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Quantitative Error Analysis

for the Reconstruction of Derivatives
Laurent Condat, Member, IEEE, and Torsten Möller, Member, IEEE

Abstract—We present a general Fourier-based method which
provides an accurate prediction of the approximation error, when
the derivative of a signal s(t) is continuously reconstructed from
uniform point samples or generalized measurements on s. This
formalism applies to a wide class of convolution-based techniques.
It provides a key tool, the frequency error kernel, for designing
computationally efficient reconstruction schemes which are near
optimal in the least-squares sense.

Index Terms—derivatives, reconstruction, sampling, interpola-
tion, approximation, error analysis, frequency error kernel.

I. INTRODUCTION

RECONSTRUCTION of a continuous function and its

derivatives from a set of samples is one of the funda-

mental operations in signal processing, numerical analysis, and

many other fields. In visualization, for instance, the gradient

is employed in volume classification and shading [1]. It has

to be evaluated at arbitrary locations and not only at the

discrete points where the underlying signal has been sampled.

Edge detection, segmentation, motion estimation and super-

resolution are other applications where partial derivatives may

be required at subpixel resolution.

A. Motivation

We denote by s(t) ∈ L2(R) a continuously defined function

(the signal) which is prefiltered and sampled at uniform

locations to yield the discrete measurements

u[k] =

∫

R

s(t)ϕ̃
(
k − t

T

)
d
t

T
∀k ∈ Z, (1)

where T is the sampling step and the analysis function ϕ̃(t)
is, for instance, the impulse response of the acquisition device.

This generalized sampling scenario encompasses the case

where ideal point samples u[k] = s(Tk) are available, simply

by letting ϕ̃(t) be the Dirac distribution δ(t).
The signal s(t) is unknown and the sequence u = (u[k])k∈Z

represents the only available data. We are interested in con-

structing from u an estimate of the N -th derivative s(N)(t) of

s(t), for some integer N ≥ 1. We look for a reconstruction in

a linear shift-invariant space VT (ϕ) = Span({ϕ( t
T −k)}k∈Z)

generated by the translates of a template function ϕ(t) ∈
L2(R):

f(t) =
1

TN

∑

k∈Z

c[k]ϕ(
t

T
− k) ∀t ∈ R, (2)
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where the coefficients c[k] are obtained by discrete filtering

with the stable prefilter p ∈ ℓ1:

c[k] = (u ∗ p)[k] ∀k ∈ Z. (3)

Using this general recipe for reconstruction, we denote

by fapp an estimate of s (with N = 0 in (2)), while an

estimate of the derivative s(N) is denoted by fder. We remark

that the reconstruction method involves a discrete prefiltering

step followed by the fit of the continuous model itself. In

practical applications, the prefiltering step is performed once.

Its computation time is negligible in comparison with the many

calls to (2) to evaluate f at the desired locations.

Estimating s(t) itself is the classical problem of interpola-

tion, for which there is a vast amount of literature; see e.g.

the survey papers [2]–[5] and some recent developments [6]–

[8]. Of course, once an estimate fapp(t) of s(t) has been

reconstructed, one can consider its derivative f
(N)
app (t) as a

valid estimate of s(N)(t). But there is no a priori guaran-

tee that whenever fapp is close to s in the least-squares

sense, then f
(N)
app is close to s(N). Moreover, since efficiency

considerations generally steer the design of the method, one

may be interested in deriving direct estimation schemes of

s(N), without the conceptual intermediary step of evaluating

s, which unnecessarily constrains the conditions on accuracy

and smoothness. The aim of this work is to provide a way to

quantify the error between s(N) and its estimate fder, so that

the design of reconstruction schemes minimizing this error is

made easy.

B. Related Work

There is a vast literature on designing so-called digital dif-

ferentiators, which are digital filters estimating the derivative

at the grid points Tk only, see e.g. [9] and references therein.

By contrast, we consider the context in which the derivative

has to be reconstructed continuously, so that it can be evaluated

at every arbitrary location.

