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Existence and regularity results for fully
nonlinear equations with singularities

Patricio Felmer, Alexander Quaas and Boyan Sirakov

1 Introduction

In this paper we study a class of boundary value problems of the form

F (D2u,Du, u, x) + f(x, u) = 0 in Ω, u = 0 on ∂Ω, (1.1)

where F is a positively homogeneous fully nonlinear elliptic operator, Ω is
a bounded regular domain and f is singular at u = 0. Our main results
concern existence, uniqueness and regularity of solutions of (1.1).

The semi-linear version of this problem, that is, (1.1) with F replaced by
a linear operator

L = aij(x)∂2
xixj

+ bi(x)∂xi
+ c(x), (1.2)

has been attracting continuous attention since the 1970’s and the literature
nowadays is very large. A cornerstone in the study of singular problems of
this type is the classical work by Crandall, Rabinowitz and Tartar [10], whose
results, applied to the model equation

Lu + p(x)u−µ = 0 in Ω, u = 0 on ∂Ω, (1.3)

µ > 0, p(x) > 0 in Ω, state that (1.3) has a unique positive solution which is
Hölder continuous, that is u ∈ Cγ(Ω), and it satisfies

C1d
γ(x) ≤ u(x) ≤ C2d

γ(x),

where d is the distance to the boundary of Ω, γ = 2/(µ + 1) and 0 < C1 ≤ C2.
In addition, they showed that if µ < 1 then the solution is Lipschitz in
Ω. Later, Lazer and McKenna [25] developed a simplified approach to this
problem, in particular when L is in divergence form.

Concerning the regularity of solutions of (1.3), exact results were obtained
by del Pino [12] and Gui-Lin [18], for L = ∆ and functions p which behave
like powers of the distance to the boundary. In particular, they showed that
solutions of (1.3) are actually in C2(Ω) ∩ C1,β(Ω), for some β > 0, provided
µ < 1 (see also an earlier result by Gomes [17]). Notice that this is the best
regularity one can expect, as the equation itself shows.

Then, in the last fifteen years numerous and various extensions of these
results were obtained, mostly to more general nonlinearities f(x, u) and to
quasilinear equations. In addition to the papers we already quoted we refer
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to [6], [7], [11], [13], [20], [21], [31], [34], [36], [37] and the references therein.
An excellent starting point to these studies is the survey [19], where very
extensive literature is available.

Despite the large literature on semi- and quasi-linear equations with sin-
gular nonlinearities, we do not know of any works where such a study is
done in the setting of fully nonlinear equations. This is the main goal of this
paper. We are going to show that the recently developed theory of Hamilton-
Jacobi-Bellman and Isaacs equations [8], [22], [5], [9], [29] and [1] permits us
to prove the same existence results as in the semi-linear setting, when weak
(viscosity) solutions to (1.1) are considered. The regularity result requires
a new approach, since none of the methods used in the previous papers on
singular problems applies in the fully nonlinear setting. In particular, no
linear theory for adjoint operators nor Green functions are available for fully
nonlinear operators.

Throughout the paper all differential (in)equalities will be understood to
hold in the LN -viscosity sense – see [5] for a detailed description of this notion.
We now state our hypotheses and results. We assume F is a Hamilton-Jacobi-
Bellman (HJB) operator, that is, a supremum of linear operators like (1.2)

F [u] = F (D2u,Du, u, x) = sup
α∈A

{Lαu(x)}, (1.4)

where the index α varies in some set A and

(S) for some constants 0 < λ ≤ Λ, γ ≥ 0, the matrix Aα(x) := (aα
ij(x)) is

such that Aα ∈ C(Ω), λI ≤Aα(x) ≤ ΛI, and |bα(x)|, |cα(x)| ≤ γ, for
almost all x ∈ Ω and all α ∈ A.

