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On therate-dependent properties of open-cell polyurethane foams

Gianpietro Del Pierb, Giampiero Pampolifi

Experiments on blocks of open-cell polyurethane foam iaxiai compression show a progressive strain localiza-
tion. In a preceding paper, localization is described by adelanvolving a two-phase nonlinear elastic material.
The model is in a good qualitative agreement with experigmdnit it was unable to capture some finer aspects
of the experimental response, such as stress softenirggdegiendence, and some memory effects. In the context
of filler-reinforced rubbers, the inelastic aspects of tegponse have been studied by several authors. Several
models have been proposed, in which a specimen is genezpligsented as a chain of rheological elements, each
consisting of a linear elastic spring set in parallel witheoar more dissipative elements. Here we anticipate some
results of a research still in progress, in which a good dggn of the response of open-cell foams is obtained
from the existing models for filler-reinforced rubbers biitay visco-elastic dissipative elements obeying a frac-
tional exponential law, and by replacing the convex elastiain energy of the springs with a non-convex energy
of the double-well type.

1 Introduction

Polymeric open-cell foams exhibit a complex non-lineardvébr. As shown in Fig. 2, the response curve for
uniaxial compression shows three well distinguishabl@meg: an initial ascending branch, an almost horizontal
plateau, and a second ascending branch. The same threesagiepresent at unloading but, instead of following
backwards the loading path, the response exhibits a hg&do®p. Moreover, in the plateau regime a localization
of deformation occurs on layers orthogonal to the loadimgation, see Fig. 1 and [Lakes et al. (1993); Wang and
Cuitinho (2002); Pampolini and Del Piero (2008)].

Many studies, mostly based on numerical simulations, haen laddressed to the modeling of macroscopic re-
sponse in terms of microstructure [Gibson and Ashby (198/@)yren and Kraynik (1997); Laroussietal. (2002);
Gong et al. (2005); Jang et al. (2008)]. Usually, the foaneesented as a periodic structure made of linear
elastic beams, and strain localization is attributed tokihekling of the cell ligaments. In the model proposed
in [Gioia et al. (2001)] and developed in [Pampolini and DilrB (2008)], strain localization is attributed to a
special non-convex shape of the strain energy density,whialso responsible of the hysteresis loops observed in
cyclic tests. This elastic model succeeds in reproducingynganeral features of the observed response. But it is
unable to capture some typical inelastic effects, such as:

- Rate dependenceevealed by an increase of the stress with increasingngagite, see Fig. 2a and the
experiments in [Sorrentino et al. (2000)],

- Stress softeninghat is, a decay of the stress in the subsequent cycles dflia tgst, see Fig. 2b and the
experiments in [White et al. (2000); Deng et al. (2006)],

- A memory effegctonsisting of a partial stress recovery after a sufficyelothg period of rest, see Fig. 3 and
the experiments in [White et al. (2000)].

The same effects are present in filled rubbery polymers. higodar, the stress softening observed in these
materials is called the Mullins effect [Mullins (1948, 196Mullins and Tobin (1957)]. It is generally attributed

to the interactions between the polymeric matrix and ther§il[Bueche (1961)], and is regarded as a form of
isotropic damage [Ogden and Roxburg (1999); Beatty anchikdswamy (2000); Dorfmann and Ogden (2003)].

For polymeric foams, the recovery in time of the loading esvFig. 3d, rather suggests that this phenomenon
be due to a memory effect. For this reason, we decided todecin the model a rate-dependent dissipation,
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Figure 1: The progressive localization mechanism: théainftomogeneous deformation (a), the first strain lo-

calization at the specimens’ ends (b), the subsequent gatipa to the central layers (c), (d), (e), and the new
homogeneous deformation (f).

by introducing visco-elastic damping elements associaféit each elastic spring. Here we summarize the first
results of our investigation. Throughout this paperstiesswe mean the force divided by the initial area, and
by deformatiorwe mean the ratio between the upper crosshead displacenttiiainitial distance of the upper
crosshead from the fixed lower basis.

2 Experiments

The experiments described below were made on a load fran@ing467 with a 500 N load cell, located at
the Laboratorio di Materiali Polimerici of the Universityf Berrara. The specimens were parallelepipeds with
base dimensions 100 x 100 mm, cut out from a 50 mm thick shestramercial open-cell polyurethane foam.
The cutting was done manually, using a ribbon saw. All testsewmade at room temperature, controlling the
displacement of the upper crosshead, and measuring thedgected by the sample.

