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Limits of commutativity on abstract data types 
 

Carmelo MALTA, José MARTINEZ 

 

 

 

Abstract 
We present some formal properties of (symmetrical) commutativity, the 

major criterion used in transactional systems, which allow us to fully 

understand its advantages and disadvantages.  The main result is that 

commutativity is subject to the same limitation as compatibility for 

arbitrary objects.  However, commutativity has also a number of 

attracting properties, one of which is related to recovery and, to our 

knowledge, has not been exploited in the literature.  Advantages and 

disadvantages are illustrated on abstract data types of interest.  We also 

show how limits of commutativity have been circumvented, which gives 

guidelines for doing so (or not!). 

 

 

 

1.  INTRODUCTION 

In shared database systems, users access to 

data concurrently [Bernstein et al. 87].  The 

accesses are done inside a programming 

construct, named a transaction,  which is a 

unit of consistency, i. e., a program which 

converts consistent data into consistent data 

[Gray 81].  To improve throughput, 

interleaved executions of transactions must 

be allowed;  however, to enforce 

consistency, these interleaved executions 

must look like a serial execution.  This 

syntactic criterion of consistency is called 

serializability. 

Interactions between transactions take 

place through the use of common objects in 

the database.  Originally, operations were 

merely uninterpreted reads and writes 

[Kedem & Silberschatz 83];  read is 

compatible with itself, while write is 

exclusive.  However, compatibility was too 

strict a criterion for dealing with so-called 

“hot-spots” [O’Neil 86], thus an enhanced 

criterion was proposed:  commutativity.  

This new one takes into account the 

semantics of operations on abstract data 

types (ADTs) in order to decrease the 

number of conflicts, which are in fact 

pseudo-conflicts [Schwarz & Spector 84].  

Let us consider the DIRECTORY example to 

have an intuitive idea of the advantages of 

commutativity over compatibility. 

A DIRECTORY is an ADT whose 

structure is a list of entries containing 

different names and associated items, say 

files in an operating system, and has a 

number of operations among which CREATE 

and DELETE.  Both operations modify the 

directory, therefore both are writers and 

cannot be executed concurrently if 

compatibility is used.  Commutativity 

allows a finer view of these operations, and, 

considering the name of the entry which is 

created or deleted, it can be concluded that 

CREATE and DELETE are in conflict only if 
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they manipulate the same entry.  Obviously, 

the number of conflicts is drastically 

reduced. 

If advantages of commutativity have been 

clearly illustrated through examples, by 

contrast, possible limitations have not been 

investigated.  Questions are:  

“Commutativity being certainly not a 

panacea, which are its limits?  An then, 

where is it the most effective?”  In order to 

answer them, we present some folk-

theorems [Harel 80] related to 

commutativity of operations on ADTs.  The 

main result is heavily indebted to our choice 

of formal approach:  a functional model 

which highlights the important notions of 

domains and codomains. 

 

The outline of this paper is as follows:  

First, we introduce our model and 

distinguish four conditions that functions on 

an ADT must satisfy.  Next, we prove that 

for arbitrary objects, commutativity is not 

much more powerful than compatibility!  

However, we also prove attractive properties 

of commutativity.  Two of them are well-

known, but the last has practical 

implications of interest which have not been 

exploited in the literature.  Finally, being 

aware of the limits of commutativity, we 

discuss the design of typical commutative 

ADTs.  In particular, one can understand 

how some authors circumvent these 

limitations by using additional properties or 

weakening the required conditions of 

commutativity. 

2.  THE MODEL 

In order to study properties of 

commutativity on ADTs, we use a 

functional formalism. 

2.1.  Operations as functions 

Each operation on an ADT is expressed as 

one or many functions.  For instance, let us 

consider the SET ADT and the INSERT(x) 

operation.  We distinguish two functions:  a 

first one defined from the set of SETs 

including x onto itself, and a second one 

defined from the sets which do not contain x 

to the sets including it.  This differentiation 

is made clear in subsection 2.3.  In practice, 

this point of view on operations has been 

implemented [Malta & Martinez 91b]. 

definition 1 

Let F = (fi)
n
i=1  be a bag of functions defined 

as follows: 

fi:  Ai  Bi 

We also define: 

Af = n
i=1 Ai 

Bf = n
i=1 Bi 

F is a bag of functions rather than a set 

because a function does not necessarily 

commute with itself. With a bag, self-

commuting functions have just to be 

duplicated. 