(C) F satisfies the following comparison principle : if u, v ∈ C(Ω) are LN -
viscosity solutions of F [u] ≥ F [v] in Ω and one of u, v is in W 2,N

loc (Ω),
then u ≤ v in Ω.

Notice we do not assume much regularity on the coefficients of F , however all
our results are new even for operators with smooth coefficients. For detailed
description of the theory and the numerous applications of HJB operators,
we refer to the book [15] and to the surveys [24], [33] and [3]. In particular,
it is shown in [26] and [29] that, under (S) the operator F has two real
”principal half-eigenvalues” λ+

1 (F ) ≤ λ−1 (F ) that correspond to a positive
and a negative eigenfunction and

F satisfies (C) ⇐⇒ λ+
1 (F ) > 0.

In order to keep the statements simple, we are going to restrict to nonlinear-
ities f which have the same form as in (1.3). This model case is sufficient
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to expose the ideas needed in order to study fully nonlinear equations with
singular nonlinearities. More general results can be obtained by mingling
our techniques with already existing ones, for instance for general decreas-
ing nonlinearities like in [10], or for nonlinearities with an added nonlinear
perturbation like λup, p > 0 (these types of nonlinearities for fully nonlinear
equations were considered in [28] and [14]). We could also consider operators
with unbounded coefficients and quadratic dependence in the gradient, like
in [32] or operators whose coefficients have some singularity on the boundary
of Ω, like in [20]. We leave these extensions to future studies.

Furthermore, all results below extend to Isaacs operators, that is, opera-
tors like in (1.4), with the supremum replaced by a combination of suprema
and infima of linear operators, provided more regularity in x is assumed,
and the operator F is proper (that is, decreasing in u) so that comparison
principles are still available. We refer to [22] and [9] for more precise con-
ditions under which comparison is available for Isaacs operators. All our
statements and proofs remain almost unchanged in this case, only the spaces
W 2,p which appear in them are to be replaced by C1,α. Here is our existence
and uniqueness theorem.

Theorem 1.1 Suppose F [u] is in the form (1.4) and it satisfies (S) and (C).
Assume µ > 0 and p ∈ LN(Ω), further satisfying p ≥ 0 in Ω and p > 0 on a
subset of Ω with positive measure. Then the problem

F [u] + p(x)u−µ = 0, u > 0 in Ω, u = 0 on ∂Ω, (1.5)

has a unique viscosity solution, such that u ∈ W 2,N
loc (Ω) ∩ C(Ω).

In order to prove this theorem we use the method of sub- and super-
solutions, as developed for viscosity solutions in [8], which we combine with
the recent results on existence of eigenvalues and eigenfunctions of fully non-
linear operators in [29]. We construct super- and sub-solutions by solving a
fully nonlinear eigenvalue problem with a weight. Uniqueness follows from
the comparison principle.

Our second main result concerns the behaviour of the solution of (1.5)
near the boundary of Ω. Naturally, in order to give precise results we need to
put some restrictions on the weight p, the most important (and the simplest)
situation being when p is bounded away from zero in Ω. In order to parallel
previous results in [12] and [18], we are going to assume that p behaves like
a power of the distance function.

Theorem 1.2 Under the hypotheses of Theorem 1.1, assume there are con-
stants c1, c2 > 0 such that

c1d
α(x) ≤ p(x) ≤ c2d

α(x), for some α ≥ 0, (1.6)
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where d(x) = d(x, ∂Ω). Then for the solution u of equation (1.5) we have:

(i) If µ < 1 + α then u ∈ C1,β(Ω), for some β which depends only on
µ, α, λ, Λ, γ, δ,N and Ω.

(ii) If µ = 1 + α then u ∈ Cβ(Ω) for all β < 1, and there exist constants
a1, a2, D > 0 such that

a1d(x)(D − log d(x))1/(1+µ) ≤ u(x) ≤ a2d(x)(D − log d(x))1/(1+µ),

(iii) If µ > 1 + α then u ∈ C
α+2
1+µ (Ω) and for some constants a1, a2 > 0

a1d(x)(α+2)/(1+µ) ≤ u(x) ≤ a2d(x)(α+2)/(1+µ), x ∈ Ω.