Shannon’s theory provides an exact way to recover a

bandlimited signal from its samples, using the sinc interpo-

lator. Similarly, the “ideal” derivative reconstruction filter was

shown in [10] to be the derivative of the sinc. However, its

slow decay and the ringing artifacts it may introduce, prevent

its practical use. Moreover, for non-bandlimited signals, the

sinc-based theory is not valid any more [3], [11], [12]. That

is why practitioners rely on convolutions with more localized

kernels having compact support, like windowed sinc [13], [14],

splines and other piecewise polynomial functions [2], [10].

In none of these works, there is an analytic comparison of
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different filters nor a quantitative analysis of the estimation

error.

In [15], the second author and its collaborators developed

tools and derived absolute error bounds for the spatial analysis

of both interpolation and derivative filters of arbitrary order.

Approximation theory also provides a general framework,

which focuses on the asymptotic error behavior of the recon-

struction method as T → 0 [16], [17]. These qualitative error

bounds are generally not sharp enough to be of direct use to

practitioners and accurate ways of predicting the approxima-

tion error are desirable, so that algorithms can be compared

and the parameters ϕ, p, ϕ̃, T can be chosen appropriately. For

this, Blu et al. proposed a remarkable Fourier-based method

which provides an accurate estimate of the approximation

error, with a wide range of applicability [18]. Their approach

makes the design of reconstruction algorithms simple and

accurate, and it is at the heart of recent developments in

interpolation theory [6]–[8]. In this paper, we extend this

theory to the setting of derivative reconstruction.

C. Mathematical Notations and Safeguards

The Fourier transform of a function f(t) is denoted by

f̂(ω) =
∫

R
f(t)e−jωtdt. The Z-transform of a discrete signal

v = (v[k])k∈Z is V (z) =
∑

Z
v[k]z−k and its Fourier

transform is v̂(ω) = V (ejw).
For any real r > 0, the Sobolev space W r

2 is the set of

functions f such that
∫

R
(1 +ω2)r|f̂(ω)|2dω <∞. Therefore,

the Sobolev regularity of f is the maximum value of r such

that f ∈ W r
2 .

Pn is the space of polynomial functions of degree at most

n ∈ N. We define the causal B-spline βn
+(t) of degree n ∈ N

by β0
+ = 1l[0,1) and βn

+ = βn−1
+ ∗ β0

+. The centered B-spline

of degree n is βn(t) = βn
+(t + n+1

2 ). We define the iterated

causal finite difference filter dn by Dn(z) = (1 − z−1)n.

We introduce the dual ϕd of a function ϕ ∈ L2(R) by

ϕ̂d(ω) = ϕ̂(ω)∗/âϕ(ω), where the discrete autocorrelation

filter aϕ is defined by aϕ[k] =
∫

R
ϕ(t)ϕ(t − k)dt and the

star is for complex conjugation.

We require ϕ̃ in (1) to have a well-defined bounded Fourier

transform. Also, in order for each function of the recon-

struction space VT (ϕ) to have a unique and stable expansion

of the form (2), the integer translates of ϕ are required to

form a Riesz basis; that is, there should exist two constants

B ≥ A > 0 such that A ≤ âϕ(ω) ≤ B almost everywhere.

D. Organization of the Paper

The outline of this paper is as follows. In Sect. II, we

introduce the frequency error kernel, which is the cornerstone

for quantifying the error between a function and its estimate

from discrete measurements. We present our main results

in Sect. III, based on a new error kernel dedicated to the

reconstruction of derivatives. In Sect. IV, we discuss the

consequences of the formalism for the design of efficient

reconstruction methods. Finally, in Sect. V, we illustrate our

methodology by the study of methods reconstructing the

second derivative.

II. THE FREQUENCY ERROR KERNEL

An important result of Blu et al. is that the error ‖s −
fapp‖L2 between s and its estimate reconstructed using (2)

can be predicted very accurately by the estimate [18]:

ηs(T ) =

√
1

2π

∫

R

|ŝ(ω)|2E(Tω) dω, (4)

using the frequency error kernel defined by

E(ω) = 1 − |ϕ̂(ω)|2
âϕ(ω)︸ ︷︷ ︸

Emin(ω)

+ âϕ(ω)
∣∣̂̃ϕ(ω)p̂(ω) − ϕ̂d(ω)

∣∣2
︸ ︷︷ ︸

Eres(ω)

. (5)