2.2.  Composition (C1) 

A bag of functions is intended to group 

functions which commute, therefore they 

must be composable in any order.  To ensure 

this composition, a condition is required on 

the domains and codomains of the functions. 

definition 2 

Let F be a bag of pairwise commutative 

functions, then F must verify the 

composition condition (C1): 

 i:  1 ≤ i ≤ n, 

 j:  (1 ≤ j ≤ n)  (j ≠ i), 

 Bj  Ai 

2.3.  Compensability (C2) 

The effects of an operation may have to be 

undone, due to either a reject of the 

corresponding transaction, or a crash of the 

system.  We then impose that each function 

have a left-inverse function. 
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definition 3 

Let F be a bag of pairwise commutative 

functions, then we must have  

F-1 = (fi
-1)

n
i=1  a bag of left-inverse functions: 

fi
-1:  Bi  Ai 

such that < F, F-1> verifies the 

compensability condition (C2): 

 i:  1 ≤ i ≤ n, 

 x  Ai, 

 fi
-1 · fi (x)  = x 

 

This condition can be satisfied even for 

operations which simply write a new value, 

by restricting each Ai to a single value. 

2.4.  State commutativity (C3) 

The preceding conditions were either 

omitted, or implicit.  The following 

definition introduces the first part of the 

explicited condition of commutativity. 

definition 4 

Let F be a bag of pairwise commutative 

functions, then F must satisfy the state 

commutativity condition (C3): 

 i:  1 ≤ i ≤ n, 

 j:  (1 ≤ j ≤ n)  (j ≠ i), 

 x  Ai  Aj, 

 fj  fi (x) = fi  fj (x) 

 

We do not try to investigate the notion of 

state equivalence since equality is already an 

equivalence relation and consequently needs 

(just) to be defined adequately for each ADT 

(See [Weihl 88] for another definition).  

2.5.  View independence (C4) 

In the previous definitions, only in-

parameters of operations on ADTs are 

(implicitly) expressed.  We explicitly 

represent out-parameters. 

definition 5 

Let F be a bag of pairwise commutative 

functions, then we also have F T = (fTi)
n
i=1  

another bag of functions defined as follows: 

fTi:  Bi  Ei 

 

fTi  fi (x) is the view that the transaction T 

gets from the application of the operation 

associated to fi on the object x. 

 

This model of out-parameters is 

consistent because each function has a left-

inverse function, that is, fT can be defined, if 

there is no short cut, as f’T  f-1. 

 

The last condition, second part of the 

familiar definition of commutativity, 

requires invariance of out-parameters.  In 

the properties, C3 and C4 are never used 

together. 

definition 6 

Let F be a bag of pairwise commutative 

functions, then < F, FT> must verify the view 

independence condition (C4): 

 i:  1 ≤ i ≤ n, 

 j:  (1 ≤ j ≤ n)  (j ≠ i), 

 x  Ai  Aj, 

 fTi  fi  fj (x) = fTi  fi (x) 

 

Note that non-deterministic operations are 

not considered [Hesselink 88].  An 

extension to non-determinism is not 

straightforward:  on the one hand, 

serializability can be lost;  on the other 

hand, non-deterministic operations are 

unavoidable.  If it can be shown that non-

deterministic out-parameters do not change 

the behaviour of transactions, then all the 

results apply.  This holds at the tuple-level 

of a multi-level transactional system:  

Creating a new tuple inserts it in some page 
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and assigns it a tuple identifier which is not 

deterministic since it depends on the number 

of transactions creating or deleting tuples.  

Nonetheless, the behaviour of transactions is 

not affected by so low-level details. 

2.6.  Remarks on the model 

Some remarks can be done about this 

formalization: 

(i)  Implicitly, each operation is executed 

on behalf of a different transaction.  This 

simplifies the definitions.  Moreover, a 

sequence of functions executed on behalf of 

a given transaction is reducible, by 

composition, to a unique function. 