The most interesting part of this theorem is statement (i), whose proof
uses an extension to (1.5) of the celebrated method of Krylov and Safonov
[23], that proved global C1,β-bounds for solutions of linear equations with
measurable coefficients, essentially opening up the theory of equations in
non-divergence form. More precisely, we are going to build up on a simplified
version of this method due to Caffarelli. To prove our regularity theorem
we need to get sharp bounds on the solution near the boundary, which are
obtained by appropriate comparison with radially symmetric solutions for
related extremal equations. See Section 3 for details.

We further mention that as a by-product of our results we provide solu-
tions for the following degenerate parabolic equation:

p(x)vt = vβF (D2v,Dv, v, x) in Ω× (0,∞), (1.7)

v(x, 0) = v0(x) and v(x, t) = 0 on ∂Ω× (0,∞). (1.8)

Indeed, if we take v = uη, where u is a solution of (1.1) and η is a solution of
ηt = −ηβ+1, with µ = β−1 and β > 0, then v satisfies the parabolic equation
(1.7). This special solution is suitable for sub- and/or super-solutions of the
initial value problem (1.7)-(1.8) for a large class of initial conditions v0.

2 Proof of Theorem 1.1

2.1 Preliminaries and a weighted eigenvalue problem

We begin this section by restating the structural hypotheses we made on F
in the introduction. We assume F : SN × RN × R × Ω → R satisfies, with
S = (M, p, u), T = (N, q, v) ∈ SN × RN × R, the following hypotheses:
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(H0) F is positively 1-homogeneous : F (tS, x) = tF (S, x) for t ≥ 0.

(H1) There exist 0 < λ ≤ Λ, γ ≥ 0 such that for all S, T

M−(M −N)− γ(|p− q|+ |u− v|) ≤ F (S, x)− F (T, x)

≤M+(M −N) + γ(|p− q|+ |u− v|).

(H2) −F (T − S, x) ≤ F (S, x)− F (T, x) ≤ F (S − T, x) for all S, T .

(H3) The function F (M, 0, 0, x) is continuous in SN × Ω.

Here M−, M+ denote the Pucci extremal operators, defined as follows :
M+(M) = supA∈Sλ,Λ

N
tr(AM), M−(M) = infA∈Sλ,Λ

N
tr(AM), where Sλ,Λ

N de-

notes the set of symmetric matrices whose eigenvalues lie in the interval
[λ, Λ]. We have the following alternative way of defining M− and M+

M−(M) = λ
∑
µj>0

µj+Λ
∑
µj<0

µj and M+(M) = λ
∑
µj<0

µj+Λ
∑
µj>0

µj, (2.1)

where µ1, . . . , µn are the eigenvalues of M , see for instance [4].
Hypotheses (H0)-(H1) define an uniformly elliptic Isaacs operator with

bounded measurable coefficients. Such an operator is convex, that is, is in the
form (1.4) if and only if it satisfies (H2). As we already noticed, in all what
follows (H2) could be replaced by an hypothesis on the regularity of F with
respect to x and monotonicity of F with respect to u, for instance F is Cα in
x with α > 1/2 and cα ≤ 0 in (1.4). See the remarks at the end of Section 1 of
[9] and the papers quoted there. These hypotheses guarantee the comparison
principle (C) holds, with W 2,N replaced by C1,α in its statement. Hypothesis
(H3) is used to ensure the well-posedness of the Dirichlet problem. As it
is well-known, even a linear equation aij∂iju = 0 can have more than one
viscosity solution if its coefficients are discontinuous, see [27].

Next we recall several known results which we use in the sequel. First we
give the comparison and existence results from [5], [9] and [29].

Theorem 2.1 Suppose F satisfies (H0), (H1), (H2) and (H3). Then the
operator F̃ [u] = F [u]− γu satisfies (C) and for any f ∈ LN(Ω), there exists
a unique viscosity solution u ∈ W 2,N(Ω) ∩ C(Ω) of

F (D2u,Du, u, x)− γu = f in Ω, u = 0 on ∂Ω.

We also recall the following strong maximum principle (Hopf’s lemma),
which is a consequence from the results in [2] (a simple proof can be found
in the appendix of [1]).
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Theorem 2.2 Suppose w ∈ C(Ω) is a viscosity solution of

M−(D2w)− γ|Dw| − γw ≤ 0 in Ω,

and w ≥ 0 in Ω. Then either w ≡ 0 in Ω or w > 0 in Ω and at any point

x0 ∈ ∂Ω at which w(x0) = 0 we have lim inf
t↘0

w(x0 + tν)− w(x0)

t
> 0, where

ν is the interior normal to ∂Ω at x0.

The next theorem is a simple consequence of the compactness result of [9]
(Proposition 4.2 in that paper) and the convergence properties of viscosity
solutions (see Theorem 3.8 in [5]).

Theorem 2.3 Let fn → f in LN(Ω). Suppose F satisfies (H1) and un is
a solution of F (D2un, Dun, un, x) = fn in Ω, un = 0 on ∂Ω, such that un

is bounded in L∞(Ω). Then a subsequence of {un} converges uniformly to a
function u, which solves F (D2u,Du, u, x) = f in Ω, u = 0 on ∂Ω.

Now we give a proof of the existence of first half-eigenvalues for fully
nonlinear elliptic operators with a non-negative weight. More precisely, we
consider the eigenvalue problem

F (D2u,Du, u, x) = −λp(x)u in Ω, u = 0 on ∂Ω (2.2)

and we prove the following

Theorem 2.4 Assume F satisfies (H0)− (H3). Let p ∈ LN(Ω) be such that
p(x) ≥ 0 in Ω and p(x) > 0 on a subset of Ω with positive measure. Then
there exists a couple (λ+, ϕ+) ∈ R×W 2,N(Ω) of solutions to (2.2), such that
ϕ+ > 0 in Ω.

Proof of Theorem 2.4. We are going to use the Leray-Schauder alternative
given in Corollary 1 of of Theorem VIII.1 in [30]. For that purpose we
consider the solution L(g) of the equation

F (D2u,Du, u, x)− γu = −p(x)g in Ω, u = 0 on ∂Ω, (2.3)

which is well defined for every g ∈ C(Ω), thanks to Theorem 2.1. Then we
define the cone K = {u ∈ C(Ω) | u ≥ 0 in Ω, u = 0 on ∂Ω} and we observe
that L(g) ∈ K for all g ∈ K. Next, from the hypothesis on the weight p, we
can choose u0 ∈ K\{0} such that p(x)u0(x) > 0 on a set of non-zero measure.
Then, using Theorem 2.2 we can find M > 0 such that ML(u0) ≥ u0.

Now we are in a position to define the map Tε : IR+ × K → K as
Tε(µ, u) = µL(u) + µεL(u0), for ε > 0. We notice that by Theorem 2.1 and
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well known compact imbedding theorems, Tε is a well defined compact op-
erator. Moreover Tε(0, u) = 0. Thus, by quoted Leray-Schauder alternative
there exists an unbounded connected component Cε ⊂ R+ ×K of solutions
to Tε(µ, u) = u, containing (0, 0). We claim that Cε ⊂ [0, M ]×K. To verify
this, we have that for all (µ, u) ∈ Cε

u = µL(u) + µεL(u0)

and then u ≥ µL(u) and u ≥ µεL(u0) ≥ µ
M

εu0. If we apply L again, by
Theorem 2.1 we get

u

µ
≥ L(u) ≥ µ

M
εL(u0) ≥ µ

M2
εu0

so that u ≥ ( µ
M

)2εu0. Repeating this step we get

u ≥ (
µ

M
)nεu0 for all n ≥ 2,

and we conclude that µ ≤ M . This and the fact that Cε is unbounded imply
that for each ε > 0 there exists (µε, uε) ∈ Cε such that ‖uε‖∞ = 1. Now
Theorem 2.3 allows us to pass to the limit as ε → 0, to find µ+ ∈ [0,M ] and
ϕ+ ≥ 0, ϕ+ 6= 0 such that ϕ+ = µ+L(ϕ+). From here we also deduce that
µ+ > 0 and by the Theorem 2.2 that ϕ+ > 0. Finally we define λ+

1 = −γ+µ+.
¤
Remark. In Theorem 2.4 we have only stated the existence of an eigenvalue
associated to a positive eigenfunction, which is the only result we need here.
However it can also be proved that this eigenfunction is simple and that
there is a negative eigenfunction associated to a second eigenvalue λ− ≥ λ+.
Actually, nearly all results from [29] can be extended to (2.2).

In all that follows we denote the above eigenvalues with λ+(F, p) to em-
phasize the weight p.

2.2 Proof of the existence theorem

In this subsection we are going to prove our existence and uniqueness The-
orem 1.1. Recall that we assume λ+(F, 1) > 0, that is, (C) holds. We start
with a comparison theorem for super and sub-solutions of our equation and
regularized version of it.

Theorem 2.5 (Comparison) Let δ ≥ 0 and u, v ∈ W 2,N
loc (Ω) be respectively

a sub- and a super-solution of

H(w) := F (D2w, Dw, w, x) + p(x)(w + δ)−µ = 0 in Ω, (2.4)

with u ≤ v on ∂Ω. Then u ≤ v in Ω.
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Proof. Suppose by contradiction that Z = {x ∈ Ω |u > v} is not empty.
Let Z∗ be a connected component of Z and z = v− u. Then, since z = 0 on
∂Z∗ and p, µ ≥ 0 in Ω, by (C) we get z ≥ 0 in Z∗, a contradiction. ¤

Next we prove the existence and uniqueness of a solution for a regularized
version of our problem. We consider the eigenvalue λ+

p := λ+(F, p) and the
associated positive eigenfunction ϕ+.

Proposition 2.1 For every δ > 0 there exists a unique solution to (2.4),
with uδ = 0 on ∂Ω. Moreover, there are positive constants a, b and 0 < η < 1,
independent of δ, such that

aϕ+ ≤ u ≤ b(ϕ+)η in Ω. (2.5)

Proof. Let φ+ be the eigenfunction corresponding to λ+
1 := λ+(F, 1) > 0.

We first observe that

H(aϕ+) = −p(x)(aλ+
p ϕ+ − (aϕ+ + δ)−µ) ≥ 0,

for sufficiently small a > 0, independently of δ > 0. Thus v1 = aϕ+ is a
sub-solution to (2.4).

Now we take v2 = (φ+)η + bφ+, where b > 0 is chosen later and 0 < η < 1
is a fixed constant such that η < 2/(µ+1). Computing Dv2, D2v2, and using
hypotheses (H0) and (H1) we see that v2 satisfies

H(v2) ≤ F [(φ+)η] + bF [φ+] + p(x)(v2 + δ)−µ

≤ η(φ+)η−1F (D2φ+, Dφ+, φ+, x) + (1− η)γ(φ+)η

+(η − 1)η(φ+)η−2M−
λ,Λ(Dφ+ ⊗Dφ+)

+bF (D2φ+, Dφ+, φ+, x) + p(x)(v2 + δ)−µ (2.6)

≤ (φ+)η{−λ+
1 η + (1− η)γ} − bλ+

1 φ+

+(η − 1)η(φ+)η−2M−
λ,Λ(Dφ+ ⊗Dφ+) + p(x)(φ+)−ηµ.

Notice that the matrix Dφ+ ