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Introduction

The rapidly increasing use of foam polymers, and of cellular materials in general, is due to a combination of some peculiar properties, such as lightness, easy packaging, and high energy absorption. Such properties come from the specific microstructure of the material, which consists of a complex network of ligaments and membranes. For a detailed description, see the book by Gibson and Ashby [START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF]. Typical of such materials is the non-homogeneous deformation exhibited in uniaxial compression tests. There is indeed experimental evidence that in a displacementdriven test the deformation is initially homogeneous, then localizes in transverse bands, whose number grows with increasing deformation, and eventually becomes again homogeneous, see e.g. Gioia et al. [START_REF] Gioia | The energetics of heterogeneous deformation in open-cell solid foams[END_REF], Gong and Kyriakides [START_REF] Gong | On the crushing stress of open cell foams[END_REF], Lakes et al. [START_REF] Lakes | Microbuckling instability in elastomeric cellular solids[END_REF], Wang and Cuitiño [START_REF] Wang | Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation[END_REF], and the experiments made by the present authors described in the next section. This behavior determines a three-regime shape of the force-elongation response curve, in which the central regime of strain localization corresponds to an almost horizontal plateau.

The same overall behavior was observed by Bart-Smith et al. [START_REF] Bart-Smith | Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping[END_REF] and by Bastawros et al. [START_REF] Bastawros | Experimental analysis of deformation mechanism in a closed-cell aluminium alloy[END_REF] in both open and closed-cell aluminium alloy foams. There is also a strong analogy with the response curves for shape memory alloy wires, see e.g. Miyazaki and Otsuka [START_REF] Miyazaki | Development of shape memory alloys[END_REF], Ortin [START_REF] Ortin | Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal[END_REF], Tanaka et al. [START_REF] Tanaka | Phenomenological analysis of plateaus on stress-strain hysteresis in TiNi shape memory alloy wires[END_REF]. The analogy becomes even more interesting by the fact that for all such materials the loading-unloading tests exhibit hysteresis cycles of similar shapes [START_REF] Bart-Smith | Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping[END_REF][START_REF] Bastawros | Experimental analysis of deformation mechanism in a closed-cell aluminium alloy[END_REF][START_REF] Gong | Compressive response of open-cell foams. Part I: Morphology and elastic properties[END_REF][START_REF] Tanaka | Phenomenological analysis of plateaus on stress-strain hysteresis in TiNi shape memory alloy wires[END_REF].

To model the behavior of open-cell polymer foams, two main approaches are used: a numerical approach, directly reproducing the microstructure in the finite element scheme, and an analytical approach, based on the representation of the material as a continuum. In the numerical approach, the ligaments are usually represented as shear-deformable linear elastic beams, and strain localization is attributed to the buckling of the beams, see e.g. Gent and Thomas [START_REF] Gent | Mechanics of foamed elastic materials[END_REF], Gibson and Ashby [START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF], Warren and Kraynik [START_REF] Warren | Linear elastic behavior of a low-density Kelvin foam with open cells[END_REF]. In Gong et al. [START_REF] Gong | Compressive response of open-cell foams. Part I: Morphology and elastic properties[END_REF], the foam is modeled as a periodic structure whose basic element is a 14-sided polyhedron, called the Kelvin cell. In general, the numerical approach is very demanding from the computational point of view, due to the large number of unknowns, and to some difficulties in modeling the contact between beams in the post-buckling regime, see Bardenhagen et al. [START_REF] Bardenhagen | Insight into the physics of foam densification via numerical simulation[END_REF].

In the analytical approach, the material is considered as a homogeneous hyperelastic continuum. Indeed, it has been shown by Ericksen [5] that both strain localization and hysteretic behavior can be described within the elastic context, by assuming a non-convex strain energy density of a special "double-well" shape. A model for foam polymers based on this simple idea was proposed in Gioia et al. [START_REF] Gioia | The energetics of heterogeneous deformation in open-cell solid foams[END_REF].

In this paper we propose a discrete model, whose origin traces back to a series of papers [START_REF] Fedelich | Hysteresis in discrete systems of possibly interacting elements with a double-well energy[END_REF][START_REF] Müller | A model for an elastic-plastic body[END_REF][START_REF] Puglisi | Mechanics of a discrete chain with bi-stable elements[END_REF] in which Ericksen's problem is discretized by replacing a continuous bar by a finite chain of elastic springs with a double-well strain energy. The paper is divided into two parts. In the first part the test procedure and the experimental results are presented. In the second part the theoretical model is described and, by an appropriate identification of the constitutive constants, a close reproduction of the experimental force-elongation curves is obtained.

