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Abstract 

In this paper, we try to focus the reader's 

interest on the problems that transactional 

systems have to resolve for taking advantage 

of commutativity in a serializable and 

recoverable way.  Our framework is, (as 

others), based on the use of conditional 

commutativity on abstract date types.  We 

present new features that have not been 

found in the literature hitherto, that both 

increase concurrency and simplify recovery. 
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1. INTRODUCTION 

One can view the methods of controlling the 

concurrent accesses to shared data as 

belonging to a large scale going from 

syntactic methods, (like strict two-phase 

locking [5] with read and write locks, which 

is the only correct method when no 

knowledge at all is provided on data), to 

semantic methods, (among which the most 

semantic of all is parallel programming, 

e. g., with CSP [9]). 

The evolution is naturally to propose 

more and more semantic methods.  The 

challenge is double:  A trend is to increase 

the knowledge that the concurrency control 

has of the semantics of the data, then to 

exploit this knowledge in order to increase 

the parallelism within and between 

transactions. 

In most cases, semantics is added at the 

level of individual objects.  Propositions 

generally increase the set of locks on 

databases with granular organizations [7, 

10], of operations on typed objects [11, 18], 

in object-oriented databases [6, 4, 14].  

Although the system has a more precise 

view, the criterion used remains 

serializability because compatibility or 

commutativity is used at the object level.  

Badrinath & Ramamritham [2] introduce the 

relative recoverability criterion which still 

implies serializability at the transaction 

level. 
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Other propositions introduce new criteria 

at the transaction level:  multi-level 

atomicity [13] or “acceptability” of 

compensative transactions [8, 19].  These 

lead to non-serializable schedules. 

In this paper, we discuss the specific case 

of commutativity of operations on abstract 

data types (ADTs).  However, we do not just 

discuss concurrency control, but also 

recovery, in a serializable and cascading 

rollback-free way. 

The paper is organized as follows:  In 

section 2, we introduce the main point of 

our framework for dealing both with 

concurrency control and recovery:  a two-

level interface.  In section 3, first we discuss 

commutativity itself.  Next, we present our 

general protocol, at the object level, which 

uses a monitor rather than locking in order 

to allow conditional commutativity with 

out-parameters without executing more than 

once any operation.  Finally, in the 

conclusion, we review the advantages and 

disadvantages of our scheme and introduce 

some luxury features added in our 

implementation.  

2. A TWO-LEVEL INTERFACE FOR ADTS 

All the features that we present in our 

framework are based on the requirements 

needed to carrying out both concurrency 

control and recovery.  Our approach is 

characterized by: 

 (i) a unique copy of the object, which 

is  modified concurrently and maintained 

up-to-date; 

 (ii) a recovery mechanism based on 

inverse operations; 

 (iii) two interfaces for the operations 

on an ADT:  a first one, visible to the user 

of the ADT;  a second one, hidden to the 

user, for dealing with concurrency control 

and recovery; 

 (iv) a concurrency control mechanism 

which only takes into account the in- and 

out-parameters of the operations but never 

(directly) the state of the object; 

 (v) the possibility to return from the 

invocation of an operation without 

executing it, (using deduced return values). 

 

In the sequel, we present the two-level 

interface used for operations on an ADT, 

and the advantages which it contributes to 

for recovery and concurrency control. 

2.1.  Motivations 

The reason why we need a two-level 

interface is essentially motivated by 

recovery.  It is also influenced by the fact 

that we do not determine commutativity of 

operations by considering directly the 

current state of an object.  This self-

imposed constraint is relevant for big 

objects which cannot be analyzed a priori, 

but it deserves to be removed when objects 

are sufficiently small.  It is the case with the 

Escrow method [15], which takes into 

account the initial value of an aggregate, 

(integer or real), to increase commutativity 

of increment and decrement operations.  

However, considering out-parameters of 

operations is generally sufficient to have an 

idea of the initial state of the object;  

Rœssler & Burkhard [16] named it the 

“peephole” approach.  Besides, the state of 

an object is just an abbreviation of the 

sequence of applied and non-rejected 

operations. 

We also take advantage of this two-level 

interface for simplifying concurrency 

control. 

