
Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 1

Laboratoire de Systèmes Informatiques

Tuple-based
Abstract Data
Types: Full
Parallelism

Malta, C., Martinez, J.

1. Introduction
Some History

2. Access Vectors
The Idea
Its Domain of Application
An Example: The “Square” ADT

(i. e., Abstract Data Type)

3. Controlling Operations
Extended Compatibility
Full Parallelism
Constant time controls
Downgrading and Conditional

Commutativity
Inverse Operations

4. Comparison with Previous Works

5. Conclusion and Issues

Introduction: Some History

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 2

A general framework using serializability and

2PL
Goal: To provide maximal commutativity.

Object

Client

Public Operations

OperationsPriv
ate

Client

Client

c
o

n
c
u

r
r

e
n

c
y

recovery

m
a
p
p

in
g

control

Used to implement several ADTs of interest: boolean, set, map,
b-tree, and several kinds of counters.
Though implemention of the operations is simplified, there is still
a lot of work to do in between the two interfaces.

A strong limitation for arbitrary objects

The major critics against implementing fine commutativity
relations is that for arbitrary objects the behaviour is comparable
to the one obtained with compatibility (only read and write access
modes.)

Access Vectors: The Idea

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 3

The Idea

Use the syntactic information given in part

by the structure of the object

and in part

by the implementation of its operations

to provide automatic concurrency control and recovery.

Domain of Application

Tuple-based ADTs because

fields of a tuple are strongly connected
(e. g., by functional dependencies),

therefore, it is often unnecessary to look for interesting
commutativity relations.

Examples: Two extremes
The “Address” ADT: tuple of

 Number: integer;

 Street: string;

 ZIP: string;

 City: string;

 end tuple;

The “Square” ADT

Access Vectors: The “Square” ADT

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 4

A square is represented by four attributes:

X, Y, Side, and Angle

and operations may be:

Move, Rotate, Extend, Display, ...

X

Y
Angle

S
id

e

Rotate (Da) is

 if Da mod 2p ≠ 0

 then Angle := (Angle + Da) mod 2p

Extend (DS) is

 if DS ≠ 0 then if Side + DS ≥ 0

 then Side += DS

 else Side := 0

DAV X Y Side Angle

Rotate Null Null Null Write

Extend Null Null Write Null

Controlling Operations: Full Parallelism

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 5

lemma 1
A set of concurrent operations pairwise commute if, and only if,
for each field:
 - there is at most one writer and no reader or,
 - there is exclusively readers or,
 - there is neither writers nor readers.

DAV X Y Side Angle

Rotate Null Null Null Write

Extend Null Null Write Null

Move Write Write Null Null

 1 writer

no
reader

1 writer

no
reader

1 writer

no
reader

1 writer

no
reader

corollary 1
The actual execution of the operations can be done is full
parallelism, (i. e., without controlling its atomicity), because this
kind of commutativity is just extended compatibility.

corollary 2
Commutativity of an incoming operation can be controlled in
constant time by using two control vectors: one for controlling
the presence of a writer, another for counting the number of
readers.

Controlling Operations: Downgrading

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 6

Problem
DAV being defined a priori, at compile-time, are pessimistic and
do not provide really commutativity but just extended
compatibility.

Solution
We introduce Dynamic Access Vectors (DynDAV), computed at
run-time, which detect which fields have not been actually used.

property 1
DynDAV(OP) ≤ DAV(OP)

DAV(S.Move) = (Write, Write, Null, Null)
DynDAV(S.Move(5,0)) = (Write, Null, Null, Null)

DynDAV X Y Side Angle

Rotate(2p) Null Null Null Null

Extend(0) Null Null Null Null

Move(5,0) Write Null Null Null

 1 writer

no
reader

no
writer

no
reader

no
writer

no
reader

no
writer

no
reader

lemma 3
Downgrading does not invalidate serializability.

lemma 4
DynDAV and downgrading offer a special kind of conditional
commutativity.

Controlling Operations: Inverse Operations

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 7

S1 S2
OP1 OP2 OP1

-1

T1 T2 T1

S0 S2'

OP2

property 2
DAV(OP-1) ≤ DynDAV(OP) ≤ DAV(OP)

DAV(OP) = (Write, Null, Read, Write, Read, Read)

DynDAV(OP) = (Read, Null, Null, Write, Read, Null)

DAV(OP-1) = (Null, Null, Null, Write, Null, Null)

corollary 3
Inverse operations need not be controlled at all and can also be
executed in full parallelism.

Comparison with Previous Works

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 8

[Eswaran et al. 76]

 Access vectors as here.
 Not implemented in System R. Reasons may be that:
 - access vectors have to be generated at run-time;
 - decomposition of objects on several relations achieves a

rough form of access vectors.

[Noe et al. 87]

 Only Dynamic Access Vectors.
 Only from the recovery point of view.

[Badrinath & Ramamritham 88]

 A graph structure rather than vectors.
 Commutativity extracted from specifications.
 Only from the concurrency control point of view.

[Agrawal & El Abbadi 92]

 In object-oriented databases.
 For concurrent class definition modifications.
 Only from the concurrency control point of view.

Conclusion and Issues

Tuple-based Abstract Data Types: Full Parallelism ISCIS VII - 9

Summary

 Automatic technique on tuple-based ADTs.

 Not to take the place of the previous framework.

 Eliminates the drawbacks of other proposals.

 Offers full parallelism.

Issues

 Multiprocessor machines.

 Neither multilevel transactions, nor ARIES allow this kind of
concurrency.

 Extension to an object-oriented data model (i. e., essentially
inheritance) are in progress.