2.1 Strainlocalization

To visualize the phenomenon of strain localization, a regtdar grid has been drawn on one of the specimens’
sides. In Fig. 1 the deformation of the grid under uniaxianpoession at the constant speed of 5 mm/min
is shown. After an initial regime of homogeneous defornmatiBig. 1a, a severe deformation occurred at the
specimens’ bases, Fig. 1b. This deformation then propdgatie central layers, Fig. 1c,1d, 1e, and finally, after
all layers had been reached, the deformation again becamedemeous, Fig. 1f.

2.2 Cyclic compression tests

Cyclic compression tests have been performed at the cradspeeds of 0.1, 5, and 100 mm/min. Three samples
were tested for each speed. In all tests, the direction ofomaif the crosshead has been reversed when the
displacement reached the value of 35 mm, and reversed ageamgplete unloading, that is, as soon as the load
cell measured a null force. Each test consisted of four t@adinloading cycles. The average stress-deformation
curves at the first cycle for each of the three speeds are simolig. 2a, while Fig. 2b shows the average curves
of the first four cycles for the samples subject to the craagdispeed of 5 mm/min.
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Figure 2: (a) Compression tests at different rates. Forlmgation curves (average on three samples) at crosshead
speed of 0.1 mm/min (dashed line), of 5 mm/min (solid lined af 100 mm/min (dash-dotted line). (b) Cyclic
behavior. Cyclic compression test with a crosshead spegarwh/min. Force -elongation curves average on three
samples.

(a) (b)
10 10

8 8 8 F
g 6f 1 g ef 1
=3 <
%] 0
[%] [%2]
[] [
s 4r b s Ar b
%) %)

2t 1 2f 1

0 i i i i i i 0 i i i i i i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Deformation Deformation
(c) (d)
10 10

8r 8t |
g 6} o
g ° g o
& g 4

2r 2L

O 1 1 1 1 1 L 0 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Deformation Deformation

Figure 3: Force-elongation curves in a compression tedistimg of four cycles on a virgin sample (a), repeated
after three resting periods of 16 hours (b), 52 hours (c) é&da¥s (d). Crosshead speed of 5 mm/min.



The first figure shows an overall lifting of the response camwéh increasing velocity. The second figure shows
the phenomenon of stress softening, which consists of arlowef the loading curves as the number of cycles
increases. The unloading curves remain almost the samd friycées. Notice that the stress softening is larger
between the first and the second cycle, and much less in tiseguént cycles.

Fig. 3 shows the results of an experiment in which a virgin @amvas subjected to four cycles of the type
described above. The same test was repeated three more witltesesting periods of increasing duration: 16
hours, 52 hours, 33 days. During the resting periods the keawgs kept in a box, free of any load and constraint.
The four series of response curves are shown in Fig. 3. Thédading curve in the second group is higher than
the last loading curve in the first group; in fact, it almosinoides with the second loading curve in the first group.
Thus, a significant part of the stress reduction observeldeaend of the first group has been recovered after a
resting period of 16 hours. In the third test performed ategst of 52 hours there are no significant changes in the
response curves. On the contrary, in the fourth test, aftesteof 33 days, the first loading curve raises of about
10% with respect to the first curve of the preceding test. Thissstrecovery in time induces us to exclude that the
observed stress softening be due to permanent damage.

2.3 Loading-unloading cyclesin the plateau regime

To investigate the response in the plateau regime we made sgdlic compression tests with small-amplitude
loading-unloading cycles. Starting from three differeoirys, located either on the upper or on the lower plateau,
we made three cycles of amplitude sufficiently small to ayhidse changes. The force-elongation curves in Fig.
4a and 4b show small hysteresis loops. In a further expetithehoading-unloading cycle was interrupted several
times, each time keeping the specimen under constant glondar a duration of 45 minutes. As shown in Fig.
4c, stress relaxation was observed. This gave us eviderhbe pfesence of viscous effects.