Remarkable properties of the global error estimate ηs(T )
include its exactness for bandlimited signals and for the

average of the true approximation error over all possible shifts

of the input function s. In the general case, we have the

approximation ‖s− fapp‖L2 = ηs(T ) + o(T r), assuming that

s has Sobolev regularity r > 1
2 . Moreover, in a stochastic

framework where s is a realization of a random stationary

process instead of a deterministic function of L2, ηs(T ) is

the exact expression of the time averaged expectation of the

quadratic pointwise error, by replacing the energy |ŝ(ω)|2 by

the power spectrum density ĉs(ω) in (4). These properties and

several others are detailed in [18] and [19].

In practical situations, |ŝ(ω)|2 or ĉs(ω) is unknown, but the

multiplicative form in the integral (4) ensures that the error

is small if E(ω) is close to zero. Hence, the frequency error

kernel is a tool of choice for quantifying the instrinsic quality

of a reconstruction scheme. In particular, ϕ and p can be tuned

to minimize the error kernel, so that the reconstruction quality

is improved for virtually every function s [6]–[8], [20].

Given the reconstruction space VT (ϕ), the error kernel

E(ω) attains its minimum possible value Emin(ω), for every

ω ∈ R, when fapp is the minimum error reconstruction of s
in VT (ϕ); that is, its orthogonal projection onto VT (ϕ). Thus,

the prefilter p should be designed so that E(ω) is close to

Emin(ω), so that the method behaves like this optimal, but

generally unattainable, least-squares approximation [8], [18].

III. COMPUTATION OF THE ERROR ESTIMATES

We first define the function ψ(t) by

ψ(t) =
∑

k∈Z

p[k]ϕ(t− k) ⇔ ψ̂(ω) = p̂(ω)ϕ̂(ω). (6)

Then, fder(t) =
∑

k∈Z
u[k]ψ(t − k). Although in practice ϕ

is chosen with compact support, so that (2) is computationally

attractive, the function ψ, which is the impulse response of

the reconstruction operation, can have infinite support.

We assume that the following equivalent conditions on ψ
are satisfied, so that fder does not blow up as T tends to zero

(because of the 1/TN factor in (2)):

fder = 0 if s ∈ PN−1, (7)

⇔
∑

k∈Z

P (k)ψ(t− k) = 0, ∀t ∈ R, ∀P ∈ PN−1, (8)

⇔ ψ̂(n)(2kπ) = 0, ∀k ∈ Z, ∀n = 0 . . .N − 1. (9)
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Although these equivalences may be classical in harmonic

analysis, we rederive them in the Appendix A for sake of

completeness.

Our second requirement is that ψ can be decomposed as

ψ(t) =
∑

k∈Z

q[k]φ(t− k) ⇔ ψ̂(ω) = q̂(ω)φ̂(ω), (10)

where q ∈ ℓ1 is a discrete filter and the integer translates of the

function φ ∈ L2 form a Riesz basis. Note that this condition

is not restrictive; in particular, there is no requirement that φ
be compactly supported, even if ϕ is.

Our last requirement is that s ∈ L2 has Sobolev regularity

r > N + 1
2 , so that s has at least N continuous derivatives in

L2.

The Riesz basis condition together with the requirement (9)

imply that 0 is a root of q of multiplicity N . In other words,

there exists a stable filter h ∈ ℓ1 such that q = h ∗ dN .

Thus, we essentially decomposed ψ = p ∗ ϕ into a moving

difference filter q and a well posed reconstruction kernel φ.

This allows us to recast derivative reconstruction into the

framework summarized in Sect. II, by reasoning on φ instead

of ϕ. For this, we need the following property:

Lemma. We define v = 1
T N u ∗ dN . Then, v[k] =∫

R
s(N)(t)φ̃(k − t

T )d t
T , where φ̃ = ϕ̃ ∗ βN−1

+ .

This important lemma, proved in Appendix B, allows us to

interpret the filtered samples u[k] as generalized samples of

the derivative s(N). Hence, we now have all the ingredients to

formulate the following results, proved in Appendix B.

Theorem 1. ‖s(N)−fder‖L2 = ηs(N)(T )+o(T r−N), where

ηs(N)(T ) =

(
1

2π

∫

R

|ŝ(ω)|2w2N

︸ ︷︷ ︸∣∣ŝ(N)(ω)
∣∣2

E(Tω) dω

)1/2

(11)

and the new frequency error kernel characterizing derivative

reconstruction is

E(ω) = 1 − |ϕ̂(ω)|2
âϕ(ω)︸ ︷︷ ︸

Emin(ω)

+ âϕ(ω)

∣∣∣∣̂̃ϕ(ω)p̂(ω)
1

(jω)N
− ϕ̂d(ω)

∣∣∣∣
2

︸ ︷︷ ︸
Eres(ω)

.

(12)

Moreover, the correction term o(T r−N) vanishes if s is

bandlimited in [− π
T ,

π
T ], or if ϕ̃ and ϕ are both bandlimited

in [−π, π].

Theorem 2. In a stochastic framework where s is a real-

ization of a random stationary process with power spectrum

density ĉs(ω), instead of a deterministic function of L2, we

have

ηs(N)(T ) =

(
1

T

∫ T

0

E{|s(N)(t) − fder(t)|2}dt
)1/2

, (13)

by replacing |ŝ(ω)|2 by ĉs(ω) in (11).

In Fig. 1, we give an example of the error estimate

ηs′(T ) for a practical experiment in which we reconstruct the

Fig. 1. Approximation error as a function of the sampling step T . We

estimate the first derivative s′(t) of s(t) = e−
(t−1)2

2 by the first derivative
of the cubic spline interpolating the point samples u[k] = s(Tk). Thus, we
have ϕ̃ = δ, ϕ = (β3)′ et P (z) = 6/(z + 4 + z−1). The error estimate
ηs′ (T ) (dashed line) is close to the true error ‖s′−fder‖L2 (solid line). The

dotted line is the asymptote C‖s(4)‖L2T 3, where the asymptotic constant

C = 1/
√

30240 is obtained from the Taylor development E(ω)1/2 ∼ Cω3.

derivative of a Gaussian from point samples. This shows that

ηs(N)(T ) is an accurate, shift invariant approximation of the

true error. We note that if s ∈ W r
2 for every r ≥ 0, which is

the case in our example, then the difference between ηs(N)(T )
and the true error decays faster than every polynomial in T as

T tends to zero. This means that ηs(N)(T ) can be considered as

the exact value of the error in some non-infinitesimal interval;

e.g. for T ∈ [0, 0.9] in Fig. 1. In the general case, ηs(N)(T ) is

a reliable estimate of the error for practical values of T . By

contrast, error analysis approaches based on Taylor series only

apply to the asymptotic regime where s is highly oversampled.

IV. ASYMPTOTIC APPROXIMATION PERFORMANCE

A. The Approximation Order

From Theorem 1, due to the closed form of ηs(N)(T ), it is

easy to expand this estimate in a power series of T to obtain

the exact behavior of the error as T → 0. Specifically, if s(N)

has at least Sobolev regularity L, we have

E(ω)1/2 ∼ C ωL as ω → 0 (14)

⇔ ‖s(N) − fder‖L2 ∼ C‖s(N+L)‖L2TL as T → 0. (15)

In that case, we speak about a Lth-order approximation

scheme. For applications where most of the spectral energy

of the signal is concentrated in the neighborhood of ω = 0
(e.g., images), the approximation order L is the most crucial

determinant of the reconstruction quality and should be chosen

as large as possible. To have an approximation order L, it is

necessary that φ satisfies the Strang-Fix conditions of order

L [16]:

φ̂(0) 6= 0 and φ̂(n)(2kπ) = 0 for

{
k 6= 0
n = 0 . . . L− 1

.

(16)

It was shown in [6] that a function φ with approximation L
has a support size S ≥ L with equality iff φ is a MOMS.

Therefore, the reconstruction schemes having the optimal
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tradeoff between the reconstruction quality and the computa-

tional complexity are obtained by choosing the reconstruction

kernel ϕ as a MOMS.

On this point, there is an interesting connection with wavelet

theory. The equivalent conditions (7),(8),(9) imply that ψ has

N vanishing moments:
∫

R
tnψ(t)dt = 0, ∀n = 0 . . .N − 1.

