
HAL Id: hal-00462320
https://hal.science/hal-00462320

Submitted on 9 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limits of Commutativity on Abstract Data Types
Carmelo Malta, José Martinez

To cite this version:
Carmelo Malta, José Martinez. Limits of Commutativity on Abstract Data Types. 5th International
Conference on Information Systems and Management of Data (CISMOD’92), Jul 1992, Bangalore,
India. pp. 261-270. �hal-00462320�

https://hal.science/hal-00462320
https://hal.archives-ouvertes.fr

Proceedings of the Int'l Conf. on Information Systems and Management of Data (CISMOD'92),

Indian Institute of Science Coampus, Bangalore, India, July 21-23, 1992, pp. 261-270

Malta C., Martinez J. 1

Limits of commutativity on abstract data types

Carmelo MALTA, José MARTINEZ

Abstract
We present some formal properties of (symmetrical) commutativity, the

major criterion used in transactional systems, which allow us to fully

understand its advantages and disadvantages. The main result is that

commutativity is subject to the same limitation as compatibility for

arbitrary objects. However, commutativity has also a number of

attracting properties, one of which is related to recovery and, to our

knowledge, has not been exploited in the literature. Advantages and

disadvantages are illustrated on abstract data types of interest. We also

show how limits of commutativity have been circumvented, which gives

guidelines for doing so (or not!).

1. INTRODUCTION

In shared database systems, users access to

data concurrently [Bernstein et al. 87]. The

accesses are done inside a programming

construct, named a transaction, which is a

unit of consistency, i. e., a program which

converts consistent data into consistent data

[Gray 81]. To improve throughput,

interleaved executions of transactions must

be allowed; however, to enforce

consistency, these interleaved executions

must look like a serial execution. This

syntactic criterion of consistency is called

serializability.

Interactions between transactions take

place through the use of common objects in

the database. Originally, operations were

merely uninterpreted reads and writes

[Kedem & Silberschatz 83]; read is

compatible with itself, while write is

exclusive. However, compatibility was too

strict a criterion for dealing with so-called

“hot-spots” [O’Neil 86], thus an enhanced

criterion was proposed: commutativity.

This new one takes into account the

semantics of operations on abstract data

types (ADTs) in order to decrease the

number of conflicts, which are in fact

pseudo-conflicts [Schwarz & Spector 84].

Let us consider the DIRECTORY example to

have an intuitive idea of the advantages of

commutativity over compatibility.

A DIRECTORY is an ADT whose

structure is a list of entries containing

different names and associated items, say

files in an operating system, and has a

number of operations among which CREATE

and DELETE. Both operations modify the

directory, therefore both are writers and

cannot be executed concurrently if

compatibility is used. Commutativity

allows a finer view of these operations, and,

considering the name of the entry which is

created or deleted, it can be concluded that

CREATE and DELETE are in conflict only if

This work was supported in part by the

PRCs BD3 and C3 coordinated by the

Centre National de la Recherche

Scientifique (CNRS), and in part by the

Ministère de la Recherche et de la

Technologie (MRT).

2 Malta, C., Martinez, J.

they manipulate the same entry. Obviously,

the number of conflicts is drastically

reduced.

If advantages of commutativity have been

clearly illustrated through examples, by

contrast, possible limitations have not been

investigated. Questions are:

“Commutativity being certainly not a

panacea, which are its limits? An then,

where is it the most effective?” In order to

answer them, we present some folk-

theorems [Harel 80] related to

commutativity of operations on ADTs. The

main result is heavily indebted to our choice

of formal approach: a functional model

which highlights the important notions of

domains and codomains.

The outline of this paper is as follows:

First, we introduce our model and

distinguish four conditions that functions on

an ADT must satisfy. Next, we prove that

for arbitrary objects, commutativity is not

much more powerful than compatibility!

However, we also prove attractive properties

of commutativity. Two of them are well-

known, but the last has practical

implications of interest which have not been

exploited in the literature. Finally, being

aware of the limits of commutativity, we

discuss the design of typical commutative

ADTs. In particular, one can understand

how some authors circumvent these

limitations by using additional properties or

weakening the required conditions of

commutativity.

2. THE MODEL

In order to study properties of

commutativity on ADTs, we use a

functional formalism.