Experimental analysis

2.1. Equipment and test procedure. The compression tests were made using a load frame Instron 4467 with a 500 N load cell, located at the Laboratorio di Materiali Polimerici of the University of Ferrara. The specimens were parallelepipeds cut out from two sheets of commercial open-cell polyurethane foams, 10 and 50 mm thick, respectively. The cutting was done manually, using a ribbon saw. The cellular structures of the two sheets are shown in Figure 1, and their mass densities are 27 and 25 kg/m 3 , respectively.

Ten specimens with base dimensions 100 × 100 mm, five for each of the thicknesses 10 and 50 mm, were tested in confined compression. Confinement was assured by a polystyrene box clamped to the load frame, of dimensions 101 × 101 × 60 mm. The lower base of the samples was in contact with the bottom of the box, and the upper base was in contact with a steel plate fixed to the moving crosshead. Polystyrene, being transparent, allowed for optical control of the evolution of the deformation. Confinement was chosen to prevent lateral buckling, which was indeed observed in some collateral non-confined tests. There were just slight differences between the response curves for confined and non-confined tests. This led us to conclude that the effects of the friction between specimens and the lateral walls of the box were not important. Accordingly, we decided not to lubricate the walls of the box.

The testing equipment is shown in Figure 2. A pre-load of 2 to 3 N was applied to guarantee a full initial contact between plate and specimen. A crosshead speed of 1 mm/min was considered sufficiently slow to render negligible all rate-dependent effects. The test was stopped when the crosshead displacement reached 70% of the specimen thickness, an elongation sufficient to capture all significant aspects of the force-elongation curve.

2.2.

Results. Two experimental force-elongation curves are shown in Figure 3. They give the average responses of five tests made on 10 mm and 50 mm specimens, respectively. The figure shows the stress (measured as axial force divided by the initial sample cross area) as a function of the deformation (measured as the crosshead displacement divided by the initial thickness of the specimen). The two curves are similar in shape. In particular, they exhibit the three-regime behavior mentioned in the Introduction, characterized by a central plateau. The quantitative differences are significant. This means that the two commercial sheets from which were obtained have different mechanical properties. In the following, they will be considered as made of two different materials. From the same Figure 3 one sees that the initial slopes are about 110 and 145 kPa for the 10 mm and for the 50 mm specimens, respectively. The plateau occurs at a stress of about 6,5 kPa and 8.5 kPa, and ends at a deformation of about 55% and 63%, respectively.

To detect the strain localization, a rectangular grid was drawn on one of the specimens' sides. The progressive deformation of the grid under growing crosshead displacement is shown in Figure 4. As shown in Figure 4a, the deformation is initially homogeneous. Then a severe deformation occurs at the top layer of the specimen, Figure 4b. This deformation propagates to the underlying layers (Figures 4c,4d), and after all layers have been reached, the deformation again becomes homogeneous, Figure 4e. The same qualitative evolution was observed in polyurethane lowdensity foams [START_REF] Wang | Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation[END_REF] and in aluminium alloy foams [START_REF] Bart-Smith | Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping[END_REF][START_REF] Bastawros | Experimental analysis of deformation mechanism in a closed-cell aluminium alloy[END_REF]. A very similar localization phenomenon was also observed in steel bars subjected to uniaxial tension [START_REF] Froli | An experimental study of the Portevin-Le Chatelier effect in steel bars[END_REF][START_REF] Froli | Discontinuous deformation of tensile steel bars: experimental results[END_REF].

In particular, Wang and Cuitiño [START_REF] Wang | Full-field measurements of heterogeneous deformation patterns on polymeric foams using digital image correlation[END_REF] observed the formation of three or four highly deformed bands orthogonal to the loading direction. In their experiments, localization does not initiate at the upper part of the specimen as in our tests. That in our tests the localization systematically starts at one can be explained by the difference in the contact conditions. Indeed, in collateral tests made with uniform contact conditions we observed that localization starts simultaneously at the two bases. Let Ω 0 be the bounded open three-dimensional region occupied by the body in the reference configuration, and let f be the deformation that maps the points X of Ω 0 into the points x = f (X). Assume that the body is made of an isotropic hyperelastic material, with a strain energy density of the form

w(F ) = 1 2 α F • F + Γ(det F ) , (1) 
where F denotes the gradient of f , α is a positive material constant, and Γ is a non-negative function such that lim

detF →0 Γ(det F ) = lim detF →∞ Γ(det F ) = +∞ . (2) 
The gradient of w S = w F (F ) = αF + detF Γ (detF ) F -T (3) is the Piola-Kirchhoff stress tensor. If we take w(I) = 0 and if we assume that the reference configuration F = I is stress-free, from the conditions w(I) = w F (I) = 0 we get