Therefore, ψ is similar to a wavelet function. It is known that

wavelets behave like differentiators [21]. Moreover, in [22], it

is shown that there is a B-spline function at the heart of each

scaling function and wavelet associated with a multiresolution

analysis. In our setting, there is no such requirements like the

two-scale relations associated with multiresolution. Also, the

building component of ψ carrying the approximation order is

φ. Therefore, these are the MOMS functions, a broader class

than the B-splines, which naturally appear when designing φ.

B. The choice of the Prefilter

We now assume that ϕ is fixed. This determines φ and its

approximation order L (eqn. (16)). Then, we have to choose

p so as to exploit at best the properties of the reconstruction

space VT (ϕ); that is, so that the scheme has approximation

order L (eqns (14),(15)). In fact, fder ∈ VT (ϕ) ⊂ VT (φ) and

p controls which approximation of s(N) in VT (ϕ) is picked by

the method. The best possible reconstruction is the orthogonal

projection of s(N) in VT (ϕ). The error between this optimal

approximation and s(N) decays like TL and is characterized

by the error kernelEmin given in (12). Thus, the reconstruction

scheme has approximation order L if and only if

E(ω) = Emin(ω) +O(ω2L). (17)

To characterize p more precisely, we define the function

φ̃eq(t) =
∑

k∈Z

h[k]φ̃(t− k), (18)

where we recall that φ̃ = ϕ̃ ∗ βN−1
+ and p̂.ϕ̂ = ĥ.d̂N .φ̂. So,

we have fder(t) =
∑

k∈Z
y[k]φ( t

T − k) ∀t ∈ R, with y[k] =∫
R
s(N)(t)φ̃eq(k − t

T )d t
T ∀k ∈ Z. Then, the reconstruction

scheme has approximation order L if and only if φ̃eq and φ
are quasi-biorthonormal with order L [18]; that is,

̂̃φeq(ω)φ̂(ω + 2kπ) = δk +O(ωL), ∀k ∈ Z, (19)

which is equivalent for φ̃eq and φd to have the same moments

up to order L:
∫

R

tnφ̃eq(t)dt =

∫

R

tnφd(t)dt, ∀n = 0 . . . L− 1. (20)

We can express these conditions in terms of ϕ̃, ϕ and p as

follows:

p̂(ω)

(jω)N
̂̃ϕ(ω)ϕ̂(ω + 2kπ) = δk +O(ωL), ∀k ∈ Z, (21)

or, equivalently,

p̂(ω)̂̃ϕ(ω) =
(jω)N

ϕ̂(ω)
+O(ωL+N ). (22)

We note that (22) can be obtained directly from (17).

Thus, it is preferable to choose p so that these quasi-

biorthonormality conditions are satisfied. There is a great

freedom in this respect, since only the L+N linear constraints

given by (22) have to be satisfied for the scheme to have the

maximal approximation order, given ϕ.

V. CASE STUDY: RECONSTRUCTION OF THE SECOND

DERIVATIVE

To illustrate the benefits of the framework, we compare

several methods reconstructing the second derivative from

point samples (N = 2, ϕ̃ = δ), by means of their error kernels.

1) The first method consists in applying the finite difference

filter P (z) = z−2+z−1 to the data, then in interpolating

the obtained sequence using the linear B-spline ϕ = β1.

Thus, the reconstructed function fder is piecewise linear

and has global regularity C0.

2) The second method is similar to the first one, with

cubic spline instead of linear spline interpolation. p is

the combination of the finite difference filter and of the

interpolation prefilter [2]: P (z) = 6(z − 2 + z−1)/(z +
4 + z−1), and ϕ = β3 is the cubic B-spline. Thus, the

reconstructed function fder is piecewise cubic and has

global regularity C2.

3) The third method consists in computing the second

derivative of the cubic spline interpolating the samples

u[k]. Then, we have P (z) = 6/(z + 4 + z−1) and

ϕ = (β3)′′. Since we have the property (β3)′′(t) =
β1(t − 1) − 2β1(t − 1) + β1(t + 1), the method can

also be implemented by using P (z) = 6(z − 2 +
z−1)/(z + 4 + z−1) and ϕ = β1. We notice that this

third method is hybrid between the two previous ones,

with the generator ϕ of the first method and the prefilter

of the second one.

4) The last method, by ε-differentiation, consists in apply-

ing a finite difference to the spline fapp(t) interpolating

the samples u[k] :

fder(t) =
1

ε2

(
fapp(t− ε) − 2fapp(t) + fapp(t+ ε)

)
,

(23)

for some ε > 0. This method is particularly interesting

for applications where estimates of both s(t) and s′′(t)
have to be reconstructed at the same time, for instance

in volume rendering [1]. We remark that when ε → 0,

fder converges to the second derivative f ′′
app, which cor-

responds to method 3). Moreover, if ε = 1, the method is

equivalent to method 2). In the general case, the method

formally amounts to take P (z) = 6/(z + 4 + z−1)
and ϕ(t) =

(
β3(t − ε) − 2β3(t) + β3(t + ε)

)
/ε2. The

reconstructed function fder is a cubic spline, with global

regularity C2, but with non-uniform knots. The question

arises how to chose the optimal value of ε. We will see

that the error kernel provides us with a simple way of

deriving this value.

We first notice that the four methods have approximation

order 2. Indeed, we have the Taylor series E(ω)1/2 ∼ Cω2,

where the asymptotic constant C is, for the first three methods,

C =
√

105
60 ≈ 0.17, C = 1

12 ≈ 0.08, C =
√

5
60 ≈ 0.04,

respectively. For the fourth method, the value of C depends
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Fig. 2. Square-rooted frequency error kernel E(ω)1/2 for the reconstruction
methods 1 to 4 described in Sect. V, denoted M1 to M4, respectively. Only
the values in the half Nyquist band ω ∈ [0, π] are plotted, since E(ω) is
symmetrical in 0.

on ε. For ε ∈ (0, 1/2], we have:

C2 =
1

720
− 1

72
ε2 +

31

1260
ε3 − 1

180
ε4 (24)

and C is higher for ε > 1/2. Thus, we can choose ε so that

C is minimized, which yields the optimal value

εo =
93

56
− 1

56

√
4729 ≈ 0.43, (25)

for which C ≈ 6.10−4.

We depicted the error kernels associated to the four methods

in Fig. 2, with ε = εo for the method 4). We observe that

the hierarchy of the methods with respect to their asymptotic

constants C is respected. In other words, the minimization of

C, which is an asymptotic constraint in ω = 0, provides error

kernels whose good behavior extends in the whole Nyquist

band ω ∈ [−π, π]. This observation, which is not expected

a priori, was already done for interpolation [6]–[8], [20].

Thus, the minimization of the asymptotic constant, for a

given approximation order, is a simple and efficient way of

designing reconstruction methods of high quality. Applying

this methodology to the reconstruction of derivatives is new

and the authors are not aware, for instance, of results similar

to (25) in the literature.

It is interesting to determine a function φ corresponding to

the method 4). In fact, the translates of ϕ do not form a Riesz

basis. We can define φ by

φ̂(ω) =
ϕ̂(ω)

2 cos(ω) − 2
=

2 cos(εω) − 2

ε2
(
2 cos(ω) − 2

) β̂3(ω), (26)

which satisfies the Strang-Fix conditions of order 2. Actually,

one can show that φ = β1 ∗ β1
ε where β1

ε (t) = 1
εβ

1( t
ε). φ has

compact support in [−1−ε, 1+ε], is piecewise cubic and has

global regularity C2.

There is an important remark concerning method 3). We

observe that E = Emin and, indeed, fder is the orthogonal

projection of s′′ in VT (β1). In other words, the method

yields the best possible piecewise linear approximation of

s′′, although this function is unknown. More generally, it is

possible to obtain the orthogonal projection of s(N) in the

spline space VT (βN−1) from point samples of s, for every

N ≥ 1. This is a remarkable property of spline spaces.