2.1. Operations as functions

Each operation on an ADT is expressed as

one or many functions. For instance, let us

consider the SET ADT and the INSERT(x)

operation. We distinguish two functions: a

first one defined from the set of SETs

including x onto itself, and a second one

defined from the sets which do not contain x

to the sets including it. This differentiation

is made clear in subsection 2.3. In practice,

this point of view on operations has been

implemented [Malta & Martinez 91b].

definition 1

Let F = (fi)
n
i=1 be a bag of functions defined

as follows:

fi: Ai Bi

We also define:

Af = n
i=1 Ai

Bf = n
i=1 Bi

F is a bag of functions rather than a set

because a function does not necessarily

commute with itself. With a bag, self-

commuting functions have just to be

duplicated.

2.2. Composition (C1)

A bag of functions is intended to group

functions which commute, therefore they

must be composable in any order. To ensure

this composition, a condition is required on

the domains and codomains of the functions.

definition 2

Let F be a bag of pairwise commutative

functions, then F must verify the

composition condition (C1):

 i: 1 ≤ i ≤ n,

 j: (1 ≤ j ≤ n) (j ≠ i),

 Bj Ai

2.3. Compensability (C2)

The effects of an operation may have to be

undone, due to either a reject of the

corresponding transaction, or a crash of the

system. We then impose that each function

have a left-inverse function.

 Limits of commutativity on abstract data types 3

Malta C., Martinez J. 3

definition 3

Let F be a bag of pairwise commutative

functions, then we must have

F-1 = (fi
-1)

n
i=1 a bag of left-inverse functions:

fi
-1: Bi Ai

such that < F, F-1> verifies the

compensability condition (C2):

 i: 1 ≤ i ≤ n,

 x Ai,

 fi
-1 · fi (x) = x

This condition can be satisfied even for

operations which simply write a new value,

by restricting each Ai to a single value.

2.4. State commutativity (C3)

The preceding conditions were either

omitted, or implicit. The following

definition introduces the first part of the

explicited condition of commutativity.

definition 4

Let F be a bag of pairwise commutative

functions, then F must satisfy the state

commutativity condition (C3):

 i: 1 ≤ i ≤ n,

 j: (1 ≤ j ≤ n) (j ≠ i),

 x Ai Aj,

 fj fi (x) = fi fj (x)

We do not try to investigate the notion of

state equivalence since equality is already an

equivalence relation and consequently needs

(just) to be defined adequately for each ADT

(See [Weihl 88] for another definition).

2.5. View independence (C4)

In the previous definitions, only in-

parameters of operations on ADTs are

(implicitly) expressed. We explicitly

represent out-parameters.

definition 5

Let F be a bag of pairwise commutative

functions, then we also have F T = (fTi)
n
i=1

another bag of functions defined as follows:

fTi: Bi Ei

fTi fi (x) is the view that the transaction T

gets from the application of the operation

associated to fi on the object x.

This model of out-parameters is

consistent because each function has a left-

inverse function, that is, fT can be defined, if

there is no short cut, as f’T f-1.

The last condition, second part of the

familiar definition of commutativity,

requires invariance of out-parameters. In

the properties, C3 and C4 are never used

together.

definition 6

Let F be a bag of pairwise commutative

functions, then < F, FT> must verify the view

independence condition (C4):

 i: 1 ≤ i ≤ n,

 j: (1 ≤ j ≤ n) (j ≠ i),

 x Ai Aj,

 fTi fi fj (x) = fTi fi (x)

Note that non-deterministic operations are

not considered [Hesselink 88]. An

extension to non-determinism is not

straightforward: on the one hand,

serializability can be lost; on the other

hand, non-deterministic operations are

unavoidable. If it can be shown that non-

deterministic out-parameters do not change

the behaviour of transactions, then all the

results apply. This holds at the tuple-level

of a multi-level transactional system:

Creating a new tuple inserts it in some page

4 Malta, C., Martinez, J.

and assigns it a tuple identifier which is not

deterministic since it depends on the number

of transactions creating or deleting tuples.

Nonetheless, the behaviour of transactions is

not affected by so low-level details.

2.6. Remarks on the model

Some remarks can be done about this

formalization:

(i) Implicitly, each operation is executed

on behalf of a different transaction. This

simplifies the definitions. Moreover, a

sequence of functions executed on behalf of

a given transaction is reducible, by

composition, to a unique function.

(ii) Also implicit is the fact that the

commutativity that we study is conditional.

In-parameters can generate as many

functions as possible values, e. g., there is

not just two INSERT functions as seen

before, but an infinity of functions

INSERTx1, INSERTx2, etc [Roesler &

Burkhard 87]. Domains and codomains also

generate different functions, i. e., in practice

out-parameters are also exploited.

(iii) We define commutativity as being

symmetrical. [Weihl 88] defines two kinds

of commutativities: backward and forward.

It turns out that the former is not

symmetrical. The reason is that the bases

for determining backward commutativity are

not symmetrical. Nevertheless, with both

commutativities, when two operations have

been found commutative, they can be

executed in any order.

(iv) Our formalism takes account of

abstract data types solely. This is why we

identify the notion of object with that of its

value. Therefore, the results are directly

applicable to multi-level transactions on a

level-by-level basis, where objects are

composed of objects of the underlying level

[Cart et al. 90]. In contrast, they cannot be

applied, as they are, to objects composed of

references to other objects, e. g., instances of

classes in object-oriented environments.

(v) The bags that we defined are

conflict-preserving-serializable and

characteristics of strict executions (i. e.,

conflicting operations are delayed).

However, [Yannakakis 84] shows that the

class of conflict-preserving-serializability is

exactly the class of view-serializability plus

a property of monotonicity, i. e., translated

in our model, any sub-bag of a given bag

verifying the four conditions, still satisfies

them.

3. PROPERTIES OF COMMUTATIVITY

The following two subsections present

respectively the advantages and

disadvantages of commutativity as a

criterion for concurrent accesses to shared

data. First, disadvantages are highlighted;

they concern parallelism which is much less

increased, in general, than the profusion of

the literature on this topic can lead one to

suppose. Secondly, advantages are

introduced; they chiefly concern recovery

which can be simpler than implemented in

some systems.

3.1. Limits for concurrency

We begin by some introductory and

technical lemmas derived from the

constraint on the domains and codomains of

commutative functions, i. e., condition C1.

lemma 1

Let F verify C1, with n ≥ 2, then:

 i: 1 ≤ i ≤ n,

 Bi A F-(fi)

proof

Obvious by definition of C1.

lemma 2

Let f verify C1, with n ≥ 2, then:

 i: 1 ≤ i ≤ n,

 j: (1 ≤ j ≤ n) (j ≠ i),

 Bi Bj AF

 Limits of commutativity on abstract data types 5

Malta C., Martinez J. 5

proof

Bi Af-(fi) and Bj Af-(fj) [by lemma 1]

then Bi Bj AF-(fi) AF-(fj).

These lemmas lead directly to a first and

simple theorem.

theorem 1

Let F verify C1, with n ≥ 2, then:

BF AF

proof

Obvious from lemma 2.

Theorem 1 summarizes that (the necessary)

condition C1 generates a close and very

restrictive relationship between the sets of

domains and codomains of a bag of pairwise

commutative functions. This strong

structure is not at all surprising as soon as

we realize that it is based on set

intersections and inclusions. Although this

theorem is very simple, it is the unavoidable

reason which makes commutativity so weak

an enhancement for arbitrary objects. By

itself, it has no more intrinsic interest, but

we will see its implications connected to the

following theorem.

In order to demonstrate theorem 2, we

need a fundamental lemma of commutativity

which takes into account state

commutativity (condition C3). The full

extension is part of the next subsection

because it is a well-known advantage of

commutativity.

preliminary definition

({1,...,n}) is the set of permutations of

{1,...,n}.

lemma 3

Let F verify C1 and C3, then:

 i: 1 ≤ i ≤ n,

 (k1,...,kn-1) ({1,...,n} - {i}),

 x AF,

 fi (x) = fi (x)

with = fkn-1 ... fk1

proof

By induction on n.

Basis: Trivial for n = 1.

Induction step: fi(x) = fj fi(x) =

 fi fj(x) [by C3], AF Aj, fj(x) Bj,

and Bj AF-(fj) [by lemma 1], then

 fi(fj(x)) = fi (fj(x)) [by induction] =

fi (x).

Then, theorem 2 simply states that the final

value resulting from the application of a bag

of pairwise commutative functions is in BF.

theorem 2

Let F verify C1 and C3, then:

 x AF,

 fn ... f1 (x) BF

proof

By induction on n.

Basis: By definition for n = 1.

Let F = (f1,f2), then f1(f2(x)) B2, f2(f1(x))

 B1, and f1 f2(x) = f2 f1(x) [by C3],

hence f1 f2(x) B1 B2.

Induction step: fn ... f1(x) = fn (x) =

 fn(x) [by lemma 3], then, using the same

reasoning as for the basis and applying the

induction hypothesis, (x) BF-(fn), and BF-

(fn) AF An [by lemma 2], therefore

fn((x)) Bn.

Conversely, fn(x) Bn, and Bn AF-(fn) [by

lemma 1], then (fn(x)) BF-(fn).

Consequently, fn (x) BF-(fn) Bn.

6 Malta, C., Martinez, J.

We are now ready to discuss all the (bad)

implications of theorem 2. It needs two

interpretations: a first one when n ≥ 2, and a

second one when n = 1. They have a

common characteristic: both restrict

concurrency.

When at least two functions are executed

concurrently on the same object (i. e., when

n ≥ 2), theorem 1 holds too. Therefore, we

deduce that commutativity of a bag of

functions implies convergence, or at most

monotonicity, in the sequence of values of

an object since the initial value must be in

Af and the final value is consequently in Bf,

a subset. What is counter-intuitive in this

proposition is that the views play no role; it

would have been easier to understand that

whenever an operation returns a view of an

object, this snapshot limits further

modifications.

Only when there is a unique transaction

(i. e., when n = 1) can the value of an object

be completely modified because condition

C1 is not effective. In other words, a

function which domain and codomain do

not intersect, is always exclusive of any

other! This is a corollary of theorem 1.

corollary 1

Let F verify C1 and C3, and let f F be:

f: A B

such that A B = Ø, then:

AF ≠ Ø | F | = 1

proof

Let us proceed by contradiction and choose

f F such that | F | > 1 and A B = Ø, then

by definition AF A and BF B, which

clearly contradicts theorem 1, except if AF =

Ø.

Condition C1 and corollary 1 serve to detect

all the pairs of functions which cannot

commute, independently of their semantics.

They are especially helpful because the

number of functions is greater than the

number of operations and that each function

is generally exclusive of its counterparts.

As an example, let us develop the STACK

ADT in its entirety. We distinguish nine

functions associated to four operations:

EMPTY, CLEAR, POP, and PUSH. These

functions are defined over the sets S0 and S+

representing respectively the set consisting

of the empty stack and the set of non-empty

stacks:

 EMPTYyes: S0 S0

 EMPTYno: S+ S+

 CLEARyes: S+ S0

 CLEARalready: S0 S0

 POPempty: S0 S0

 POPlast: S+ S0

 POPyes: S+ S+

 PUSHfirst: S0 S+

 PUSHyes: S+ S+

The reasons for mapping four operations

into nine functions are two-fold: First,

condition C2 imposes unique inverse

functions, e. g., CLEARalready and CLEARyes

have different inverse functions; Secondly,

some differentiations improve

commutativity, e. g., if PUSHfirst and

PUSHyes were not distinguished, the unique

PUSH function would commute with no

other function.

In Table 1, all the pairs of functions

which do not verify condition C1 are

immediately marked with i (for

“impossible”). Next, there are three

exclusive functions, CLEARyes, POPlast, and

PUSHfirst, which are marked with i’. At last,

the couple POPlast/PUSHfirst is marked i’’

since the intersection of their domains, S+

and S0, is empty. Thus, the set of pairs of

functions which have to be taken into

consideration for potential commutativity is

dramatically reduced, which simplifies the

effective work of the designer.

This kind of tool to handle complex

commutativity conditions can be used in

 Limits of commutativity on abstract data types 7

Malta C., Martinez J. 7

conjunction with other methodologies

[Roesler & Burkhard 87] [Chrysanthis et al.

91].

We saw in this subsection what is the

major disadvantage of commutativity: a

convergence phenomenon. The restriction

to bounded sets, a synonym for “computer

sets”, gives a still worse result: AF becomes

equal to BF as soon as there is three

functions in F [Martinez 92].

However, the introductory DIRECTORY

example shows that convergence can be

slow for some operations on some ADTs.

Therefore, it is worth considering the

advantages of commutativity.

3.2. Advantages for recovery

Among the advantages of commutativity,

theorems 3 and 4 are real folk-theorems.

Theorem 3 states that a bag of pairwise

commutative functions can be composed in

any order without changing the final state of

the object. In simpler words, a pairwise

commutative relation is also transitive,

(regardless of reflexivity).

theorem 3

Let F verify C1 and C3, then:

 (k1,...,kn) ({1,...,n}),

 x AF,

 fkn ... fk1
(x) = fn ... f1 (x)

proof

By induction on n.

Basis: Trivial for n = 1 and by definition for

n = 2.

Induction step: fkn
 ... fki

 ... fk1(x) =

 fn (x) = fn (x) [by lemma 3] =

fn fn-1 ... f1(x) [by induction].

Theorem 4 expresses that out-parameters are

not sensitive to the order of application of

commutative functions, and more accurately

that out-parameters are not sensitive to

whether commutative functions are applied

or not. Then, theorem 4 can be seen as the

second part of theorem 3, just as condition

C4 can be considered the second part of

condition C3. But theorem 4 also supports

the use of commutativity with optimistic

methods where concurrent operations of

other transactions are not reflected on the

workspace of a given transaction.

Another time, we can say in a simpler

way that commutativity guarantees isolation

of transactions.

theorem 4

Let < F, FT> verify C1, C3, and C4, then:

 i: 1 ≤ i ≤ n,

 x AF,

 fTi fn · ... f1 (x) = fTi fi (x)

proof

By induction on n.

Basis: Trivial for n = 1 and by definition for

n = 2.

Induction step: fn ... f1(x) = fi fj (x)

[by theorem 1], (x) BF-(fi,fj) [by theorem

2], and BF-(fi,fj) Ai Aj [by C1 or lemma

2], therefore fTi
 fi fj((x)) =

 Ey En Cy Ca Pe Pl Py Uf Uy

Ey i i’ i’ i i’ i

En i i’ i I i’ i’

Cy i’ i’ i’ i’ i’ i’ i’ i’ i’

Ca i i’ i’ i i’ i

Pe i i’ i’ i i’ i

Pl i’ i’ i’ i’ i’ i’ i’ i’’ i’

Py i i’ i I i’ i’

Uf i’ i’ i’ i’ i’ i’’ i’ i’ i’

Uy i i’ i I i’ i’

Table 1: non-commutativity matrix for the

STACK ADT

8 Malta, C., Martinez, J.

fTi
 fi((x)) [by C4] = fTi

 fi(x) [by

induction].

Finally, here comes the major advantage of

commutativity: Composing a bag of

pairwise commutative functions with a

subbag of its bag of inverse functions, where

each inverse function is applied after its

direct one, is equivalent to a composition

where the undone functions were never

executed.

theorem 5

Let < F, F-1> verify C1, C2, and C3, and let

f’ = (f1, ..., fn, fn+1, ..., fn+m) be such that f =

(f1, ..., fn), and, without loss of generality,

(fn+1, ..., fn+m) = (f1
-1, ...,fm

-1) with m ≤ n,

then:

 (k1, ..., kn+m) ({1, ..., n+m}),

 x AF,

 (i: 1 < i ≤ n + m,

 ki ≥ n + 1

 j: 1 ≤ j < i | ki = n + kj)

 fkn+m ... fk1(x) = fn ... fm+1 (x)

with improper notation when m = n.

proof

By induction on m.

Basis: By theorem 3 for m = 0.

Induction step: Let us take the minimal i

such that ki ≥ n + 1, then there exists j < i

such that ki = n + kj; let kj be l, then

fkn+m ... fki ... fkj ... fk1 (x) =

 fl
-1 fl (x) =

 fl
-1 fl (x) [by theorem 3] =

 (x) = fn ... fm+1(x) [by

induction].

More simply, any inverse function can be

applied at any moment after the application

of its associated direct one. Moreover,

theorem 5 states that no control is necessary

between direct and inverse functions, nor

between inverse functions.

Surprisingly, this theorem seems not to

be exploited in literature. [Weikum 91]

argues that unresolvable deadlocks can

occur during a reject process if an inverse

operation is less commutative than its direct

operation. The solution implemented by

[Brössler & Freisleben 89] is to make the

direct and inverse operations have the same

restrictions, i. e., two operations commute if

and only if they commute and commute with

the inverse function of each other. [Moss et

al. 86] concludes that the issue of knowing

if whenever two operations commute, their

inverse operations also commute, should be

addressed. [Weikum 91] conjectures that “it

is always possible to design inverse actions

with a conflict relation that is no more

restrictive than that of their primary

actions.”

Theorem 5 establishes the fact that

inverse operations need just to be atomic,

which can be obtained with short-term

locking for instance, and do not necessitate

their own synchronization mechanism since

they rely on commutativity of their direct

operations. Then, inverse operation should

not be treated uniformely as direct

operations.

Note that this theorem does not imply, as

a corollary, that inverse functions commute

if direct ones do so. The reason is simply

that condition C1 is generally not satisfied

for inverse functions. However, it is

satisfied in the subcase of bounded sets

[Martinez 92].

3.3. Discussion

We have proved that commutativity has

practical advantages of interest, (especially

for rejecting operations), which increase

parallelism both between in-progress and

rejected transactions. However, we have

also shown that commutativity is (just)

super-compatibility and suffers the same

drawbacks: a write access was exclusive

 Limits of commutativity on abstract data types 9

Malta C., Martinez J. 9

with compatibility, exclusive operations are

not eliminated by commutativity; read

accesses could not modify the value of the

shared object, commutative operations

cannot modify the predicate describing the

possible values of the object.

Several means have been exploited to

allow finer concurrency: independence,

non-determinism, mathematical

commutativity of numbers, and relative

recoverability.

independence

ADTs which dispose of great

independence are SET, BAG, or MAP. Of

this kind of objects are also the MAIL ADT

in an operating system which utilizes a

system-wide REGISTRY ADT of current

users, or the introductory DIRECTORY ADT.

As can be guessed, all these examples are

instances of the general RELATION ADT.

Returning to the introductory example, it

is not obvious to convince someone that

commutativity is restrictive. In fact, the

DIRECTORY ADT does not really take

advantage of commutativity: it is just

compatible! To prove this, consider the

following implementation of the SET ADT:

An instance is merely the characteristic

function, i. e., an array of booleans, and the

locking granule is the size of a boolean, then

DELETE and INSERT are effectively

compatible when applied to distinct items.

Operations EMPTY or SIZE can be

considered as macros.

non-determinism

Nevertheless, it is worth trying to

circumvent these limits for less independent

objects. For instance, [Schwarz & Spector

84] introduces a new ADT, the SEMIQUEUE,

derived from a very constrained one, the

FIFOQUEUE. A SEMIQUEUE has a

weakened GET operation: it does not

necessarily remove the oldest item in the

queue but one of the oldest, i. e., fairness is

imposed but not strict ordering. Therefore

GET becomes a non-deterministic operation.

Note that some independence has been

introduced between the items of a

SEMIQUEUE: the order relationship has

been removed.

mathematical commutativity

There exists a very commutative ADT:

the COUNTER. The original method is

known as the Escrow method [O’Neil 86]

and uses the mathematical property of

commutativity on integer and real numbers.

Maximizing concurrency on this kind of

object requires to use either its state, or the

set of active operations. But this introduces

problems to decide whether an operation

should be restarted or not [Ng 89].

relative recoverability

The STACK, (as well as the FIFOQUEUE),

is an example of an ADT which cannot take

advantage of commutativity on a great

extent, even when associating several

functions to each operation, as done with

PUSH. For that kind of objects, the criterion

of relative recoverability introduced by

[Badrinath & Ramamritham 87] allows

much more parallelism [Badrinath &

Ramamritham 90], at the expense of

theorems 3 and 4, however. This is because

conditions C1 and C4 are weakened and C3

is no longer required.

As can be seen, high concurrency is

always achieved either by taking advantage

of natural additional properties, or by

weakening the conditions imposed by pure

commutativity. But what happen to

arbitrary objects?

The most common type constructor is the

tuple constructor. There exist strong

dependencies between the fields of a tuple.

10 Malta, C., Martinez, J.

Consider an ADDRESS, composed of a

number, a street, a ZIP, and a city. Someone

can move house in the same city, or even the

same street, but that is rather the exception.