α = -Γ (1) , 3 2 α + Γ(1) = 0 . ( 4 
)
For the function Γ we assume the expression

Γ(detF ) = c (detF ) n 1 n + 2 (detF ) 2 - 1 n -µ ln (detF ) + β √ π 2 √ k erf √ k (detF -a) + γ , (5) 
where α, c, n, µ, β, k are positive constants, with a 1, erf(•) is the error function

erf(x) = 2 √ π x 0 e -t 2 dt , (6) 
and γ is a constant determined by the conditions (4). The expression chosen for Γ is the sum of two parts. The first part, similar to the one proposed in [START_REF] Ogden | Non-Linear Elastic Deformations[END_REF], takes into account the long-range effects, while the second part, the error function, provides a local effect at values of detF close to a. In (5), the growth conditions (2) are satisfied for any positive c, µ, and n. In the particular case of confined compression in the direction e, one has

F = I + (λ -1)e ⊗ e , detF = λ , 0 < λ < 1 , (7) 
so that 

S = λΓ (λ) -Γ (1) I + (1 -λ) Γ (λ) + Γ (1) e ⊗ e . (8 
For Γ as in [START_REF] Ericksen | Equilibrium of bars[END_REF], equation ( 9) yields

σ = µ -β exp -k(1 -a) 2 λ + cλ n-1 λ 2 -1 -µλ -1 + β exp -k(λ -a) 2 . ( 10 
)
This is the equation that, with appropriate identifications of the constants µ, β, k, a, c, n, will be used to reproduce the experimental curves.

To begin, consider [START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF] as the force-elongation relation (σ, λ) of a non-linear elastic spring. This relation is represented by a curve in which two ascending branches are separated by a descending branch as shown in Figure 5d. It does not match with the curves in Figure 3 and, what is more, it does not provide any description of strain localization. But, as it will be shown in the coming subsection, both goals can be reached by assembling in series a sufficiently large number of such springs.

3.2.

The discrete model. Consider a chain of n springs connected in series, Figure 5a, in which each spring represents a horizontal layer of cells as shown in Figure 5b. We assume that all springs have the non-convex strain energy of the type shown in Figure 5c, to which corresponds the force-elongation law shown in Figure 5d and expressed by equation [START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF]. The total energy of the system is the sum of the strain energies of the springs,

E (ε 1 , ε 2 , ..., ε n ) = n i=1 w(ε i ) , (11) 
where ε i is the elongation of the i -th spring. The chain is subjected to the hard device condition

n i=1 ε i = nε 0 , (12) 
where ε 0 is the average elongation of the springs. If one of the ends of the chain is fixed, the total elongation nε 0 of the chain coincides with the displacement imposed to the other end. Using condition [START_REF] Gong | Compressive response of open-cell foams. Part I: Morphology and elastic properties[END_REF], one can eliminate one variable, say ε n , and rewrite the energy in the form

E (ε 1 , ε 2 , ..., ε n-1 ) = n-1 i=1 w(ε i ) + w nε 0 - n-1 i=1 ε i . (13) 
In an elastic structure, the equilibrium configurations are identified with the stationarity points of the energy, and the stable equilibrium configurations are identified with the (local or global) energy minimizers. For the present structure, which has a finite number of degrees of freedom, the equilibrium configurations are found by annihilating the partial derivatives of the energy

∂E ∂ε i (ε 1 , ε 2 , ..., ε n-1 ) = w (ε i ) -w nε 0 - n-1 j=1 ε j = 0 , i = 1, 2, ..., n -1 . (14) 
Recalling that ε n = nε 0 -n-1 j=1 ε j , the above equality can be given the form w

(ε i ) = w (ε n ) , i = 1, 2, ..., n -1 . ( 15 
)
which tells us that the force is the same in all springs. The common value of the force in the springs will be denoted by σ. As to the conditions for a global or local minimum, a sufficient condition is that the Hessian matrix of the second partial derivatives of the energy

∂ 2 E ∂ε i ∂ε j = w (ε j ) + w (ε n ) if i = j , w (ε n ) if i = j . ( 16 
)
be positive definite. After setting A i = w (ε i ), this matrix takes the form

H =     A 1 + A n A n . A n A n A 2 + A n . A n . . . . A n A n . A n-1 + A n     . (17) 
It is known, see e.g. [START_REF] Puglisi | Mechanics of a discrete chain with bi-stable elements[END_REF], that H is positive definite if and only if • all A i , except at most one, are positive,

• if there is a negative A j < 0, then it must be

n i=1 A -1 i < 0 . ( 18 
)
The second possibility has no practical interest if n is sufficiently large, see [START_REF] Puglisi | Mechanics of a discrete chain with bi-stable elements[END_REF]. In what follows, we neglect this possibility altogether. Because A i = w (ε i ), a positive A i means that the elongation ε i lies on one of the two ascending branches of the force-elongation curve. Therefore, we confine ourselves to equilibrium configurations in which all elongations ε i lie on one of the ascending branches. We say that the i -th spring is in phase A if ε i belongs to the first ascending branch, and that it is in phase B if ε i belongs to the second ascending branch.