2.2.  State-based inverse operations 

As stated in (i), the object state is 

maintained up-to-date, i. e., every operation 

is performed on a single copy.  As noted by 

Weihl [22], such a choice implies the use of 

inverse operations in order to treat recovery 

adequately.  Now, what is to be clear is that 

inverse operations cannot be state-

independent. 
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Why state-based recovery? 

Let us take the generic SET example.  We 

consider only the INSERT operation for the 

purpose of our demonstration.  From the 

specification of a SET, it might be deduced 

that INSERT commutes with itself.  This is 

false because a transaction which invokes an 

INSERT operation on a given SET may abort 

at a later time.  Therefore, we must provide 

an inverse operation.  This inverse is either 

DELETE, if the INSERT was successful, or 

NULL, if the inserted item was already in the 

SET. 

It is worth considering that virtually there 

exists two kinds of INSERT operations:  one 

defined from a SET which does not contain 

the inserted item, and a second defined from 

a SET which already contains the item.  

Each of these conceptually different 

operations has its own inverse, respectively 

DELETE and NULL.  Neither two INSERTs of 

the first category can commute on a 

common item, nor an INSERT of the first 

category with one of the other, whereas it is 

allowed for two INSERTs belonging to the 

second category. 

Trying to enhance concurrency by 

allowing commutativity between two 

INSERTs of the first category, (because the 

report is unknown to the outside), yields to 

context-sensitivity, i. e., an inverse 

operation is no more associated to just one 

direct operation but to a set of operations.  

In this example, when there is more than 

one INSERT of the first category, the inverse 

is NULL;  for the last INSERT, however, the 

inverse is DELETE.  We know of no protocol 

which implements such a complex 

mechanism. 

A private interface 

As the out-parameters given for the 

operations of an ADT may not be sufficient 

to determine the corresponding inverse 

operations, we introduce a second interface.  

This new interface is used by the transaction 

manager, and a mapping from the interface 

known by the user, the public one, to the 

private one is given.  This point is 

developed in the next section. 

It is also possible to explain the two-level 

interface from the other side.  An operation 

must be specified in such a way that its 

inverse operation should be deduced from 

the in- and out-parameters.  If some out-

parameters are not important to the user of 

the type, these parameters may be hidden in 

the public interface. 

Figure 1 

A one-to-many relation from direct to 

inverse operations 

inverses 

 for procedure  INSERT (in Item; 

         out Report) 

  when Report = AlreadyIn 

   inverse is NULL 

  when Report = Ok 

   inverse is DELETE (Item,_) 

 
As two or more conceptually different 

private operations can be invoked through a 

common operation, e. g., the two conceptual 

INSERTs are merged in the same public 

INSERT operation, we provide a one-to-

many relationship from private operations to 

inverse operations depending above all on 

out-parameters (Figure 1).  Consequently, 

the inverse operation of a given operation 

cannot, (generally), be determined before 

the end of the execution of the direct 

operation. 

NULL inverse operation 

A particular inverse operation of interest is 

NULL.  It is naturally associated as the 

inverse of any non modifying operation, 

e. g., CARD, (which returns the cardinal of a 

set), or IN, (which checks the membership).  

It is also associated to writing operations 

when it can be deduced from their out-

parameters that they actually do not change 

the object state, as an INSERT which reports 

AlreadyIn, or an AND(false) on a boolean 
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which was previously false.  At last, it can 

even be associated to modifying operations 

when these modifications are irrelevant for 

the semantics of the ADT, e. g., a tree can 

be balanced for more efficient accesses if its 

organization is hidden (no ROOT or DEPTH 

operations, for instance). 

The practical advantage in determining 

that the inverse of an operation is NULL, is 

that the direct and/or inverse operations 

need not be logged1, (but the direct 

operation still has to be used for 

concurrency control). 

2.3.  Mapping public to private 

operations 

We can also take advantage of this two-level 

interface for concurrency control by 

introducing more than one private operation 

for each public one, depending on the values 

of the in-parameters.  The advantages are 

two-fold:  conditional commutativity is 

simplified, and some operations might be 

recognized as unnecessary. 