The ADDRESS ADT is composed of tightly

coupled components. Tuple-based objects

implying a strong dependency between the

different fields, commutativity of operations

can be simply deduced from commutativity,

or even compatibility, of accesses to each

fields of the tuple. We left this issue open in

the domain of object-oriented systems

[Malta & Martinez 91a]. But that is

typically the case for classes whose structure

is almost every time tuples (only construct

in ORION [Banerjee et al. 87] and

GemStone [Maier et al. 86], tuple of in O2

[Lécluse et al. 88]). Classes and methods

being frequently added, removed or

modified, the inherent limits of

commutativity convince us that a very

simple analysis of commutativity between

methods should give as good results, if not

better in terms of incurred overhead, as

some very complicated technique.

Consequently, for tuple-based types, we

recommend to rely on techniques even

simpler than the one proposed by [Badrinath

& Ramamritham 88].

4. CONCLUSION

Commutativity, the main criterion to control

concurrent accesses to shared data in

transactional systems, has been the subject

of a big deal of papers. Illustrated with

popular examples, it seems to be a great

enhancement over compatibility.

The main result of this paper is to show

that commutativity is subject to a

convergence phenomenon which resembles

the behaviour of compatibility: a write

access is exclusive with compatibility, and

exclusive operations are not eliminated by

commutativity; read accesses cannot

modify the value of the shared object, and

commutative operations cannot weaken the

predicate describing the set to which the

object pertain.

Having in mind this limitation, we

rapidly survey the techniques which have

been used to enhance concurrency. This

gives us guidelines for the design of

concurrent abstract data types. The rules

that we recommend to follow are:

 - to use the full power of

commutativity for independent objects only,

i. e., objects for which convergence can be

limited to subparts;

 - to rely on very simple techniques,

even based on compatibility, for tuple-based

objects;

 - to include a COUNTER ADT for

dealing with “hot-spots.”

On the good side, we prove that

commutativity has nice properties, in

particular for recovery, which both

simplifies commutativity conditions, and

eliminate the overhead of having to control

concurrent accesses of inverse operations.

Also, the formal model gives an idea to

help in determining non-commutativity of

operations.

Acknowledgments

We wish to thank Michèle Cart, Jean Ferrié,

and Jean-François Pons for helping us to

improve the outline of this paper. Also, we

sincerely acknowledge the careful readings

and comments of the referees.

5. REFERENCES

[Badrinath & Ramamritham 87] Badrinath,

B. R., Ramamritham, K.; Semantics-

based concurrency control: beyond

commutativity; Proceedings of the 3rd

IEEE Int. Conf. on Data Engineering, Los

Angeles, USA, February 1987

[Badrinath & Ramamritham 88] Badrinath,

B. R., Ramamritham, K.; Synchronizing

transactions on objects; IEEE

Transactions On Computers, vol. 37, n°

5, May 1988, pp. 541-547

 Limits of commutativity on abstract data types 11

Malta C., Martinez J. 11

[Badrinath & Ramamritham 90] Badrinath,

B. R., Ramamritham, K.; Performance

evaluation of semantics-based multilevel

concurrency control protocols;

Proceedings of the 1990 Int. Conf. on the

Management Of Data, Atlantic City, NJ,

USA, May 1990, pp. 163-172

[Banerjee et al. 87] Banerjee, J., Chou, H.-

T., Garza, J. F., Kim, W., Ballou, D. W.

N., Kim, H.-J.; Data model issues for

object-oriented applications; ACM

Transactions On Information Systems,

vol. 5, n° 1, January 1987, pp. 3-26

[Bernstein et al. 87] Bernstein, P. A.,

Hadzilacos, V., Goodman, N.;

Concurrency control and recovery in

database systems; Addison-Wesley

Publishing Company, Reading,

Massachusets, 1987

[Brössler & Freisleben 89] Brössler, P.,

Freisleben, B.; Transactions on

persistent objects; Proceedings of the

Workshop on Persistent Object Systems:

their Design, Implementation, and Use,

Newcastle, Australia, January 1989, pp.