Finally, we note that the reconstruction spaces of methods

1), 3), 4) have approximation order 2, while the cubic spline

space of method 2) has approximation order 4. Hence, for

method 2), the prefilter p does not fully exploit the represen-

tation power of VT (β3). We can propose another prefilter so

that the method has approximation order 4. After (22), this is

equivalent to have

p̂(ω) = −ω2β̂3
d(ω) +O(ω6) = −ω2 − 1

6
ω4 +O(ω6). (27)

For instance, a solution is P (z) = 120(z − 2 + z−1)/
(
66 +

26(z+ z−1)+ z2 + z−2
)

and the method amounts to compute

the second derivative of the spline of degree 5 interpolating

the samples u[k].

VI. CONCLUSION

We introduced a generic Fourier methodology to evalu-

ate the quality of shift-invariant methods that continuously

reconstruct the derivative of a function from discrete mea-

surements. In our future work, we will focus on the use of

this theory to design efficient reconstruction schemes. We

will also investigate the extension of the formalism to noisy

measurements [23], [24].

Since the frequency error kernel can be defined for multi-

dimensional signals on lattices [20], the extension of this work

to the evaluation of partial derivatives of multi-dimensional

signals is straightforward. There are promising applications

related to finite difference methods and the numerical resolu-

tion of PDEs.

APPENDIX A

PROOF OF THE EQUIVALENCE OF (7),(8),(9)

We first prove that (8) ⇔ (9). Let n be in 0 . . . N − 1.

We define yn = (yn[k])k∈Z by yn[k] = ψ̂(n)(2kπ). Then,

yn[k] = 0 ∀k ⇔ ŷn = 0 ⇔ ∑
k(t − k)nψ(t − k) = 0 ∀t,

where the last equivalence is Poisson’s sum formula applied

to the function tnψ(t). So, (9) ⇔
∑

k∈Z
Q(t− k)ψ(t− k) =

0, ∀t ∈ R, ∀Q ∈ PN−1. This is equivalent to (8) by letting,

for any t, Q(X) be P (t−X). �

We then show that (8) ⇒ (7). We assume (8). Let s(t) =∑N−1
n=0 ant

n be in PN−1 and k be in Z. We introduce the

function g(t) = 1
T s(t)ϕ̃(k − t

T ). Then, u[k] = ĝ(0) =∑N−1
n=0 anj

n dn

dωn {e−jωTk ̂̃ϕ(Tω)∗}|ω=0 is a polynomial in k
of degree N − 1. Applying (8) to this polynomial P , we get

fder = 0. �

We don’t give the details of (7) ⇒ (8). This involves

exhibiting, for a given P ∈ PN−1, a polynomial s ∈ PN−1

such that u[k] = P (k), which is always possible.
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APPENDIX B

PROOFS OF THE RESULTS IN SECT. III

We first prove the lemma. We define the function sT (t) =

s(T t). Then, for every n in 1 . . .N , s
(n)
T ∗ β0

+(t) =∫ t

t−1
s(n)(x)dx = s

(n−1)
T (t) − s

(n−1)
T (t − 1) = s

(n−1)
T ∗

(
δ −

δ(·−1)
)
(t). By recurrence, using the property βn

+ = βn−1
+ ∗β0

+,

we get s
(N)
T ∗ βN−1

+ ∗ ϕ̃ = sT ∗
(
δ − δ(· − 1)

)N ∗ ϕ̃.

Therefore, since u[k] = sT ∗ ϕ̃ (k), we have s
(N)
T ∗ φ̃ (k) =

TN
∫

R
s(N)(t)φ̃(k − t

T )d t
T = u ∗ dN [k]. �

The theorems 1 and 2 are adaptations of [18, Theorem 1]

and [18, Theorem 3], respectively, by making the substitutions

s→ s(N), u→ v, ϕ→ φ, ϕ̃→ φ̃, p→ h. Thus, the theorems

are satisfied with the following expression of E(ω) in (11):

E(ω) = 1 − |φ̂(ω)|2
âφ(ω)

+ âφ(ω)
∣∣̂̃φ(ω)ĥ(ω) − φ̂d(ω)

∣∣2. (28)

Then, we obtain (12) by substituting in (28) the equalities

φ̂ = p̂
q̂ ϕ̂, âφ = | p̂q̂ |2âϕ,

̂̃
φ = ̂̃ϕ.̂βN−1

+ with ̂βN−1
+ (ω) =

d̂N (ω)/(jω)N , q̂ = ĥ.d̂N . �
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