(ii)  Also implicit is the fact that the 

commutativity that we study is conditional.  

In-parameters can generate as many 

functions as possible values, e. g., there is 

not just two INSERT functions as seen 

before, but an infinity of functions 

INSERTx1, INSERTx2, etc [Roesler & 

Burkhard 87].  Domains and codomains also 

generate different functions, i. e., in practice 

out-parameters are also exploited. 

(iii)  We define commutativity as being 

symmetrical.  [Weihl 88]  defines two kinds 

of commutativities:  backward and forward.  

It turns out that the former is not 

symmetrical.  The reason is that the bases 

for determining backward commutativity are 

not symmetrical.  Nevertheless, with both 

commutativities, when two operations have 

been found commutative, they can be 

executed in any order. 

(iv) Our formalism takes account of 

abstract data types solely.  This is why we 

identify the notion of object with that of its 

value.  Therefore, the results are directly 

applicable to multi-level transactions on a 

level-by-level basis, where objects are 

composed of objects of the underlying level 

[Cart et al. 90].  In contrast, they cannot be 

applied, as they are, to objects composed of 

references to other objects, e. g., instances of 

classes in object-oriented environments. 

(v)  The bags that we defined are 

conflict-preserving-serializable and 

characteristics of strict executions (i. e., 

conflicting operations are delayed).  

However, [Yannakakis 84] shows that the 

class of conflict-preserving-serializability is 

exactly the class of view-serializability plus 

a property of monotonicity, i. e., translated 

in our model, any sub-bag of a given bag 

verifying the four conditions, still satisfies 

them. 

3.  PROPERTIES OF COMMUTATIVITY 

The following two subsections present 

respectively the advantages and 

disadvantages of commutativity as a 

criterion for concurrent accesses to shared 

data.  First, disadvantages are highlighted;  

they concern parallelism which is much less 

increased, in general, than the profusion of 

the literature on this topic can lead one to 

suppose.  Secondly, advantages are 

introduced;  they chiefly concern recovery 

which can be simpler than implemented in 

some systems. 

3.1.  Limits for concurrency 

We begin by some introductory and 

technical lemmas derived from the 

constraint on the domains and codomains of 

commutative functions, i. e., condition C1. 

lemma 1 

Let F verify C1, with n ≥ 2, then: 

 i:  1 ≤ i ≤ n, 

 Bi  A F-(fi) 

proof 

Obvious by definition of C1.     

lemma 2 

Let f verify C1, with n ≥ 2, then: 

 i:  1 ≤ i ≤ n, 

 j:  (1 ≤ j ≤ n)  (j ≠ i), 

 Bi  Bj  AF 



 Limits of commutativity on abstract data types 5 

Malta C., Martinez J.  5 

proof 

Bi  Af-(fi) and Bj  Af-(fj) [by lemma 1] 

then Bi Bj  AF-(fi) AF-(fj).    

 

These lemmas lead directly to a first and 

simple theorem. 

theorem 1 

Let F verify C1, with n ≥ 2, then: 

BF  AF 

proof 

Obvious from lemma 2.       

 

Theorem 1 summarizes that (the necessary) 

condition C1 generates a close and very 

restrictive relationship between the sets of 

domains and codomains of a bag of pairwise 

commutative functions.  This strong 

structure is not at all surprising as soon as 

we realize that it is based on set 

intersections and inclusions.  Although this 

theorem is very simple, it is the unavoidable 

reason which makes commutativity so weak 

an enhancement for arbitrary objects.  By 

itself, it has no more intrinsic interest,  but 

we will see its implications connected to the 

following theorem. 

In order to demonstrate theorem 2, we 

need a fundamental lemma of commutativity 

which takes into account state 

commutativity (condition C3).  The full 

extension is part of the next subsection 

because it is a well-known advantage of 

commutativity. 

preliminary definition 

({1,...,n}) is the set of permutations of 

{1,...,n}. 

lemma 3 

Let F verify C1 and C3, then: 

 i:  1 ≤ i ≤ n, 

 (k1,...,kn-1)  ({1,...,n} - {i}), 

 x  AF, 

   fi (x) = fi   (x) 

with  = fkn-1  ...  fk1 

proof 

By induction on n. 