Let us consider the REAL type:  It is 

possible to associate with the public 

MULTIPLY operation either the private 

MULTIPLY, DIVIDE, or SETTO operations, 

or the NULL operation;  to the public ADD 

operation we associate either the private 

ADD, or SUB operations, or again the NULL 

operation (Figure 2). 

Simplified conditions 

Commutativity conditions are simplified.  In 

this example, the amounts for the private 

ADD and SUB operations are always strictly 

positive values, a pre-condition often 

implicitly assumed. 

The benefit is even larger if we consider 

the MULTIPLY operation which can be 

derived as a SETTO(0).  First, this shortens 

the commutativity conditions between 

MULTIPLY and other operations since a 

                                                 
1 We assume that a log mechanism is used for 

recovery, which seems to be the best mechanism [1], 
or, at least, the most implemented one. 

cumbersome case is eliminated.  Secondly, 

the determination of the inverse operation is 

also simplified!  When multiplying by zero, 

the only way to get back to the previous 

state of the object is to restore its so-called 

before-image:  there is no mathematical 

inverse.  This will be managed directly by 

the SETTO operation and not as a special 

case of the MULTIPLY one. 

Figure 2 

A one-to-many relation from public to 

private operations 

public 

 procedure MULTIPLY (in Mult) is 

  when Mult = 0 do 

   private SETTO (0) 

  when Mult = 1 do NULL 

  when Abs(Mult) ≥ 1 do 

   private MULTIPLY (Mult) 

  else do private DIVIDE (1 / Mult) 

 procedure ADD (in Amount) is 

  when Amount > 0 do 

   private ADD (Amount) 

  when Amount < 0 do 

   private SUB (— Amount) 

  else do NULL 

 

NULL direct operation 

NULL deserves special attention because it 

is an operation which does exactly nothing.  

NULL has the property to commute with 

every operation.  Therefore, it can be totally 

ignored, i. e., it does not need any checking 

with previous or following operations! 

We dwell upon the fact that this is only 

true for operations which translate to NULL 

when considering only their in-parameters, 

i. e., direct NULL operations must be 

deducible a priori;  it is incorrect to 

conclude that an operation is NULL in regard 

of its out-parameters, because the operation 

has had to access to the object.  For 

instance, a SETTO operation is never NULL 

even if the old value of the object is equal to 

the assigned one;  in that case, it can only be 
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concluded that this SETTO was equivalent to 

IDENTITY.  This means that its inverse 

operation is NULL. 

2.4.  Advantages of the two-level interface 

The two-level interface is useful to deal with 

recovery as well as with concurrency 

control.  Its main advantage for concurrency 

control is to simplify commutativity 

conditions, and for recovery to reveal what 

is necessary for undoing the direct 

operation, which reacts again upon 

concurrency control (since finding out the 

out-parameters necessary to the inverse 

operations makes clear the commutativity 

conditions between these operations). 

The two-level interface also reveals us 

the two kinds of NULL operations:  inverse 

and direct ones.  The inverse NULL 

operation implies that the operation needs 

not be recorded in the log in order to undo 

its corresponding direct operation.  The 

direct NULL operation is more novel, its 

main advantage is to need no concurrency 

control at all. 

As a last example of the effectiveness of 

the two-level interface, let us look at the 

BOOLEAN type:  six public operations, AND, 

OR, XOR, NOT, SETTO, and READ, are 

translated to three private operations, NOT, 

SETTO, and READ, (plus NULL), because 

OR(false), AND(true), and XOR(false) do not 

change the value of the boolean, and 

OR(true), AND(false), and XOR(true) are 

translated respectively to SETTO(true), 

SETTO(false), and NOT.  Note that if the 

operations were written in order to return 

the new value of the boolean, instead of 

translating to NULL, they would have been 

transformed into READ. 

3. EXPLOITING COMMUTATIVITY 

3.1.  Some characteristics 

Utilizing in- and out-parameters of 

operations increases concurrency by 

eliminating pseudo-conflicts.  Therefore, we 

use the parameters in order to describe 

commutativity between operations.  We 

describe commutativity between private 

operations:  Firstly, only private operations 

are executed.  Secondly, we have seen in 

section 2.2. that inverses (in fact, out-

parameters) play a part in determining 

commutativity of operations. 