(@) (b)

8 T : T 8 T T :

6 6
T <
a o
S5 =
n 4 0 4
%] 1%
o <
7] )

2 2

0 ; ; ; ; ; ; 0 ; ; ; ; ; ;

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Deformation Deformation
(©) (d)
6 : : : 8 : T
5 .
7 L

—~ 4t —
< <
£ g

3l <
& 2l &

5 L
l .
0 ; ; ; ; ; a \ .
0 0.05 0.1 0.15 0.2 0.25 0.3 102 10° 10* 10 10

Deformation Time (s)

Figure 4: Force-elongation curves for loading-unloadewg inside the hysteresis loop starting from the upper (a)
and the lower (b) plateau, and with intermediate rests of #5(n). Crosshead speed of 1 mm/min. Relaxation
test (d): the experimental curve (full line), and the aniabjtcurve obtained with fractional dashpots (dotted line)
The initial part of the experimental curve correspondinthimloading ramp has been omitted. The initial value of
the stress is 7.9 kPa.
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Figure 5: Subdivision of the body into cell layers (a), angresentation of each layer as a non linear elastic spring
(b) with non convex energy (c), and hon-monotonic forceaghdion curve (d).

2.4 Relaxation tests

To determine the relaxation function of the material, a d9sdrelaxation test is performed. A sample is com-
pressed at a crosshead speed of 5 mm/min, till the crosshspldaement reached 35 mm. Then, the upper
crosshead is locked and held in position for 10 days. Theef@eneasured at intervals of one second for the
first four hours, and then at intervals of 1000 seconds. Tiesstime curve is given in Fig. 4d. It shows a very
fast initial decay, followed by a long period of slow relapat The test was interrupted before the relaxation was
complete. Therefore, a full characterization of the refaxefunction would need a longer period of observation.

3 Thedastic model

In the elastic model proposed in [Pampolini and Del PieroO@Ppthe foam is modelled as a chain of non-linear
elastic springs, in which each spring represents a layeelts, see Fig. 5. We assume that the energy of a spring
only depends on the elongatierof the spring, and that all springs have the same energyitmet The non-
convex form taken fot is shown in Fig. 5¢c. The corresponding stress-strain cig@own in Fig. 5d. In it, the
two ascending branches form the phases A and B of the matasplectively.

The equilibrium configurations of the chain are identifiethvihe stationary points of the total energy

E(81,62,"',6N)=Zw(6i), (1)

i=1

subjected to the hard device condition,
N
Z g = N€0 ) (2)
=1
whereN¢ is the given displacement of the upper basis, the displaceaté¢he lower basis being zero.

The stationarity condition requires that the fore€ge;) transmitted across the springs all have the same value
o. Moreover, for sufficiently largeV, a necessary condition for a local energy minimum is thaelalhgations

g; lie on one of the two ascending branches of the stress-sttaire, see [Pampolini and Del Piero (2008)].
Local energy minima correspond to metastable equilibriemfigurations. Therefore, a metastable equilibrium
configuration may have/ springs in phase A ant¥ — M springs in phase B, with/ any integer betweet and

N.

In Fig. 6a the force-elongation paifs, =¢) corresponding to metastable equilibrium configuratioesséiown for
a chain made of four springs. We see that they form five asngrairves, thenetastable equilibrium branches
each corresponding to a value bf between 0 and 4. The stress-free configuratiarz,) = (0,0) lies on the
equilibrium branchVf = 4, in which all springs are in phase A. When loaded startingiftbis configuration, the
system follows this branch. The branch ends wheraches the valug,, ...
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Figure 6: Response curves for a system of 4 springs (a) araddpstem of 20 springs (b).

If at this value ofr a further elongation is applied, it is reasonable to asshiaehe system jumps to the metastable
branchM = 3 with three springs in phase A and one spring in phase B. Whsibthnch ends, the system jumps
to the branchM = 2, and then toM = 1. Finally, it reaches the brancl = 0, which corresponds to the
single-phase configurations with all springs in phase B.

As shown in Fig. 6b, the amplitudes of the jumps at the end s&adh decreases with increasiNg For largeN,
the loading curve becomes a wavy, approximately horizdim@a) close to horizontal line = ¢,,4,.. Similarly,
the unloading curve becomes close to the tine o,,;,.

This type of response captures some basic aspects of ths-strain behavior of the material, such as strain
localization and hysteresis. Clearly, this purely elastioedel cannot capture the inelastic effects. In the next
section we take these effects into account, by introducivig@-elastic dissipative element.