Basis:  Trivial for n = 1. 

Induction step:   fi(x) =  fj  fi(x) =  

 fi  fj(x) [by C3], AF  Aj, fj(x)  Bj, 

and Bj  AF-(fj) [by lemma 1], then  

 fi(fj(x)) = fi  (fj(x)) [by induction] =  

fi  (x).            

 

Then, theorem 2 simply states that the final 

value resulting from the application of a bag 

of pairwise commutative functions is in BF. 

theorem 2 

Let F verify C1 and C3, then: 

 x  AF, 

 fn  ...  f1 (x)  BF 

proof 

By induction on n. 

Basis:  By definition for n = 1. 

Let F = (f1,f2), then f1(f2(x))  B2, f2(f1(x)) 

 B1, and f1  f2(x) = f2  f1(x) [by C3], 

hence f1  f2(x)  B1  B2. 

Induction step:  fn  ...  f1(x) = fn  (x) = 

 fn(x) [by lemma 3], then, using the same 

reasoning as for the basis and applying the 

induction hypothesis, (x)  BF-(fn), and BF-

(fn)  AF  An [by lemma 2], therefore 

fn((x))  Bn. 

Conversely, fn(x)  Bn, and Bn  AF-(fn) [by 

lemma 1], then (fn(x))  BF-(fn).  

Consequently, fn  (x)  BF-(fn)  Bn. 
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We are now ready to discuss all the (bad) 

implications of theorem 2.  It needs two 

interpretations:  a first one when n ≥ 2, and a 

second one when n = 1.  They have a 

common characteristic:  both restrict 

concurrency. 

When at least two functions are executed 

concurrently on the same object (i. e., when 

n ≥ 2), theorem 1 holds too.  Therefore, we 

deduce that commutativity of a bag of 

functions implies convergence, or at most 

monotonicity, in the sequence of values of 

an object since the initial value must be in 

Af and the final value is consequently in Bf, 

a subset.  What is counter-intuitive in this 

proposition is that the views play no role;  it 

would have been easier to understand that 

whenever an operation returns a view of an 

object, this snapshot limits further 

modifications. 

Only when there is a unique transaction 

(i. e., when n = 1) can the value of an object 

be completely modified because condition 

C1 is not effective.  In other words, a 

function which domain and codomain do 

not intersect, is always exclusive of any 

other!  This is a corollary of theorem 1. 

corollary 1 

Let F verify C1 and C3, and let f  F be: 

f:  A  B 

such that A  B = Ø, then: 

AF ≠ Ø  | F | = 1 

proof 

Let us proceed by contradiction and choose  

f  F such that | F | > 1 and A  B = Ø, then 

by definition AF  A and BF  B, which 

clearly contradicts theorem 1, except if AF = 

Ø.            

 

Condition C1 and corollary 1 serve to detect 

all the pairs of functions which cannot 

commute, independently of their semantics.  

They are especially helpful because the 

number of functions is greater than the 

number of operations and that each function 

is generally exclusive of its counterparts. 

As an example, let us develop the STACK 

ADT in its entirety.  We distinguish nine 

functions associated to four operations:  

EMPTY, CLEAR, POP, and PUSH.  These 

functions are defined over the sets S0 and S+ 

representing respectively the set consisting 

of the empty stack and the set of non-empty 

stacks: 

 EMPTYyes:  S0  S0 

 EMPTYno:  S+  S+ 

 CLEARyes:  S+  S0 

 CLEARalready: S0  S0 

 POPempty:  S0  S0 

 POPlast:   S+  S0 

 POPyes:   S+  S+ 

 PUSHfirst:  S0  S+ 

 PUSHyes:  S+  S+ 

The reasons for mapping four operations 

into nine functions are two-fold:  First, 

condition C2 imposes unique inverse 

functions, e. g., CLEARalready and CLEARyes 

have different inverse functions;  Secondly, 

some differentiations improve 

commutativity, e. g., if PUSHfirst and 

PUSHyes were not distinguished, the unique 

PUSH function would commute with no 

other function. 

