have to rely on explicit locking of

classes. (Note that this justifies, a posteriori, the

“somewhat arbitrary” (sic) choice made for ORION

[12].) For locking to be cheap, access vectors will be

first translated into access modes.

5.1. From access vectors to access modes

Using transitive access vectors as locks leads to an

overhead, compared to read and write locks, due to their

length. To eliminate this drawback, access vectors are

translated into access modes. One commutativity

relation per class is created; an access mode per method

is produced. Two access modes commute if, and only

if, their respective transitive access vectors commute

according to definition 5. The commutativity relation of
class c2 is given in Table 2. (Commutativity relation of

class c1 is obtained, in this example, as the restriction of

Table 2 to m1, m2, and m3.) From the principle of

construction of access modes, we know that the

parallelism which is allowed by access modes is exactly

the one which is permitted by access vectors.

 m1 m2 m3 m4

m1 no no yes yes

m2 no no yes yes

m3 yes yes yes yes

m4 yes yes yes no

Table 2: Commutativity relation of class c2

5.2. The locking protocol

We rely on strict two-phase locking [6]. Accesses to

instances can be classified as:

 (i) accesses to one instance of one class;

 (ii) accesses to a majority of instances, if not all,

of one class;

 (iii) accesses to some instances of all the classes

rooted at C, i. e., pertaining to a common domain;

 (iv) accesses to a majority or all the instances of

all the classes of domain C.

Since, at the class level, implicit locking is no longer

feasible, locking an individual class or all the classes

belonging to the same domain is essentially the same.

Nonetheless, at the instance level, implicit locking is

still useful. If a transaction accesses to all the instances

of a class, then it is worth locking uniquely the class in

hierarchical mode instead of each instance individually.

Therefore, an access mode is also a lock on instances,

but a lock on a class is a pair composed of an access

mode and of a boolean indicating whether locking is

hierarchical (as S and IS, X and IX in [10].)

access to one instance
When transaction T1 sends the message m1 to an

instance i of c1, the lock m1 is acquired on i, and the

lock (m1,false) on c1.

access to all instances of a class
When the message m1 is sent by transaction T2 to the

Proceedings of the IEEE 9
th

 Int'l Conf. on Data Engineering (ICDE'93), Vienna, Austria, April 19-23, 1993, pp. 253-

260

 7

extension of class c1, no lock is acquired on any

instance, but the lock (m1,true) is requested on c1 and

c2. As the lock held by T1 is intentional while the one

asked for by T2 is hierarchical, commutativity depends

on the access modes which are incompatible (See Table
2.) Hence, T2 and T1 cannot be concurrent.

access to some instances of a domain
Another transaction, T3, is sending the message m3

to several instances of the domain rooted at c1. Then,

classes c1, c2, and other subclasses of c1, are locked

with (m3,false). Each actually used instance will be

locked with m3. T3 can run concurrently either with T1

(if they do not access to common instances), or with T2.

access to all instances of a domain
A last transaction, T4, wants to send m4 to all

instances of the domain rooted at c2. The lock (m4,true)

has to be acquired on every classes of domain c2.

Neither of the preceding transactions can block T4.

Therefore, thanks to transitive access vectors, either
T1||T3||T4, or T2||T3||T4 are allowed.

With read and write access modes alone, either
T1||T3 would have been allowed since both use

intentional locking, or T1||T4 because they do not share

any instance.

In the associated relational schema (See section 3),
T1 locks one tuple of r1 in write mode and the

associated tuple of r2 in write mode too (because f1, the

primary and foreign key is modified), T2 locks both

relations in write mode, T3 locks r1 in read mode, and

T4 locks r2 in write mode. Consequently, either T1||T3,

or T3||T4 are allowed.

Note that permitted concurrent executions are

incomparable. In point of fact, the kind of separations

which are achieved by inheritance and first normal form

are orthogonal: the former offers a kind of predicative

locking, and the latter a rough form of field locking.