Strain localization.

Consider an equilibrium configuration with m springs in phase A, for which the force σ belongs to the interval (σ min , σ max ), where σ min and σ max are the local minimum and the local maximum of the force-elongation curve, see Figure 6a. Let us call ε1 and ε2 the elongations corresponding to σ in the first and second ascending branch, respectively. Then,

ε0 = m n ε1 + n -m n ε2 (19) 
is the corresponding average elongation. Varying σ, for each fixed m one can construct the stable equilibrium path (σ, ε0 ), and varying m one gets all equilibrium paths made of the equilibrium configurations selected above. In Figure 6a, the equilibrium paths for a system of four springs are shown.

The cases m = 0 and m = n correspond to homogeneous configurations. Indeed, for m = n from [START_REF] Ortin | Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal[END_REF] we get ε0 = ε1 , so that the path (σ, ε0 ) coincides with the first ascending branch, and for m = 0 we get ε0 = ε2 , so that the path (σ, ε0 ) coincides with the second ascending branch. If one assumes that the evolution occurs along equilibrium curves made of local energy minimizers, see [START_REF] Del Piero | Elastic bars with decohesions[END_REF], then the system, when loaded starting from the initial configuration, initially follows the first ascending branch, until the branch ends when the force reaches the value σ max .

At this point, for further increasing ε 0 there are no more single-phase equilibrium configurations. It is reasonable to assume that the system jumps to the closest branch, corresponding to the configurations with one spring in phase B and three springs in phase A. This phase transition requires a non-equilibrium process, in which the force decreases at constant ε 0 . This process will not be analyzed here. Once the new equilibrium branch has been reached, the force again increases, until σ re-attains the value σ max . Then the system jumps to the branch with two springs in phase B and so on. When all springs have undergone the phase transition, the system evolves following the second ascending branch, which corresponds to single-phase configurations with all springs in phase B. Thus, after reaching the value σ max for the first time, the system follows a wavy, approximately horizontal line, successively assuming configurations with the number m of springs in phase A gradually decreasing from n to zero, and then follows the second ascending branch. By comparing figures 6a and 6b, one sees that the number of the intermediate branches, and therefore of the non-equilibrium processes, increases with n. At the same time, each phase transition involves a smaller jump of σ; therefore the whole regime of progressive phase change occurs more smoothly.

Let us compare the model's predictions with the deformation mechanism observed in the experiments. In Figure 7, the first row represents the undeformed configuration, and the second row shows the system following the first ascending branch of the response curve. Both correspond to a homogeneous configuration with all springs in phase A. A two-phase configuration with one spring more deformed than the others is shown in the third row, and the phase transitions of all springs, one after the other, are shown in the following rows. When all layers are strongly deformed as shown in the last row, the specimen is back to homogeneous deformation.

3.4.

Response at unloading. At unloading, the model predicts a similar behavior: after reaching the force σ min , the system approximately follows the horizontal line σ = σ min , successively [START_REF] Gong | Compressive response of open-cell foams. Part I: Morphology and elastic properties[END_REF], on aluminium foams [START_REF] Bart-Smith | Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping[END_REF][START_REF] Bastawros | Experimental analysis of deformation mechanism in a closed-cell aluminium alloy[END_REF], and on shape memory alloys [START_REF] Miyazaki | Development of shape memory alloys[END_REF][START_REF] Ortin | Preisach modeling of hysteresis for a pseudoelastic Cu-Zn-Al single crystal[END_REF][START_REF] Tanaka | Phenomenological analysis of plateaus on stress-strain hysteresis in TiNi shape memory alloy wires[END_REF].

If the system is unloaded when m > 0, that is, when there are still springs in phase A, the system follows backwards the two-phase equilibrium curve for the given m till the value σ min is attained. For further decreasing deformations, the system approximately follows the horizontal line σ = σ min , until all springs go back phase A. A comparison of this prediction with experiments made by the authors is given in the next section.