In Table 1, all the pairs of functions 

which do not verify condition C1 are 

immediately marked with i (for 

“impossible”).  Next, there are three 

exclusive functions, CLEARyes, POPlast, and 

PUSHfirst, which are marked with i’.  At last, 

the couple POPlast/PUSHfirst is marked i’’ 

since the intersection of their domains, S+ 

and S0, is empty.  Thus, the set of pairs of 

functions which have to be taken into 

consideration for potential commutativity is 

dramatically reduced, which simplifies the 

effective work of the designer. 

This kind of tool to handle complex 

commutativity conditions can be used in 
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conjunction with other methodologies   

[Roesler & Burkhard 87] [Chrysanthis et al. 

91]. 

 

We saw in this subsection what is the 

major disadvantage of commutativity:  a 

convergence phenomenon.  The restriction 

to bounded sets, a synonym for “computer 

sets”, gives a still worse result:  AF becomes 

equal to BF as soon as there is three 

functions in F [Martinez 92]. 

However, the introductory DIRECTORY 

example shows that convergence can be 

slow for some operations on some ADTs.  

Therefore, it is worth considering the 

advantages of commutativity. 

3.2.  Advantages for recovery 

Among the advantages of commutativity, 

theorems 3 and 4 are real folk-theorems. 

Theorem 3 states that a bag of pairwise 

commutative functions can be composed in 

any order without changing the final state of 

the object.  In simpler words, a pairwise 

commutative relation is also transitive, 

(regardless of reflexivity). 

theorem 3

Let F verify C1 and C3, then: 

 (k1,...,kn)  ({1,...,n}), 

 x  AF, 

 fkn  ...  fk1 
(x) = fn  ...  f1 (x) 

proof 

By induction on n. 

Basis:  Trivial for n = 1 and by definition for 

n = 2. 

Induction step:  fkn 
 ...  fki 

 ...  fk1(x) = 

 fn  (x) = fn   (x) [by lemma 3] = 

fn  fn-1  ...  f1(x) [by induction]. 

 

Theorem 4 expresses that out-parameters are 

not sensitive to the order of application of 

commutative functions, and more accurately 

that out-parameters are not sensitive to 

whether commutative functions are applied 

or not.  Then, theorem 4 can be seen as the 

second part of theorem 3, just as condition 

C4 can be considered the second part of 

condition C3.  But theorem 4 also supports 

the use of commutativity with optimistic 

methods where concurrent operations of 

other transactions are not reflected on the 

workspace of a given transaction. 

Another time, we can say in a simpler 

way that commutativity guarantees isolation 

of transactions. 

theorem 4 

Let < F, FT> verify C1, C3, and C4, then: 

 i:  1 ≤ i ≤ n, 

 x  AF, 

 fTi  fn · ...  f1 (x) = fTi  fi (x) 

proof 

By induction on n. 

Basis:  Trivial for n = 1 and by definition for 

n = 2. 

Induction step: fn  ...  f1(x) = fi  fj  (x) 

[by theorem 1], (x)  BF-(fi,fj) [by theorem 

2], and BF-(fi,fj)  Ai  Aj [by C1 or lemma 

2], therefore fTi 
 fi  fj((x)) =  

 Ey En Cy Ca Pe Pl Py Uf Uy 

Ey  i i’   i’ i i’ i 

En i  i’ i I i’  i’  

Cy i’ i’ i’ i’ i’ i’ i’ i’ i’ 

Ca  i i’   i’ i i’ i 

Pe  i i’   i’ i i’ i 

Pl i’ i’ i’ i’ i’ i’ i’ i’’ i’ 

Py i  i’ i I i’  i’  

Uf i’ i’ i’ i’ i’ i’’ i’ i’ i’ 

Uy i  i’ i I i’  i’  

Table 1:  non-commutativity matrix for the 

STACK ADT 
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fTi 
 fi((x)) [by C4] = fTi 

 fi(x) [by 

induction].           