Both previous concurrency control schemes are

subsumed whithin our framework.
Another important remark is that T1||T3||T4 (but not

T2||T3||T4) would have been allowed in the relational

schema if m2 did not modify the key field. This is why

object-oriented databases implemented on top of

relational databases, like IRIS [7], do not feel the need

for a special concurrency control method, because

object identifiers (OIDs) play the role of primary and

foreign keys.

6. Related works

Historically, access vectors were already proposed

by [6] in conjunction with predicative locking. In

System R, predicative locking was abandoned and field

locking alone was no longer considered. Some reasons

may be that (1) it is expensive to parse each SQL

request, at run-time, to construct access vectors, (2) it is

also expensive to lock with access vectors of varying

length, and (3), as seen in sections 3 and 4.2, first

normal form decomposition looks like coarse access

vectors.

We saw in section 3 that we need access vectors to

obtain some parallelism which occurs in relational

databases. Thanks to the fact that classes encapsulate

both data and methods, access vectors are determined at

compile-time. At last, access vectors are translated into

mere access modes, hence this method does not incur

locking overhead at run-time. None of the problems

mentioned above remains in object-oriented databases.

Very recently, [1] proposed field locking. Basically,

the method consists in associating to each class two set

ADTs: one for the methods, one for the fields

(according to definition 1.) When a message is sent, the

activated method is locked in the method set ADT.

Then, each field accessed by this method must be

locked in the field set ADT. Obviously, this technique

achieves field granularity locking. As field locking is

done individually at run-time, this technique incurs a

much higher overhead. Also, the problems of multiple

controls and deadlocks due to escalation are not

resolved. In counterpart, this approach is less

conservative than ours.

We think that the choice between this technique and

ours depends on the frequency of updates. For

continuously evolving schemas, the framework of [1] is

largely preferable (though schema evolutions are quite

exclusive operations.) For applications which do not

change perpetually but solely at regular intervals of

time, ours is to be chosen. In point of fact, it is the same

as choosing between an interpreter (e. g., ORION and
Lisp) and a compiler (e. g., O2 and C.)

7. Conclusion

In this paper we have highlighted four important

problems which render some previous propositions less

effective. The most important of all is that some

parallelism is lost in object-oriented databases with

respect to relational ones. All of these problems can be

solved by providing a simple form of commutativity.

This kind of commutativity is syntactically extracted

from the source codes of the methods at compile-time.

Then, an efficient (linear) algorithm calculate what we

called transitive access vectors. Finally, transitive

access vectors are translated into classical access modes

in order not to incur performance penalty at run-time.

What makes this proposition so attractive is that the

whole technique is easily implementable and efficient.

This is a major advantage in the field of object-oriented

databases when methods are expected to be regularly

created, deleted, or updated. At last, finer techniques

are not discarded of our framework.

8. References

[1] Agrawal, D., El Abbadi, A.; A non-restrictive
concurrency control for object-oriented databases; 3rd
Int. Conf. on Extending Data Base Technology, Vienna,
Autria, March 1992, pp. 469-482

[2] Andrews, T., Harris, C.; Combining language and
database advances in an object-oriented development
environment; 2nd Int. Conf. on Object-Oriented
Programming, Systems, Languages, and Applications,

Orlando, Florida, USA, October 1987, pp. 430-440
[3] Banerjee, J., Chou, H.-T., Garza, J. F., Kim, W., Ballou,

D. W. N., Kim, H.-J.; Data model issues for object-
oriented applications; ACM Transactions On Database
Systems, vol. 5, n° 1, January 1987, pp. 3-26

[4] Butterworth, P., Otis, A., Stein, J.; The GemStone object
database management system; Communications of the
ACM, vol. 34, n° 10, October 1991, pp. 64-77

[5] Cart, M., Ferrié, J.; Integrating concurrency control into
an object-oriented database system; 2nd Int. Conf. on
Extending Data Base Technology, Venice, Italy, March
1990, pp. 363-377

[6] Eswaran, K. P., Gray, J. N., Lorie, R. A., Traiger, I. L.;
The notions of consistency and predicate locks in a
database system; Communications of the ACM, vol. 19,
n° 11, November 1976, pp. 624-633