4 Thevisco-elastic model
4.1 Discretization in time

Consider a model in which each spring is connected in paraillle a dissipative element, see Fig. 7. This element
obeys the linear viscoelastic Boltzmann-\olterra couastie law

Ud'zt —8)&i(s)ds
{0 = [ cu-sat i, ®

whereg; is the elongation of théth element of the chain, and the relaxation functidis positive and monotoni-
cally decreasing. The chain is still subjected to the hakdcgecondition (2), and the foreg; is still the same for

all elements. But the force is now the sum of two contribugican elastic term due to the spring, depending of the
current value; (t), and the visco-elastic term (3), which depends on the whasdé [pistory of;:

ai(t) = w'(ei(t)) + [} G(t — s)éi(s)ds  i=1,2,...N. @)

For a given loading proces$s— &(t), we have to solve the problem of finding the forcg) and the elongations
&;(t) which satisfy equations (2) and (4) for &Jlunder given initial conditions;(0) = ¢;0. The problem admits
the homogeneous solutian(t) = &(t). This solution is unique i€ is positive and monotonically decreasing and
w is convex, see [Del Piero and Pampolini (2009)]wlfs non-convex, non-homogeneous solutions may exist.
They can be approximately determined via time discretimatUsing the incremental approach described in [Del
Piero and Pampolini (2009)], the incremental version ofatiguns (4)

o —Qi(t)é; = Ai(t), (%)

is obtained, where _
Qi(t) = w"(=i() + G(0),  Ai(t) = [y G(t—s)&i(s)ds. 6)
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Figure 7: The visco-elastic model.
These equations, together with the incremental versioR)of (
N
=1

provide, for eaclt, a system ofV + 1 linear algebraic equations for the unknowé(s), ;(t).

The system has a unique solution if all coefficie@tsare different from zero. If only one coefficient vanishes,
@n = 0, in analogy with what is made for the elastic model, we asstivaetheN-th element undergoes a phase
change. If more than one coefficients vanish, the systemtadmiultiplicity of solutions. In this case, uniqueness
is recovered assuming that only one element undergoes a phasge [Del Piero and Pampolini (2009)].

In the present dissipative context, the conceptltdiseneeds to be suitably re-defined. Assume that the function
w" is concave. Then the set of alifor which w” () + G(0) < 0 is an interval(e ,, ). We say that the-th
elementis in phase A at timf ¢;(t) < ,, and thatitis in phase B if;(t) > 5. Notice that, becausg(0) > 0,

the interval(e 4, e) is strictly contained in the interval which separates the pliases in the absence of viscous
dissipation.

A change of phase still consists in the jump of one of the elagtrings from one phase to the other. At a fixed
timet, suppose that the firdt/ elements are in phase A and the remainigM are in phase B. Also assume that
Q@ (t) = 0 and that, under a given incrementof the total elongation, th&/-th element undergoes the transition
from phase A to phase B.

The increments;, é,,, of ¢;, o, occurring during the phase change are determined bi¥thé algebraic equations

PORRRIET
W (£:(t) + 8;) + Bi(t) + Gy 6; = 65 Vi€ {1,...M —1},

8
wi(em(t)+ o) + Bu(t) + G- dp = 05, (®)
w;(ez(t)+5z)+B7(t) +Gr0;, =0, Vie {M—Fl,...N},

where
Bi(t) = —w,(ei(t)) + fo (G(t+7—s) — G(t— 5)) &is) ds, 9)
andw, andw are the restrictions af to (0,e,) and to(e 5, +00), respectively.
4.2 Characterization of the material parameters
For the spring we take the non-convex double-well straimggngPampolini and Del Piero (2008)]
N1 12 m (L TR
we) = 57 (Lte)+e(l+e)" (s (L +e)’ - )
BT N (10)
—plog(l+¢e;) + erf (Vk(e; — 44,
plog(l+e0) + 27 (Vk(ei =€)
whereerf (-) is the error function
2 xr
erf(x) = —/ exp(—t?)dt, (11)
(z) N (=t%)

7



Table 1: The values of the material constants used in the noahsimulations.

c m Iz ¢ B k
70 kPa 12 1 kPa 0.8 0.5 kPa 160
Ky r1 m Ky T2 72
45kPal 0.32s| 45101 kPas| 12.72kPa] 0.89 763.2 kPa s|

¢, m, , 3, k, ¢ are positive constants, andd are constants whose values

v =p— Bexp(—k(?),

! ) 2c Bym (12)
6= =3 = Bexp(=h¢h) + T = DVE erf(ViG)

are such that both the force and the strain energy are zehe atference configuratian = 0. The values taken
for the remaining elastic constants are given in Table 1.fohee in the spring

of(ei) = (L+e)(p— Bexp(—k¢?)) +c(l+e)™ (1 +e)* —1)

13
Cp(L+ )1 + Bexp(—h(ei — OF) (13)

is obtained by differentiation of the energy.