 

Finally, here comes the major advantage of 

commutativity:  Composing a bag of 

pairwise commutative functions with a 

subbag of its bag of inverse functions, where 

each inverse function is applied after its 

direct one, is equivalent to a composition 

where the undone functions were never 

executed. 

theorem 5

Let < F, F-1> verify C1, C2, and C3, and let 

f’ = (f1, ..., fn, fn+1, ..., fn+m) be such that f = 

(f1, ..., fn), and, without loss of generality, 

(fn+1, ..., fn+m) = (f1
-1, ...,fm

-1) with m ≤ n, 

then: 

 (k1, ..., kn+m)  ({1, ..., n+m}), 

 x  AF, 

 (  i: 1 < i ≤ n + m, 

   ki ≥ n + 1  

    j:  1 ≤ j < i | ki = n + kj )  

 fkn+m  ...  fk1(x) = fn  ...  fm+1 (x) 

with improper notation when m = n. 

proof 

By induction on m. 

Basis:  By theorem 3 for m = 0. 

Induction step:  Let us take the minimal i 

such that ki ≥ n + 1, then there exists j < i 

such that ki = n + kj;  let kj be l, then  

fkn+m  ...  fki  ...  fkj  ...  fk1 (x) =  

  fl
-1    fl  (x) =  

  fl
-1  fl    (x) [by theorem 3] =  

    (x) = fn  ...  fm+1(x) [by 

induction].           

 

More simply, any inverse function can be 

applied at any moment after the application 

of its associated direct one.  Moreover, 

theorem 5 states that no control is necessary 

between direct and inverse functions, nor 

between inverse functions. 

Surprisingly, this theorem seems not to 

be exploited in literature.  [Weikum 91] 

argues that unresolvable deadlocks can 

occur during a reject process if an inverse 

operation is less commutative than its direct 

operation.  The solution implemented by 

[Brössler & Freisleben 89] is to make the 

direct and inverse operations have the same 

restrictions, i. e., two operations commute if 

and only if they commute and commute with 

the inverse function of each other.  [Moss et 

al. 86] concludes that the issue of knowing 

if whenever two operations commute, their 

inverse operations also commute, should be 

addressed. [Weikum 91] conjectures that “it 

is always possible to design inverse actions 

with a conflict relation that is no more 

restrictive than that of their primary 

actions.” 

Theorem 5 establishes the fact that 

inverse operations need just to be atomic, 

which can be obtained with short-term 

locking for instance, and do not necessitate 

their own synchronization mechanism since 

they rely on commutativity of their direct 

operations.  Then, inverse operation should 

not be treated uniformely as direct 

operations. 

Note that this theorem does not imply, as 

a corollary, that inverse functions commute 

if direct ones do so.  The reason is simply 

that condition C1 is generally not satisfied 

for inverse functions.  However, it is 

satisfied in the subcase of bounded sets 

[Martinez 92]. 

3.3.  Discussion 

We have proved that commutativity has 

practical advantages of interest, (especially 

for rejecting operations), which increase 

parallelism both between in-progress and 

rejected transactions.  However, we have 

also shown that commutativity is (just) 

super-compatibility and suffers the same 

drawbacks:  a write access was exclusive 
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with compatibility, exclusive operations are 

not eliminated by commutativity;  read 

accesses could not modify the value of the 

shared object, commutative operations 

cannot modify the predicate describing the 

possible values of the object. 

 

Several means have been exploited to 

allow finer concurrency:  independence, 

non-determinism, mathematical 

commutativity of numbers, and relative 

recoverability. 

independence 

ADTs which dispose of great 

independence are SET, BAG, or MAP.  Of 

this kind of objects are also the MAIL ADT 

in an operating system which utilizes a 

system-wide REGISTRY ADT of current 

users, or the introductory DIRECTORY ADT.  

As can be guessed, all these examples are 

instances of the general RELATION ADT. 

Returning to the introductory example, it 

is not obvious to convince someone that 

commutativity is restrictive.  In fact, the 

DIRECTORY ADT does not really take 

advantage of commutativity:  it is just 

compatible!  To prove this, consider the 

following implementation of the SET ADT:  

An instance is merely the characteristic 

function, i. e., an array of booleans, and the 

locking granule is the size of a boolean, then 

DELETE and INSERT are effectively 

compatible when applied to distinct items.  