19-35

[Cart et al. 90] Cart, M., Ferrié, J., Pons, J.-

F.; Objects modeling when using a

multi-level transaction model;

Proceedings of the ECOOP/OOPSLA

Workshop on Transactions and Objects,

Ottawa, Canada, October 1990

[Chrysanthis et al. 91] Chrysanthis, P. K.,

Raghuram, S., Ramamritham, K.;

Extracting concurrency from objects: A

methodology; Proceedings of the Int.

Conf. on the Management Of Data,

Denver, Colorado, USA, May 1991, pp.

108-117

[Gray 81] Gray, J. N.; The transaction

concept: virtues and limitations;

Proceedings of the 7th Int. Conf. on Very

Large Data Bases, Cannes, France, 1981,

pp. 144-154

[Harel 80] Harel, D.; On folk theorems;

Communications of the ACM, vol. 23, n°

7, July 1980, pp. 379-389

[Hesselink 88] Hesselink, W. H.; A

mathematical approach to

nondeterminism in data types; ACM

Transactions On Programming

Languages and Systems, vol. 10, n° 1,

January 1988, pp. 87-117

[Kedem & Silberschatz 83] Kedem, Z. M.,

Silberschatz, A.; Locking protocols:

from exclusive to shared locks; Journal

of the ACM, vol. 30, n° 4, October 1983,

pp. 787-804

[Lécluse et al. 88] Lécluse, C., Richard, P.,

Velez, F.; O2, an object-oriented data

model; Proceedings of the ACM Int.

Conf. on the Management Of Data,

Chicago, Illinois, USA, June 1988

[Maier et al. 86] Maier, D., Stein, J., Otis,

A., Purdy, A.; Development of an object-

oriented DBMS; Proceedings of the Int.

Conf. on Object-Oriented Programming

Systems, Languages and Applications,

September 1986

[Malta & Martinez 91a] Malta, C.,

Martinez, J.; Controlling concurrent

accesses in an object-oriented

environment; Proceedings of the 2nd Int.

Symposium on Database Systems For

Advanced Applications, Tokyo, Japan,

April 1991, pp. 192-200

[Malta & Martinez 91b] Malta, C.,

Martinez, J.; A framework for designing

concurrent and recoverable abstract data

types based on commutativity;

Proceedings of the 6th Int. Symposium

on Computer and Information Sciences,

Antalya, Side, Turkey, October 1991

[Martinez 92] Martinez, J.; Contribution à

la formalisation des problèmes de

contrôle de concurrence et de

recouvrement dans les bases de données

à objets; Ph. D. Thesis, September 1992,

Université des Sciences et Techniques du

12 Malta, C., Martinez, J.

Languedoc, Montpellier, France, 160 p.

(in French)

[Moss et al. 86] Moss, J. E. B., Griffith, N.

D., Graham, M. H.; Abstraction in

recovery management; Proceedings of

the ACM Int. Conf. on the Management

Of Data, Washington D.C., USA, May

1986, pp. 72-83

[Ng 89] Ng, T. P.; Using histories to

implement atomic objects; ACM

Transactions On Computer Systems, vol.

7, n° 4, November 1989, pp. 360-393

[O'Neil 86] O'Neil, P. E.; The Escrow

transactional method; ACM

Transactions On Database Systems, vol.

11, n° 4, December 1986, pp. 405-430

[Roesler & Burkhard 87] Roesler, M.,

Burkhard, W. A.; Concurrency control

scheme for shared objects: A peephole

approach based on semantics;

Proceedings of the 7th Int. Conf. on

Distributed Computing Systems, Berlin,

West Germany, September 1987, pp.

224-231

[Schwarz & Spector 84] Schwarz, P. M.,

Spector, A. Z.; Synchronizing shared

abstract types; ACM Transactions On

Computer Systems, vol. 2, n° 3, August

1984, pp. 223-250

[Weihl 88] Weihl, W. E.; Commutativity-

based concurrency control for abstract

data types; IEEE Transactions On

Computers, vol. 37, n° 12, December

1988, pp. 1488-1505

[Weikum 91] Weikum, G.; Principles and

realization strategies of multilevel

transaction management; ACM

Transactions On Database Systems, vol.

16, n° 1, March 1991, pp. 132-180

[Yannakakis 84] Yannakakis, M.;

Serializability by locking; Journal of the

ACM, vol. 31, n° 2, April 1984, pp. 227-

244