As shown in Fig. 4d, the relaxation function is charactetizg two well distinct regimes: a fast stress decay of the
duration of a few seconds, followed by a regime of slow dechgse duration exceeds the ten days of the duration
of the test. The same figure shows that the relaxation curgerigeniently approximated by the two fractional
Maxwell elements connected in parallel represented inFigcach element is formed by a linear elastic spring of
stiffnessK;,, and by a dashpot obeying the laws

dre
Oia(t) = Kinel(t),  0ia(t) =Na T Efa(t) , i=1,...N, a=1,2, (14)

respectively, where$,, ¢, are the elongations of theth spring and dashpot, respectively, of thih element,

(2

14 are positive constants, amg are numbers between 0 and 1. FFgr= 1 the fractional derivative reduces to the
ordinary derivative, see [Koeller (1984); Gorenflo and Madi (1997)] for details. The force¢ acting on the
whole element is the sum of the forces, acting in the dashpots

2 :
dre
d d
e (1) 1
o (t) a:177 . el (t) (15)

This equation is a special case of the Boltzmann-\Volternsttutive law (3), obtained from the relaxation function

Glt) = az: K, E(— (K“ t)) , (16)

Na

whereFE,_(-) is the Mittag-Leffler function

oo :L‘n
E,, (z) = ;::0 D) 17)

with IT'(-) the Gamma function, see [Koeller (1984); Lion (1997)]. Tlhegmeters(,, ., andr, were calibrated
to obtain an optimal representation of the experimentalkagion curve, see Fig. 4d. Their values are reported in
Table 1.

4.3 Numerical smulations

To find the response to a loading proceéss ¢(t) we take time interval$t,,, t,+1), n = 1,2,..., and approx-
imating functions with time derivatives constant in eacteimal. If the solution at time,, is known and if all
coefficientsR; (t,,) are positive, the solution at tintg_, can be computed by solving the system of equations (5)
and (7), with the solution of the preceding step as initialdidon. If at timet,, one or more coefficient9; (¢,,)
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Figure 9: Comparison between the experiments (right), &edptediction of the proposed model (left) for a
complex loading unloading process.

are non-positive a change of phase occurs, and the solgticaldulated by solving the system (8). In our com-
putations, this has been done with an iterative method baisede Newton-Raphson procedure. The numerical
experiments are still in progress, and only partial reartsavailable at the moment. Fig. 8a shows a simulation of
the stress softening phenomenon, obtained with a chaifi elements and assuming a loading rate of 5 mm/min.
The main general features of the simulated response are:

the lowering of the loading curve with increasing numberyafles,

a sharp transition from the first ascending branch to thealain the first cycle, and a more gradual transition
in the following cycles,

a substantial independence of the unloading curves on tidaiuof cycles,

a residual deformation at the end of each cycle.

Comparing the results with the experimental curves of Hiy.oche may see some discrepancies:

¢ In the numerical simulation, the transition between thdgala regime and the second ascending branch
occurs at a deformation which does not significally changh tie number of cycles. In the experiments,
one hag = 0.6 at the first cycle and = 0.5 at the subsequents cycles.

e In the simulation, the slope of the plateau increases wigmilmber of cyles. In the experimental curves,
the slope of the plateau is essentially the same for all sycle



These discrepancies can be attributed to an insufficienbeum of elements. Indeed, in the simulation there are

jumps at the phase changes in all cycles after the first, wideexperimental response is smooth. In the elastic
model the jump amplitudes tend to zero with increasigsee Fig. 6. An investigation on the influence of the

number of the elements in the visco-elastic model is now agess.

In Fig. 8b are shown the simulations of a single loading-ading cycle at two different loading rates, 5 and 0.1
mm/min. One sees a lifting of the response curve with inénga®ading rate, more evident at loading than at
unloading. This is in agreement with experiments. On thdraoy there is no experimental confirmation of the
different length of the plateau predicted by the two siniatz.

A simulation of a complex loading-unloading process is shawFig. 9. We see that the model gives a qualitative
description of the behavior of the foam, including the srhgliteresis loop from the lower plateau and the small
vertical segments = 0.35 ande = 0.22 at the end of the two unloading curves, which are due to somedef
rest before reloading.

The third loading curve in the simulation is not quite saiti$bry. Instead of being smooth, it presents some evident
jumps. Moreover, it does not reach the same force level ezhahfirst loading, as it occurs in the experimental
curve. Simulations with large¥N may reduce these dicrepancies.
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