Operations EMPTY or SIZE can be 

considered as macros. 

non-determinism 

Nevertheless, it is worth trying to 

circumvent these limits for less independent 

objects.  For instance, [Schwarz & Spector 

84] introduces a new ADT, the SEMIQUEUE, 

derived from a very constrained one, the 

FIFOQUEUE.  A SEMIQUEUE has a 

weakened GET operation:  it does not 

necessarily remove the oldest item in the 

queue but one of the oldest, i. e., fairness is 

imposed but not strict ordering.  Therefore 

GET becomes a non-deterministic operation. 

Note that some independence has been 

introduced between the items of a 

SEMIQUEUE:  the order relationship has 

been removed. 

mathematical commutativity 

There exists a very commutative ADT:  

the COUNTER.  The original method is 

known as the Escrow method [O’Neil 86] 

and uses the mathematical property of 

commutativity on integer and real numbers.  

Maximizing concurrency on this kind of 

object requires to use either its state, or the 

set of active operations.  But this introduces 

problems to decide whether an operation 

should be restarted or not [Ng 89]. 

relative recoverability 

The STACK, (as well as the FIFOQUEUE), 

is an example of an ADT which cannot take 

advantage of commutativity on a great 

extent, even when associating several 

functions to each operation, as done with 

PUSH.  For that kind of objects, the criterion 

of relative recoverability introduced by 

[Badrinath & Ramamritham 87] allows 

much more parallelism [Badrinath & 

Ramamritham 90], at the expense of 

theorems 3 and 4, however.  This is because 

conditions C1 and C4 are weakened and C3 

is no longer required. 

 

As can be seen, high concurrency is 

always achieved either by taking advantage 

of natural additional properties, or by 

weakening the conditions imposed by pure 

commutativity.  But what happen to 

arbitrary objects? 

The most common type constructor is the 

tuple constructor.  There exist strong 

dependencies between the fields of a tuple.  
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Consider an ADDRESS, composed of a 

number, a street, a ZIP, and a city.  Someone 

can move house in the same city, or even the 

same street, but that is rather the exception.  

The ADDRESS ADT is composed of tightly 

coupled components.  Tuple-based objects 

implying a strong dependency between the 

different fields, commutativity of operations 

can be simply deduced from commutativity, 

or even compatibility, of accesses to each 

fields of the tuple.  We left this issue open in 

the domain of object-oriented systems 

[Malta & Martinez 91a].  But that is 

typically the case for classes whose structure 

is almost every time tuples (only construct 

in ORION [Banerjee et al. 87] and 

GemStone [Maier et al. 86], tuple of in O2 

[Lécluse et al. 88]).  Classes and methods 

being frequently added, removed or 

modified, the inherent limits of 

commutativity convince us that a very 

simple analysis of commutativity between 

methods should give as good results, if not 

better in terms of incurred overhead, as 

some very complicated technique.  

Consequently, for tuple-based types, we 

recommend to rely on techniques even 

simpler than the one proposed by [Badrinath 

& Ramamritham 88]. 

4.  CONCLUSION 

Commutativity, the main criterion to control 

concurrent accesses to shared data in 

transactional systems, has been the subject 

of a big deal of papers.  Illustrated with 

popular examples, it seems to be a great 

enhancement over compatibility. 

The main result of this paper is to show 

that commutativity is subject to a 

convergence phenomenon which resembles 

the behaviour of compatibility:  a write 

access is exclusive with compatibility, and 

exclusive operations are not eliminated by 

commutativity;  read accesses cannot 

modify the value of the shared object, and 

commutative operations cannot weaken the 

predicate describing the set to which the 

object pertain. 

Having in mind this limitation, we 

rapidly survey the techniques which have 

been used to enhance concurrency.  This 

gives us guidelines for the design of 

concurrent abstract data types.  The rules 

that we recommend to follow are: 

 - to use the full power of 

commutativity for independent objects only, 

i. e., objects for which convergence can be 

limited to subparts; 

 - to rely on very simple techniques, 

even based on compatibility, for tuple-based 

objects; 

 - to include a COUNTER ADT for 

dealing with “hot-spots.” 

On the good side, we prove that 

commutativity has nice properties, in 

particular for recovery, which both 

simplifies commutativity conditions, and 

eliminate the overhead of having to control 

concurrent accesses of inverse operations. 

Also, the formal model gives an idea to 

help in determining non-commutativity of 

operations. 
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