Comparison with the experiments

In Figure 8 the model's response is compared with the experimental results for the 10 and the 50 mm specimens. As explained in Subsection 2.2, the two groups of specimens are characterized by different material constants. The dotted curves are the average experimental curves of Figure 3 and the solid lines are the response curves of the model, with the values of the constitutive constants reported in Table 1. In the latter, according to our model's prediction, the plateaus should be indeed wavy lines. But the waves have been neglected, supposing that the number of springs is conveniently large.

The constants in Table 1 have been chosen for the best fitting of the experimental curves in the first loading branch, ε 0 < 0.1, and for elongations larger than ε 0 > 0.3. Indeed, our model does not predict the positive slope exhibited by the experimental curves in the range 0.1 < ε 0 < 0.3. This part of the loading diagram has been studied in [START_REF] Marzano | Un modello di isteresi per fili di leghe a memoria di forma[END_REF][START_REF] Puglisi | Hardening and hysteresis in transformational plasticity[END_REF]. In Puglisi and Truskinovsky [START_REF] Puglisi | Hardening and hysteresis in transformational plasticity[END_REF] curves with positive slope are obtained from chains made of springs with different energies.

Figure 9 shows a comparison between the theoretical and experimental loading-unloading curves for 50 mm specimens, for different values of the maximum elongation ε max . The curves show a qualitative agreement in the shapes of the hysteresis loops. But there are also some discrepancies:

(i) In the model, all unloading curves begin at the upper plateau. In the experiments, the upper plateau ends at ε p ≈ 60%, and yet the unloading curves for ε max > 60% do not follow backwards the the unloading curve up to ε p as predicted by the model. (ii) In the model the lower plateau is horizontal, and it is the same for all ε max . In the experiments there are different lower plateaus for different ε max , and all have a variable positive slope. The transition from the descending curve to the plateau is not evident. (iii) In the model, after a complete loading-unloading cycle all curves end at the origin. In the experiments, there is a residual deformation whose amount increases with ε max .

It is possible to eliminate the discrepancies in point (ii) by introducing a damage variable, see [START_REF] Pampolini | Strain localization and cyclic damage of polyurethane foam cylinders: experimental tests and theoretical model[END_REF], and to attribute those in point (iii) to residual plastic deformation. But both seem rather to be due to retarded elasticity, with a decay time much larger than the duration of the experiment. Indeed, our observations confirm those of [START_REF] Gong | Compressive response of open-cell foams. Part I: Morphology and elastic properties[END_REF], according to which the residual deformations are completely recovered when the specimen is left at rest for 48 hours. 
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 1 Figure 1. The cell structure of the polyurethane foams in the 50 (a) and in the 10 mm thick sheets (b).

Figure 2 .

 2 Figure 2. The test equipment.

Figure 3 .

 3 Figure 3. Comparison of the average force-elongation curves relative to five tests on 10 and 50 mm samples in confined compression.

Figure 4 .

 4 Figure 4. The deformation mechanism in confined compression test on the 50 mm thick samples: the initial homogeneous deformation (a), strain localization at the upper end of the specimen (b), propagation to the underlying layers (c), (d), and the final homogeneous deformation (e). The initial equidistance of the horizontal lines of the rectangular grid is 5 mm.

  ) We see that S depends only on λ and on the function Γ. The component of S in the loading direction is σ = S e • e = Γ (λ) -λ Γ (1) .

Figure 5 .

 5 Figure 5. Subdivision of the body into cell layers (a), representation of each layer as a non linear elastic spring (b) with non convex energy (c), and nonmonotonic force-elongation curve (d).

Figure 6 .

 6 Figure 6. Response curves for a system of 4 springs (a) and for a system of 20 springs (b).

Figure 7 .

 7 Figure 7. Description of the deformation mechanism following the response curve (a), and the corresponding configurations of the springs (b) and of the cell-layers (c).

Figure 8 .

 8 Figure 8. Theoretical response curves and hysteresis loop (solid lines), compared with average experimental response at loading (dotted line) for the 10 mm specimens (a) and for the 50 mm specimens (b).

Figure 9 .

 9 Figure 9. Theoretical (a) and experimental (b) loading-unloading curves for the 50 mm specimens, showing the shapes of the hysteresis loops for different maximum elongations [20].

Table 1 .

 1 Values of the constitutive constants. gradually increasing from zero to n. The hysteresis loop determined in this way has indeed been observed in experiments on polymer foams

	10 mm specimens 50 mm specimens
	α	4.2 kPa	2.92 kPa
	µ	4.2 kPa	2.92 kPa
	c	50.8 kPa	69.9 kPa
	n	5	7
	β	2.5 kPa	3.5 kPa
	k	47	18
	a	0.67	0.72
	assuming configurations with m		
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