
HAL Id: hal-00462311
https://hal.science/hal-00462311

Submitted on 9 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for designing concurrent and recoverable
abstract data types based on commutativity

Carmelo Malta, José Martinez

To cite this version:
Carmelo Malta, José Martinez. A framework for designing concurrent and recoverable abstract data
types based on commutativity. International Symposium on Computer and Information Sciences
(ISCIS’91), Oct 1991, Side, Turkey. pp. 189-198. �hal-00462311�

https://hal.science/hal-00462311
https://hal.archives-ouvertes.fr

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 1

A framework for designing

concurrent and recoverable abstract data types

based on commutativity

Carmelo MALTA, José MARTINEZ

Université des Sciences et Techniques du Languedoc

Centre de Recherche en Informatique de Montpellier

860, rue de Saint-Priest, 34090 Montpellier, FRANCE

Email : <malta, martinez>@crim.fr

Abstract

In this paper, we try to focus the reader's

interest on the problems that transactional

systems have to resolve for taking advantage

of commutativity in a serializable and

recoverable way. Our framework is, (as

others), based on the use of conditional

commutativity on abstract date types. We

present new features that have not been

found in the literature hitherto, that both

increase concurrency and simplify recovery.

Keywords
Serializability, concurrency control,

recovery, commutativity, abstract data types.

1. INTRODUCTION

One can view the methods of controlling the

concurrent accesses to shared data as

belonging to a large scale going from

syntactic methods, (like strict two-phase

locking [5] with read and write locks, which

is the only correct method when no

knowledge at all is provided on data), to

semantic methods, (among which the most

semantic of all is parallel programming,

e. g., with CSP [9]).

The evolution is naturally to propose

more and more semantic methods. The

challenge is double: A trend is to increase

the knowledge that the concurrency control

has of the semantics of the data, then to

exploit this knowledge in order to increase

the parallelism within and between

transactions.

In most cases, semantics is added at the

level of individual objects. Propositions

generally increase the set of locks on

databases with granular organizations [7,

10], of operations on typed objects [11, 18],

in object-oriented databases [6, 4, 14].

Although the system has a more precise

view, the criterion used remains

serializability because compatibility or

commutativity is used at the object level.

Badrinath & Ramamritham [2] introduce the

relative recoverability criterion which still

implies serializability at the transaction

level.

This work was supported in part by the

PRC-BD3 coordinated by the Institut

National de la Recherche en Informatique et

Automatique (INRIA), and in part by the

PRC-C3 coordinated by the Centre National

de la Recherche Scientifique (CNRS).

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 2

Other propositions introduce new criteria

at the transaction level: multi-level

atomicity [13] or “acceptability” of

compensative transactions [8, 19]. These

lead to non-serializable schedules.

In this paper, we discuss the specific case

of commutativity of operations on abstract

data types (ADTs). However, we do not just

discuss concurrency control, but also

recovery, in a serializable and cascading

rollback-free way.

The paper is organized as follows: In

section 2, we introduce the main point of

our framework for dealing both with

concurrency control and recovery: a two-

level interface. In section 3, first we discuss

commutativity itself. Next, we present our

general protocol, at the object level, which

uses a monitor rather than locking in order

to allow conditional commutativity with

out-parameters without executing more than

once any operation. Finally, in the

conclusion, we review the advantages and

disadvantages of our scheme and introduce

some luxury features added in our

implementation.

2. A TWO-LEVEL INTERFACE FOR ADTS

All the features that we present in our

framework are based on the requirements

needed to carrying out both concurrency

control and recovery. Our approach is

characterized by:

 (i) a unique copy of the object, which

is modified concurrently and maintained

up-to-date;

 (ii) a recovery mechanism based on

inverse operations;

 (iii) two interfaces for the operations

on an ADT: a first one, visible to the user

of the ADT; a second one, hidden to the

user, for dealing with concurrency control

and recovery;

 (iv) a concurrency control mechanism

which only takes into account the in- and

out-parameters of the operations but never

(directly) the state of the object;

 (v) the possibility to return from the

invocation of an operation without

executing it, (using deduced return values).

In the sequel, we present the two-level

interface used for operations on an ADT,

and the advantages which it contributes to

for recovery and concurrency control.

2.1. Motivations

The reason why we need a two-level

interface is essentially motivated by

recovery. It is also influenced by the fact

that we do not determine commutativity of

operations by considering directly the

current state of an object. This self-

imposed constraint is relevant for big

objects which cannot be analyzed a priori,

but it deserves to be removed when objects

are sufficiently small. It is the case with the

Escrow method [15], which takes into

account the initial value of an aggregate,

(integer or real), to increase commutativity

of increment and decrement operations.

However, considering out-parameters of

operations is generally sufficient to have an

idea of the initial state of the object;

Rœssler & Burkhard [16] named it the

“peephole” approach. Besides, the state of

an object is just an abbreviation of the

sequence of applied and non-rejected

operations.

We also take advantage of this two-level

interface for simplifying concurrency

control.

2.2. State-based inverse operations

As stated in (i), the object state is

maintained up-to-date, i. e., every operation

is performed on a single copy. As noted by

Weihl [22], such a choice implies the use of

inverse operations in order to treat recovery

adequately. Now, what is to be clear is that

inverse operations cannot be state-

independent.

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 3

Why state-based recovery?

Let us take the generic SET example. We

consider only the INSERT operation for the

purpose of our demonstration. From the

specification of a SET, it might be deduced

that INSERT commutes with itself. This is

false because a transaction which invokes an

INSERT operation on a given SET may abort

at a later time. Therefore, we must provide

an inverse operation. This inverse is either

DELETE, if the INSERT was successful, or

NULL, if the inserted item was already in the

SET.

It is worth considering that virtually there

exists two kinds of INSERT operations: one

defined from a SET which does not contain

the inserted item, and a second defined from

a SET which already contains the item.

Each of these conceptually different

operations has its own inverse, respectively

DELETE and NULL. Neither two INSERTs of

the first category can commute on a

common item, nor an INSERT of the first

category with one of the other, whereas it is

allowed for two INSERTs belonging to the

second category.

Trying to enhance concurrency by

allowing commutativity between two

INSERTs of the first category, (because the

report is unknown to the outside), yields to

context-sensitivity, i. e., an inverse

operation is no more associated to just one

direct operation but to a set of operations.

In this example, when there is more than

one INSERT of the first category, the inverse

is NULL; for the last INSERT, however, the

inverse is DELETE. We know of no protocol

which implements such a complex

mechanism.

A private interface

As the out-parameters given for the

operations of an ADT may not be sufficient

to determine the corresponding inverse

operations, we introduce a second interface.

This new interface is used by the transaction

manager, and a mapping from the interface

known by the user, the public one, to the

private one is given. This point is

developed in the next section.

It is also possible to explain the two-level

interface from the other side. An operation

must be specified in such a way that its

inverse operation should be deduced from

the in- and out-parameters. If some out-

parameters are not important to the user of

the type, these parameters may be hidden in

the public interface.

Figure 1

A one-to-many relation from direct to

inverse operations

inverses

 for procedure INSERT (in Item;

 out Report)

 when Report = AlreadyIn

 inverse is NULL

 when Report = Ok

 inverse is DELETE (Item,_)

As two or more conceptually different

private operations can be invoked through a

common operation, e. g., the two conceptual

INSERTs are merged in the same public

INSERT operation, we provide a one-to-

many relationship from private operations to

inverse operations depending above all on

out-parameters (Figure 1). Consequently,

the inverse operation of a given operation

cannot, (generally), be determined before

the end of the execution of the direct

operation.

NULL inverse operation

A particular inverse operation of interest is

NULL. It is naturally associated as the

inverse of any non modifying operation,

e. g., CARD, (which returns the cardinal of a

set), or IN, (which checks the membership).

It is also associated to writing operations

when it can be deduced from their out-

parameters that they actually do not change

the object state, as an INSERT which reports

AlreadyIn, or an AND(false) on a boolean

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 4

which was previously false. At last, it can

even be associated to modifying operations

when these modifications are irrelevant for

the semantics of the ADT, e. g., a tree can

be balanced for more efficient accesses if its

organization is hidden (no ROOT or DEPTH

operations, for instance).

The practical advantage in determining

that the inverse of an operation is NULL, is

that the direct and/or inverse operations

need not be logged1, (but the direct

operation still has to be used for

concurrency control).

2.3. Mapping public to private

operations

We can also take advantage of this two-level

interface for concurrency control by

introducing more than one private operation

for each public one, depending on the values

of the in-parameters. The advantages are

two-fold: conditional commutativity is

simplified, and some operations might be

recognized as unnecessary.

Let us consider the REAL type: It is

possible to associate with the public

MULTIPLY operation either the private

MULTIPLY, DIVIDE, or SETTO operations,

or the NULL operation; to the public ADD

operation we associate either the private

ADD, or SUB operations, or again the NULL

operation (Figure 2).

Simplified conditions

Commutativity conditions are simplified. In

this example, the amounts for the private

ADD and SUB operations are always strictly

positive values, a pre-condition often

implicitly assumed.

The benefit is even larger if we consider

the MULTIPLY operation which can be

derived as a SETTO(0). First, this shortens

the commutativity conditions between

MULTIPLY and other operations since a

1 We assume that a log mechanism is used for

recovery, which seems to be the best mechanism [1],
or, at least, the most implemented one.

cumbersome case is eliminated. Secondly,

the determination of the inverse operation is

also simplified! When multiplying by zero,

the only way to get back to the previous

state of the object is to restore its so-called

before-image: there is no mathematical

inverse. This will be managed directly by

the SETTO operation and not as a special

case of the MULTIPLY one.

Figure 2

A one-to-many relation from public to

private operations

public

 procedure MULTIPLY (in Mult) is

 when Mult = 0 do

 private SETTO (0)

 when Mult = 1 do NULL

 when Abs(Mult) ≥ 1 do

 private MULTIPLY (Mult)

 else do private DIVIDE (1 / Mult)

 procedure ADD (in Amount) is

 when Amount > 0 do

 private ADD (Amount)

 when Amount < 0 do

 private SUB (— Amount)

 else do NULL

NULL direct operation

NULL deserves special attention because it

is an operation which does exactly nothing.

NULL has the property to commute with

every operation. Therefore, it can be totally

ignored, i. e., it does not need any checking

with previous or following operations!

We dwell upon the fact that this is only

true for operations which translate to NULL

when considering only their in-parameters,

i. e., direct NULL operations must be

deducible a priori; it is incorrect to

conclude that an operation is NULL in regard

of its out-parameters, because the operation

has had to access to the object. For

instance, a SETTO operation is never NULL

even if the old value of the object is equal to

the assigned one; in that case, it can only be

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 5

concluded that this SETTO was equivalent to

IDENTITY. This means that its inverse

operation is NULL.

2.4. Advantages of the two-level interface

The two-level interface is useful to deal with

recovery as well as with concurrency

control. Its main advantage for concurrency

control is to simplify commutativity

conditions, and for recovery to reveal what

is necessary for undoing the direct

operation, which reacts again upon

concurrency control (since finding out the

out-parameters necessary to the inverse

operations makes clear the commutativity

conditions between these operations).

The two-level interface also reveals us

the two kinds of NULL operations: inverse

and direct ones. The inverse NULL

operation implies that the operation needs

not be recorded in the log in order to undo

its corresponding direct operation. The

direct NULL operation is more novel, its

main advantage is to need no concurrency

control at all.

As a last example of the effectiveness of

the two-level interface, let us look at the

BOOLEAN type: six public operations, AND,

OR, XOR, NOT, SETTO, and READ, are

translated to three private operations, NOT,

SETTO, and READ, (plus NULL), because

OR(false), AND(true), and XOR(false) do not

change the value of the boolean, and

OR(true), AND(false), and XOR(true) are

translated respectively to SETTO(true),

SETTO(false), and NOT. Note that if the

operations were written in order to return

the new value of the boolean, instead of

translating to NULL, they would have been

transformed into READ.

3. EXPLOITING COMMUTATIVITY

3.1. Some characteristics

Utilizing in- and out-parameters of

operations increases concurrency by

eliminating pseudo-conflicts. Therefore, we

use the parameters in order to describe

commutativity between operations. We

describe commutativity between private

operations: Firstly, only private operations

are executed. Secondly, we have seen in

section 2.2. that inverses (in fact, out-

parameters) play a part in determining

commutativity of operations.

3.1.1.Non-state-based commutativity

However, we refuse to consider the current

state of an object in order to describe

commutativity.

An advantage of using a non-state-based

approach is that the representation of an

object and the implementation of its

operations do not interfere with

commutativity conditions, as long as the

parameters of the private operations remain

the same. This is exactly the same point of

view as shared by developers of ADTs since

they can alter the implementation of an

ADT without causing troubles to its users.

Allowing concurrent executions of

operations with checkings is another

resulting benefit which we exploit in our

protocol.

Finally, the state of an object is (just) an

abbreviation of the sequence of operations

performed on it since an initial value. Some

results may be obtained without looking at

the state of the object; our protocol includes

the possibility to deduce out-parameters

without actually executing the operation.

3.1.2. Commutativity between direct

private operations only

We consider that commutativity has to be

defined only between direct private

operations. We use the common definition

of commutativity, i. e., two operations

commute if (1) the state of the object and (2)

their respective out-parameters are not

dependent of the execution order2. Because

private operations return all the out-

parameters necessary to undo the direct

2 Here, we do not consider the case of non-

deterministic operations.

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 6

operation, this ensures that the system not

only schedules serializable histories, but

also makes rejects possible without

cascading aborts. Brössler & Freisleben [3]

have to check commutativity between direct

and inverse operations to achieve this

important objective.

Serializable and cascading rollback-free

schedules are also obtained by Turc [20] and

Badrinath & Ramamritham [2]. Their

respective criteria are incomparable but both

include the mere case where a writing does

not commute after a reading but is allowed

because the inverse of the reading is NULL.

Either reading or writing can be rejected

without influencing the other. However, a

precedence dependency is created and the

commits of the operations must take place

in that order if both commit, when two-

phase locking is used.

3.1.3. At most one execution of an

operation

On the one hand, we would like to exploit

all the parameters, in-parameters and out-

parameters, but on the other hand, we do not

wish to execute first an operation on an

“optimistic” basis, as is done in Argus [21]

[12]. Using commutativity and desiring that

an operation be executed only once implies

that that operation is executed only when it

commutes with all the other active

operations. Since this guarantee has to be

obtained before executing it, that means that

its own out-parameters cannot be used!

The rationale for this constraint is the

following: whenever an operation is

rejected, all the following operations done

on an “optimistic” way must be undone,

redone and rechecked. If the operations are

lengthy and/or numerous, the overhead

would be unacceptable. To explain

carefully this point, we study two

“optimistic” protocols.

In the “very optimistic” protocol, every

operation invoked on an object is

immediately executed. Operations are

classified either as active operations or

blocked ones, i. e., belonging to an active

transaction, or being the last operation of a

blocked one. The classification of a new

operation is decided after its execution by

testing commutativity with all the other

operations, active as well as blocked ones.

It is active if it commutes with all,

otherwise it is blocked. Blocked operations

are waiting on active operations, (direct

blocking), or on other blocked operations,

(“transitive” blocking); thus, they are

“ordered3” by the blocking relation.

Conversely, active operations are not related

to each other, and “precede” every blocked

operation.

A problem of atomicity, with lengthy

operations, is that execution and

classification must be done atomically.

However, this is not the Achilles heel of this

protocol which is quite interesting as long as

there is no rejects. Otherwise, two problems

appear: an overhead which may be high,

and, as a side-effect, starvation.

Suppose that an active operation has to

be undone, then we must also undo all the

operations which are directly or transitively

blocked on that operation, (in the reverse

order of invocation). Next, the blocked

operations have to be redone, (in the

previous chronological order), and checked

another time, i. e., introducing and/or

removing dependencies between operations.

This rechecking is necessary because out-

parameters have changed for direct

dependencies, and perhaps for transitive

ones too. Since this heavy task, the

complexity of which is in O(n2) where n is

the number of operations, takes place at

each abort, a given transaction may be

undone, redone, and rechecked very often,

even infinitely often.

Starvation appears because out-

parameters change and consequently new

3 The blocking (resp. waiting) relation is not a

partial order.

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 7

dependencies appear. Furthermore, since

only some blocked operations are undone

and redone, the first chronological order of

execution of the operations is not preserved.

Thus, an operation may be continuously

redone and new dependencies established

with now preceding operations. Starvation

can be eliminated at the price of undoing

and redoing all the blocked operations.

A derived protocol can be proposed.

This time, at most one blocked operation is

executed in an “optimistic” way. When a

new operation arrives, if there is no blocked

operation, it is executed and checked, if

there is already one blocked operation, the

new one waits for it. We then have a set of

pairwise commutative operations, a single

blocked operation on some of the active

ones, and a set of waiting operations, (on a

FIFO queue), all waiting on the blocked

one. The cost of one reject is constant:

there is just one operation to undo, redo, and

recheck. In our opinion, this second

approach can possibly be used if rejects are

not frequent or operations very short.

3.1.4. Deduced out-parameters

Executing only once an operation implies

that out-parameters of this operation are

missing for checking commutativity, thus

the number of conflicts is increased. This

drawback can be overcome to some extent

by deducing out-parameters from the out-

parameters of previous and still active

operations.

The specifications of ADTs imply that

when an operation has returned some

values, the results of other operations are

related to them. Such implications can be

found in numerous conditional

commutativity tables: for SET, if an

INSERT(X) reports AlreadyIn, we know that

a subsequent INSERT(X) has to report

AlreadyIn too; for STACK, EMPTY reporting

Yes implies that POP will report

EmptyStack, (and conversely).

Unfortunately, there is still some

serializable executions that are denied, e. g.,

in a SET, CARD will prohibit an incoming

INSERT or DELETE, though an INSERT

reporting AlreadyIn or a DELETE reporting

NotFound commute with CARD. This

limitation is due to the fact that sound

deductions can be done only between

operations which actually do not change the

state of the object.

3.2. The protocol

Our protocol is not new at the transaction

level; we use the well-known two-phase

locking (2PL) protocol [5]. Furthermore,

we choose the strict variation to avoid the

cascading-rollback problem.

What is novel is the protocol adopted for

executing an operation on an object. This

protocol is divided into four steps: trying to

(1) deduce out-parameters; then, if it is not

possible, (2) executing an in-control,

followed by (3) the execution of the

operation itself, and at last (4) an out-

control. These steps are illustrated in

Figure 3 which describes the generic code

associated to an operation.

As already stated, concurrency control

and recovery take place at the private

interface level, i. e., only private operations

are involved.

The four steps of the execution of an

operation must be atomic, independently

however. The steps (1), (2), and (4) are

critical sections managed by a monitor

mechanism (Figure 7), while step (3) can be

controlled by another mechanism in order to

increase concurrency. For complex objects,

such as b-trees, it is unthinkable to limit

concurrency by executing the operations,

i. e., step (3), in mutual exclusion.

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 8

Figure 3

Generic code for an operation

public procedure OP (in IN; out OUT) is

 // select and call a private OP

 // translate private OUT to public OUT

private procedure OP (in IN; out OUT) is

 // (1) deduce OUT

 if not Deduced

 then

 // (2) execute InControl

 // (3) execute private OP itself

 // (4) execute OutControl

We now detail the implementation of steps

(1), (2), (4), and of an additional step for

committing or rejecting the operations.

3.2.1. Data structures of the monitor

All the operations on an ADT are classified

either as active or blocked. Between active

operations, we distinguish already executed

ones and in-execution ones. This distinction

is necessary, because out-parameters are

only available for executed operations.

Thus, we have three sets of operations

(Figure 4) which partitions the set of

invoked and not yet rejected or committed

operations.

The monitor also maintains two almost

symmetrical relations: blocks and waiting-

for. The “blocks” relation associates to any

invoked operation the set of blocked

operations which do not commute with it.

The “waiting-for” relation associates to a

given blocked operation the number of

invoked operations which do not commute

with it and precede it in the chronological

order of invocation.

In the sequel, we omit a discussion of step

(1) for the sake of genericity. Furthermore,

it is worth merging step (1) with steps (2)

and (4) in an implementation.

Figure 4

partition of invoked operations

In execution Executed

Active

Invoked operations

Only in-parameters

available

In- and out-

parameters

available

Blocked

3.2.2. In-control

An operation is never executed if we are not

sure of its commutativity with all the

previous operations. Thus, when a new

operation is invoked on an object, we have

to check its commutativity with all the other

operations, actives but blocked too.

For the new operation, solely the in-

parameters are available, and the same for

the blocked and in-execution operations.

Therefore, conditional commutativity

between the new operation and the union of

blocked and in-execution operations is done

on behalf of the in-parameters.

In Figure 5, we give the commutativity

conditions using only in-parameters for a

STACK ADT with four operations: PUSH,

POP, EMPTY, CLEAR. Note that

commutativity with only in-parameters is

rather restricted.

Figure 5

In-commutativity for STACK ADT

in-commutativity

 commute PUSH (in x1)

 with PUSH (in x2) if x1 = x2;

 commute EMPTY (out report1)

 with EMPTY (out report2);

Conditional commutativity between the new

operation and already executed ones can

take into account the out-parameters of the

executed operations. The conditions for the

STACK example are given in Figure 6,

where the first operation is the executed

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 9

one. Note that all the conditions result in

deduced out-parameters!

Figure 6

Out-commutativity for STACK ADT

out-commutativity

 commute POP (out x1; out report1)

 with POP (out x2; out report2)

 if report1 = EmptyStack

 then report2 := EmptyStack;

 commute POP (out x1; out report1)

 with EMPTY (out report2)

 if report1 = EmptyStack

 then report2 := true;

 commute POP (out x1; out report1)

 with CLEAR (out report2)

 if report1 = EmptyStack

 then report2 := AlreadyEmpty;

 commute EMPTY (out report1)

 with POP (out x2; out report2)

 if report1 = true

 then report2 := EmptyStack;

 commute EMPTY (out report1)

 with EMPTY (out report2)

 then report2 := report1;

 commute EMPTY (out report1)

 with CLEAR (out report2)

 if report1 = true

 then report2 := AlreadyEmpty;

 commute CLEAR (out report1)

 with POP (out x2; out report2)

 if report1 = AlreadyEmpty

 then report2 := EmptyStack;

 commute CLEAR (out report1)

 with EMPTY (out report2)

 if report1 = AlreadyEmpty

 then report2 := true;

 commute CLEAR (out report1)

 with CLEAR (out report2)

 if report1 = AlreadyEmpty

 then report2 := AlreadyEmpty;

The in- and out-commutativity descriptions

correspond respectively to the

CommuteWithIn and CommuteWithInOut

boolean functions of the monitor code given

in Figure 7.

3.2.3. Out-control

After executing the new operation, step (4)

must take place. Its role is to remove some

pseudo-conflicts which occurred during step

(2) between blocked or in-execution

operations and the new one. Since the new

operation has been executed, its out-

parameters are available. Then, out-

commutativity is used between the new

operation and the operations which are

blocked on it.

3.2.4. Commit or reject

As we use a 2PL protocol, operations have

to be committed at a later time, or rejected.

Since a commit or reject implies to forget

the operation and consequently to eliminate

some dependencies between operations, this

step has to be managed like steps (2) and

(4).

In our basic protocol, this additional step

is limited to removing dependencies and

executing no longer blocked operations.

Note that we use an extended signal

primitive, able to unblock any given

operation and not only the first one.

If this step is executed on behalf of a

reject, then, for correctness reasons, it must

be done after the execution of the inverse

operation.

Figure 7

Monitor for the basic protocol

monitor GeneralProtocol is

var

 Blocked: set of Op;

 InExecution: set of Op;

 Executed: set of Op;

// The three categories of operations

 WaitingFor: map of Op to natural;

// The number of operations waiting for the

// commit or reject of an Op

 Blocks: map of Op to set of Op;

// The set of operations blocked by a given

// executed or in-execution Op

entry InControl (in NewOp: Op) is

// Called before execution of NewOp

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 10

loop for Op  Blocked InExecution do

 if not CommuteWithIn(NewOp,Op)

 then
 WaitingFor(NewOp) += 1;

 Blocks(Op) = {NewOp};

 end if;

end loop;

loop for Op  Executed do

 if not CommuteWithInOut(NewOp,Op)

 then
 WaitingFor(NewOp) += 1;

 Blocks(Op) = {NewOp};

 end if;

end loop;

if WaitingFor(NewOp) > 0

then

 Blocked = {NewOp};

 wait(NewOp);

 Blocked -= {NewOp};

end if;

InExecution = {NewOp}.

entry OutControl (in NewOp: Op) is

// Called after execution of NewOp

InExecution -= {NewOp};

Executed = {NewOp};

loop for Op  Blocks(NewOp) do

 if CommuteWithInOut(Op,NewOp)

 then
 WaitingFor(Op) -= 1;

 if WaitingFor(Op) = 0

 then

 signal(Op);

 end if;

 Blocks(NewOp) -= {Op};

 end if;

end loop.

entry CommitOrReject (in NewOp: Op) is

// Called after execution of the

// inverse of NewOp, if it is a reject

loop for Op  Blocks(NewOp) do

 WaitingFor(Op) -= 1;

 if WaitingFor(Op) = 0

 then

 signal(Op);

 end if;

end loop;

Executed -= {NewOp};

domain of Blocks -= {NewOp}.

init
 Blocked := Ø;

 InExecution := Ø;

 Executed := Ø;

 domain of WaitingFor := Ø;

 domain of Blocks := Ø;

end monitor.

4. CONCLUSION

In this paper, we have presented the general

aspects of our framework for designing

concurrent and recoverable ADTs. The

correctness criteria remains serializability,

and we use conditional commutativity.

The advantages of our scheme are :

concurrency control and recovery are

managed together; recovery is done

through the use of inverse operations rather

than before-images, which increases

concurrency; commutativity is simplified

by the use of the two-level interface;

cascading rollback-free schedules are

ensured; each operation is executed exactly

once. This last advantage joined with the

fact that conditional commutativity is not

symmetrical leads to the major

disadvantage: some couple of operations

can be executed in one order but not in the

reverse one.

In literature, a number of typical objects

of interest are queues, stacks, counters, sets,

files, directories, database relations, bank

accounts, flight reservations, and so on. To

manage efficiently all of these types of

objects, a number of features have been

added to this general framework. Some of

them are transient data associated to an

object in the monitor, commit-time

operations, iterators [17].

The system is currently under

implementation. We expect to learn from it

which of these mechanisms are convenient,

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 11

i. e., “easy” to implement and efficient at

run-time, the goal being always to allow

better concurrency between transactions at

the lowest cost.

The aspects related to nested transactions

have been intentionally omitted in this paper

because this proposition is independent of

nesting.

Acknowledgments
We sincerely acknowledge Michèle Cart,

Jean Ferrié, and Jean-François Pons for

reading and discussing preliminary versions

of this paper.

5. REFERENCES

[1] Agrawal, R., DeWitt, D. J.; Integrated

Concurrency control and recovery

mechanism: Design and Performance

evaluation; ACM Transactions On

Database Systems, vol. 10, n° 4,

December 1985, pp. 529-564

[2] Badrinath, B. R., Ramamritham, K.;

Semantics-based concurrency control:

beyond commutativity; Proceedings of

the 3rd IEEE Int. Conf. on Data

Engineering, Los Angeles, USA,

February 1987

[3] Brössler, P., Freisleben, B.;

Transactions on persistent objects;

Proceedings of the Workshop on

Persistent Object Systems: their Design,

Implementation, and Use, Newcastle,

Australia, January 1989, pp. 19-35

[4] Cart, M., Ferrié, J.; Integrating

concurrency control into an object-

oriented database system; Proceedings

of the 2nd EDBT conference, Venice,

Italy, March 1990

[5] Eswaran, K., Gray, J. N., Lorie, R. A.,

Traiger, I. L.; The notions of consistency

and predicate locks in a database system;

Communications of the ACM, vol. 19, n°

11, November 1976

[6] Garza, J. F., Kim, W.; Transaction

management in an object-oriented

database system; Proceedings of the

1988 ACM Int. Conf. on the

Management Of Data, Chicago, USA,

June 1988

[7] Gray, J. N.; Notes on database

operating systems; An advanced course

in operating systems, Springer-Verlag,

New-York, 1978-1979

[8] Gray, J. N.; The transaction concept:

virtues and limitations; Proceedings of

the 7th Int. Conf. on Very Large Data

Bases, Cannes, France, 1981, pp. 144-

154

[9] Hoare, C. A. R.; Communicating

Sequential Processes; Prentice-Hall,

Englewood Cliffs, N. J., 1985

[10] Korth, H. F.; Deadlock freedom using

edge locks; ACM Transactions On

Database Systems, vol. 7, n° 4, December

1982, pp. 632-652

[11] Korth, H. F.; Locking primitives in a

database system; Journal of the ACM,

vol. 30, n° 1, January 1983, pp. 55-79

[12] Liskov, B.; Distributed programming

in Argus; Communications of the ACM,

vol. 31, n° 3, March 1988, pp. 300-312

[13] Lynch, N. A.; Multilevel atomicity: a

new correctness criterion for database

concurrency control; ACM Transactions

On Database Systems, vol. 8, n° 4,

December 1983, pp. 484-502

[14] Malta, C., Martinez, J.; Controlling

concurrent accesses in an object-oriented

environment; Proceedings of the 2nd Int.

Symposium on Database Systems For

Advanced Applications, Tokyo, Japan,

April 1991, pp. 192-200

[15] O'Neil, P. E.; The Escrow

transactional method; ACM

Transactions On Database Systems, vol.

11, n° 4, December 1986, pp. 405-430

[16] Roesler, M., Burkhard, W. A.;

Concurrency control scheme for shared

objects: A peephole approach based on

semantics; Proceedings of the 7th Int.

Proceedings of the VIth Int'l Symposium on Computer and Information Sciences (ISCIS'91),

Turkey, September 1991, pp. 189-198

Malta C., Martinez J. 12

Conf. on Distributed Computing

Systems, Berlin, West Germany,

September 1987, pp. 224-231

[17] Shaffert, C., Cooper, T., Bullis, B.,

Kilian, M., Wilpolt, C.; An introduction

to Trellis/Owl; Proceedings of the

Object-Oriented Programming Systems,

Languages and Applications Int. Conf.,

September 1986

[18] Schwarz, P. M., Spector, A. Z.;

Synchronizing shared abstract types;

ACM Transactions On Computer

Systems, vol. 2, n° 3, August 1984, pp.

223-250

[19] Tokuda, H.; Compensatable atomic

objects in object-oriented operating

systems; Pacific computer

communications '85, Elsevier Science

Publishers B.V., North-Holland, 1986,

pp. 229-238

[20] Turc, S.; Comparison of immediate-

update and workspace transactions:

serializability and failure tolerance;

Proceedings of PARBASE-90, Miami

Beach, Florida, March 1990, pp. 331-340

[21] Weihl, W. E., Liskov, B.;

Implementation of resilient, atomic data

types; ACM Transactions On

Programming Languages and Systems,

vol. 7, n° 2, April 1985, pp. 244-269

[22] Weihl, W. E.; Commutativity-based

concurrency control for abstract data

types; MIT, Laboratory for computer

science, technical report, MIT/LCS/TM-

367