3.1.1.Non-state-based commutativity 

However, we refuse to consider the current 

state of an object in order to describe 

commutativity. 

An advantage of using a non-state-based 

approach is that the representation of an 

object and the implementation of its 

operations do not interfere with 

commutativity conditions, as long as the 

parameters of the private operations remain 

the same.  This is exactly the same point of 

view as shared by developers of ADTs since 

they can alter the implementation of an 

ADT without causing troubles to its users. 

Allowing concurrent executions of 

operations with checkings is another 

resulting benefit which we exploit in our 

protocol. 

Finally, the state of an object is (just) an 

abbreviation of the sequence of operations 

performed on it since an initial value.  Some 

results may be obtained without looking at 

the state of the object;  our protocol includes 

the possibility to deduce out-parameters 

without actually executing the operation. 

3.1.2. Commutativity between direct 

private operations only 

We consider that commutativity has to be 

defined only between direct private 

operations.  We use the common definition 

of commutativity, i. e., two operations 

commute if (1) the state of the object and (2) 

their respective out-parameters are not 

dependent of the execution order2.  Because 

private operations return all the out-

parameters necessary to undo the direct 

                                                 
2 Here, we do not consider the case of non-

deterministic operations. 
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operation, this ensures that the system not 

only schedules serializable histories, but 

also makes rejects possible without 

cascading aborts.  Brössler & Freisleben [3] 

have to check commutativity between direct 

and inverse operations to achieve this 

important objective. 

Serializable and cascading rollback-free 

schedules are also obtained by Turc [20] and 

Badrinath & Ramamritham [2].  Their 

respective criteria are incomparable but both 

include the mere case where a writing does 

not commute after a reading but is allowed 

because the inverse of the reading is NULL.  

Either reading or writing can be rejected 

without influencing the other.  However, a 

precedence dependency is created and the 

commits of the operations must take place 

in that order if both commit, when two-

phase locking is used. 

3.1.3.  At most one execution of an 

operation 

On the one hand, we would like to exploit 

all the parameters, in-parameters and out-

parameters, but on the other hand, we do not 

wish to execute first an operation on an 

“optimistic” basis, as is done in Argus [21] 

[12].  Using commutativity and desiring that 

an operation be executed only once implies 

that that operation is executed only when it 

commutes with all the other active 

operations.  Since this guarantee has to be 

obtained before executing it, that means that 

its own out-parameters cannot be used! 

The rationale for this constraint is the 

following:  whenever an operation is 

rejected, all the following operations done 

on an “optimistic” way must be undone, 

redone and rechecked.  If the operations are 

lengthy and/or numerous, the overhead 

would be unacceptable.  To explain 

carefully this point, we study two 

“optimistic” protocols. 

 

In the “very optimistic” protocol, every 

operation invoked on an object is 

immediately executed.  Operations are 

classified either as active operations or 

blocked ones, i. e., belonging to an active 

transaction, or being the last operation of a 

blocked one.  The classification of a new 

operation is decided after its execution by 

testing commutativity with all the other 

operations, active as well as blocked ones.  

It is active if it commutes with all,  

otherwise it is blocked.  Blocked operations 

are waiting on active operations, (direct 

blocking), or on other blocked operations, 

(“transitive” blocking);  thus, they are 

“ordered3” by the blocking relation.  

Conversely, active operations are not related 

to each other, and “precede” every blocked 

operation. 

A problem of atomicity, with lengthy 

operations, is that execution and 

classification must be done atomically.  

However, this is not the Achilles heel of this 

protocol which is quite interesting as long as 

there is no rejects.  Otherwise, two problems 

appear:  an overhead which may be high, 

and, as a side-effect, starvation. 

Suppose that an active operation has to 

be undone, then we must also undo all the 

operations which are directly or transitively 

blocked on that operation, (in the reverse 

order of invocation).  Next, the blocked 

operations have to be redone, (in the 

previous chronological order), and checked 

another time, i. e., introducing and/or 

removing dependencies between operations.  