[7] Fishman, D. H., et al.; Iris: an object-oriented database
management system; ACM Transactions On Information
Systems, vol. 5, n° 1, January 1987, pp. 48-69

[8] Garza, J. F., Kim, W.; Transaction management in an
object-oriented database system; ACM SIGMOD Int.
Conf. on Management Of Data, Chicago, Illinois, June
1988, pp. 37-45

[9] Goldberg, A., Robson, D.; SmallTalk-80, the language
and its implementation; Addison-Wesley, Reading,
Massachusetts, 1983

[10] Gray, J. N.; Notes on database operating systems; An
Advanced Course in Operating Systems, Springer-Verlag,
New-York, 1978-1979

[11] Hermann, U., Dadam, P., Küspert, K., Roman, E. A.,
Schlageter, G.; A lock technique for disjoint and non-
disjoint complex objects; 2nd Int. Conf. on Extending
Data Base Technology, Venice, Italy, March 1990, pp.

219-237
[12] Kim, W., Garza, J. F., Ballou, N., Woelk, D.;

Architecture of the ORION next-generation database
system; IEEE Transactions On Knowledge And Data
Engineering, vol. 2, n° 1, March 1990, pp. 109-124

[13] Korth, H. F.; Locking primitives in a database system;
Journal of the ACM, vol. 30, n° 1, January 1983, pp. 55-
79

[14] Korth, H. F., Kim, W., Bancilhon, F.; On long-duration
CAD transactions; Information sciences 46, 1988, pp. 73-
107

[15] Lamb, C., Landis, G., Orenstein, J., Weinreb, D.; The
ObjectStore database system; Communications of the
ACM, vol. 34, n° 10, October 1991, pp. 51-63

[16] Lécluse, C., Richard, P., Velez, F.; O2, an object-

oriented data model; ACM SIGMOD Int. Conf. on
Mamagement Of Data, Chicago, Illinois, June 1988

[17] Malta, C., Martinez, J.; Controlling concurrent accesses

in an object-oriented environment; 2nd Int. Symp. on
DAtabase Systems For Advanced Applications, Tokyo,
Japan, April 1991, pp. 192-200

[18] Malta, C., Martinez, J.; Limits of commutativity on
abstract data types; 3rd Int. Conf. on Information Systems
and Management Of Data, Bangalore, India, July 1992, pp.
261-270

[19] Noe, J. D., Kaiser, J., Kroger, R., Nett, E.; The
commit/abort problem in type-specific locking; Technical
report 87-10-04, Department of computer science FR-35,
University of Washington, Seattle, October 1987

[20] O'Neil, P. E.; The Escrow transactional method; ACM
Transactions On Database Systems, vol. 11, n° 4,
December 1986, pp. 405-430

[21] Roesler, M., Burkhard, W. A.; Concurrency control
scheme for shared objects: A peephole approach based on
semantics; 7th Int. Conf. on Distributed Computing

Systems, Berlin, Germany, September 1987, pp. 224-231
[22] Roffé, R., Anota, P., Bourgain, E.; G-BASE V4: the

object-oriented DBMS for multimedia data and
heterogeneous workstations; 2nd Int. Conf. on
Technology of Object-Oriented Languages and Systems,
Paris, France, June 1990, pp. 315-323

[23] Schwarz, P. M., Spector, A. Z.; Synchronizing shared
abstract types; ACM Transactions On Computer Systems,
vol. 2, n° 3, August 1984, pp. 223-250

[24] Tarjan, R. E.; Depth-first search and linear graph
algorithms; SIAM Journal of Computing, vol. 2, n° 1,
June 1972, pp. 146-160

[25] Weihl, W. E.; Commutativity-based concurrency control
for abstract data types; IEEE Transactions On
Computers, vol. 37, n° 12, December 1988, pp. 1488-1505

[26] Zicari, R.; A framework for schema updates in an
object-oriented database system; 7th IEEE Int. Conf. on
Data Engineering, Kobe, Japan, April 1991, pp. 2-13