This rechecking is necessary because out-

parameters have changed for direct 

dependencies, and perhaps for transitive 

ones too.  Since this heavy task, the 

complexity of which is in O(n2) where n is 

the number of operations, takes place at 

each abort, a given transaction may be 

undone, redone, and rechecked very often, 

even infinitely often. 

Starvation appears because out-

parameters change and consequently new 

                                                 
3 The blocking (resp. waiting) relation is not a 

partial order. 
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dependencies appear.  Furthermore, since 

only some blocked operations are undone 

and redone, the first chronological order of 

execution of the operations is not preserved.  

Thus, an operation may be continuously 

redone and new dependencies established 

with now preceding operations.  Starvation 

can be eliminated at the price of undoing 

and redoing all the blocked operations. 

 

A derived protocol can be proposed.  

This time, at most one blocked operation is 

executed in an “optimistic” way.  When a 

new operation arrives, if there is no blocked 

operation, it is executed and checked, if 

there is already one blocked operation, the 

new one waits for it.  We then have a set of 

pairwise commutative operations, a single 

blocked operation on some of the active 

ones, and a set of waiting operations, (on a 

FIFO queue), all waiting on the blocked 

one.  The cost of one reject is constant:  

there is just one operation to undo, redo, and 

recheck.  In our opinion, this second 

approach can possibly be used if rejects are 

not frequent or operations very short. 

3.1.4.  Deduced out-parameters 

Executing only once an operation implies 

that out-parameters of this operation are 

missing for checking commutativity, thus 

the number of conflicts is increased.  This 

drawback can be overcome to some extent 

by deducing out-parameters from the out-

parameters of previous and still active 

operations. 

The specifications of ADTs imply that 

when an operation has returned some 

values, the results of other operations are 

related to them.  Such implications can be 

found in numerous conditional 

commutativity tables:  for SET, if an 

INSERT(X) reports AlreadyIn, we know that 

a subsequent INSERT(X) has to report 

AlreadyIn too;  for STACK, EMPTY reporting 

Yes implies that POP will report 

EmptyStack, (and conversely). 

Unfortunately, there is still some 

serializable executions that are denied, e. g.,  

in a SET, CARD will prohibit an incoming 

INSERT or DELETE, though an INSERT 

reporting AlreadyIn or a DELETE reporting 

NotFound commute with CARD.  This 

limitation is due to the fact that sound 

deductions can be done only between 

operations which actually do not change the 

state of the object. 

3.2.  The protocol 

Our protocol is not new at the transaction 

level;  we use the well-known two-phase 

locking (2PL) protocol [5].  Furthermore, 

we choose the strict variation to avoid the 

cascading-rollback problem. 

What is novel is the protocol adopted for 

executing an operation on an object.  This 

protocol is divided into four steps:  trying to 

(1) deduce out-parameters;  then, if it is not 

possible, (2) executing an in-control, 

followed by (3) the execution of the 

operation itself, and at last (4) an out-

control.  These steps are illustrated in 

Figure 3 which describes the generic code 

associated to an operation. 

As already stated, concurrency control 

and recovery take place at the private 

interface level, i. e., only private operations 

are involved. 

The four steps of the execution of an 

operation must be atomic, independently 

however.  The steps (1), (2), and (4) are 

critical sections managed by a monitor 

mechanism (Figure 7), while step (3) can be 

controlled by another mechanism in order to 

increase concurrency.  For complex objects, 

such as b-trees, it is unthinkable to limit 

concurrency by executing the operations, 

i. e., step (3), in mutual exclusion. 
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Figure 3 

Generic code for an operation 

public procedure OP (in IN;  out OUT) is 

 // select and call a private OP 

 // translate private OUT to public OUT 

 

private procedure OP (in IN;  out OUT) is 

 // (1) deduce OUT 

 if not Deduced 

 then 

  // (2) execute InControl 

  // (3) execute private OP itself 

  // (4) execute OutControl 

 
We now detail the implementation of steps 

(1), (2), (4), and of an additional step for 

committing or rejecting the operations. 

3.2.1.  Data structures of the monitor 

All the operations on an ADT are classified 

either as active or blocked.  Between active 

operations, we distinguish already executed 

ones and in-execution ones.  This distinction 

is necessary, because out-parameters are 

only available for executed operations.  

Thus, we have three sets of operations 

(Figure 4) which partitions the set of 

invoked and not yet rejected or committed 

operations. 

The monitor also maintains two almost 

symmetrical relations:  blocks and waiting-

for.  The “blocks” relation associates to any 

invoked operation the set of blocked 

operations which do not commute with it.  

The “waiting-for” relation associates to a 

given blocked operation the number of 

invoked operations which do not commute 

with it and precede it in the chronological 

order of invocation. 

 

In the sequel, we omit a discussion of step 

(1) for the sake of genericity.  Furthermore, 

it is worth merging step (1) with steps (2) 

and (4) in an implementation. 

Figure 4 

partition of invoked operations 

In execution Executed

Active

Invoked operations

Only in-parameters 

available

In- and out- 

parameters 

available

Blocked

 

 

3.2.2.  In-control 

An operation is never executed if we are not 

sure of its commutativity with all the 

previous operations.  Thus, when a new 

operation is invoked on an object, we have 

to check its commutativity with all the other 

operations, actives but blocked too. 

For the new operation, solely the in-

parameters are available, and the same for 

the blocked and in-execution operations.  

Therefore, conditional commutativity 

between the new operation and the union of 

blocked and in-execution operations is done 

on behalf of the in-parameters. 

In Figure 5, we give the commutativity 

conditions using only in-parameters for a 

STACK ADT with four operations:  PUSH, 

POP, EMPTY, CLEAR.  Note that 

commutativity with only in-parameters is 

rather restricted. 

Figure 5 

In-commutativity for STACK ADT 

in-commutativity 

 commute PUSH (in x1) 

  with PUSH (in x2) if x1 = x2; 

 commute EMPTY (out report1) 

  with EMPTY (out report2); 

 

Conditional commutativity between the new 

operation and already executed ones can 

take into account the out-parameters of the 

executed operations.  The conditions for the 

STACK example are given in Figure 6, 

where the first operation is the executed 
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one.  Note that all the conditions result in 

deduced out-parameters! 

Figure 6 

Out-commutativity for STACK ADT 

out-commutativity 

 commute POP (out x1;  out report1) 

 with POP (out x2;  out report2) 

  if report1 = EmptyStack 

  then report2 := EmptyStack; 

 commute POP (out x1;  out report1) 

 with EMPTY (out report2) 

  if report1 = EmptyStack 

  then report2 := true; 

 commute POP (out x1;  out report1) 

 with CLEAR (out report2) 

  if report1 = EmptyStack 

  then report2 := AlreadyEmpty; 

 commute EMPTY (out report1) 

 with POP (out x2;  out report2) 

  if report1 = true 

  then report2 := EmptyStack; 

 commute EMPTY (out report1) 

 with EMPTY (out report2) 

  then report2 := report1; 

 commute EMPTY (out report1) 

 with CLEAR (out report2) 

  if report1 = true 

  then report2 := AlreadyEmpty; 

 commute CLEAR (out report1) 

 with POP (out x2; out report2) 

  if report1 = AlreadyEmpty 

  then report2 := EmptyStack; 

 commute CLEAR (out report1) 

 with EMPTY (out report2) 

  if report1 = AlreadyEmpty 

  then report2 := true; 

 commute CLEAR (out report1) 

 with CLEAR (out report2) 

  if report1 = AlreadyEmpty 

  then report2 := AlreadyEmpty; 

 

The in- and out-commutativity descriptions 

correspond respectively to the 

CommuteWithIn and CommuteWithInOut 

boolean functions of the monitor code given 

in Figure 7. 

3.2.3.  Out-control 

After executing the new operation, step (4) 

must take place.  Its role is to remove some 

pseudo-conflicts which occurred during step 

(2) between blocked or in-execution 

operations and the new one.  Since the new 

operation has been executed, its out-

parameters are available.  Then, out-

commutativity is used between the new 

operation and the operations which are 

blocked on it. 

3.2.4.  Commit or reject 

As we use a 2PL protocol, operations have 

to be committed at a later time, or rejected.  

Since a commit or reject implies to forget 

the operation and consequently to eliminate 

some dependencies between operations, this 

step has to be managed like steps (2) and 

(4). 

In our basic protocol, this additional step 

is limited to removing dependencies and 

executing no longer blocked operations.  

Note that we use an extended signal 

primitive, able to unblock any given 

operation and not only the first one. 

If this step is executed on behalf of a 

reject, then, for correctness reasons, it must 

be done after the execution of the inverse 

operation. 

Figure 7 

Monitor for the basic protocol 

monitor GeneralProtocol is 

var 

 Blocked:  set of Op; 

 InExecution:  set of Op; 

 Executed:  set of Op; 

// The three categories of operations 

 WaitingFor:  map of Op to natural; 

// The number of operations waiting for the 

// commit or reject of an Op 

 Blocks:  map of Op to set of Op; 

// The set of operations blocked by a given 

// executed or in-execution Op 
 

entry InControl (in NewOp:  Op) is 

// Called before execution of NewOp 
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loop for Op  Blocked InExecution do 

 if not CommuteWithIn(NewOp,Op) 

 then 
  WaitingFor(NewOp) += 1; 

  Blocks(Op) = {NewOp}; 

 end if; 

end loop; 

loop for Op  Executed do 

 if not CommuteWithInOut(NewOp,Op) 

 then 
  WaitingFor(NewOp) += 1; 

  Blocks(Op) = {NewOp}; 

 end if; 

end loop; 

if WaitingFor(NewOp) > 0 

then 

 Blocked = {NewOp}; 

 wait(NewOp); 

 Blocked -= {NewOp}; 

end if; 

InExecution = {NewOp}. 
 

entry OutControl (in NewOp:  Op) is 

// Called after execution of NewOp 

InExecution -= {NewOp}; 

Executed = {NewOp}; 

loop for Op  Blocks(NewOp) do 

 if CommuteWithInOut(Op,NewOp) 

 then 
  WaitingFor(Op) -= 1; 

  if WaitingFor(Op) = 0 

  then 

   signal(Op); 

  end if; 

  Blocks(NewOp) -= {Op}; 

 end if; 

end loop. 
 

entry CommitOrReject (in NewOp:  Op) is 

// Called after execution of the 

// inverse of NewOp, if it is a reject 

loop for Op  Blocks(NewOp) do 

 WaitingFor(Op) -= 1; 

 if WaitingFor(Op) = 0 

 then 

  signal(Op); 

 end if; 

end loop; 

Executed -= {NewOp}; 

domain of Blocks -= {NewOp}. 
 

init 
 Blocked := Ø; 

 InExecution := Ø; 

 Executed := Ø; 

 domain of WaitingFor := Ø; 

 domain of Blocks := Ø; 

end monitor. 

4. CONCLUSION 

In this paper, we have presented the general 

aspects of our framework for designing 

concurrent and recoverable ADTs.  The 

correctness criteria remains serializability, 

and we use conditional commutativity. 

The advantages of our scheme are : 

concurrency control and recovery are 

managed together;   recovery is done 

through the use of inverse operations rather 

than before-images, which increases 

concurrency;  commutativity is simplified 

by the use of the two-level interface;  

cascading rollback-free schedules are 

ensured;  each operation is executed exactly 

once.  This last advantage joined with the 

fact that conditional commutativity is not 

symmetrical leads to the major 

disadvantage:  some couple of operations 

can be executed in one order but not in the 

reverse one. 

In literature, a number of typical objects 

of interest are queues, stacks, counters, sets, 

files, directories, database relations, bank 

accounts, flight reservations, and so on.  To 

manage efficiently all of these types of 

objects, a number of features have been 

added to this general framework.  Some of 

them are transient data associated to an 

object in the monitor, commit-time 

operations, iterators [17]. 

The system is currently under 

implementation.  We expect to learn from it 

which of these mechanisms are convenient, 
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i. e., “easy” to implement and efficient at 

run-time, the goal being always to allow 

better concurrency between transactions at 

the lowest cost. 

The aspects related to nested transactions 

have been intentionally omitted in this paper 

because this proposition is independent of 

nesting. 
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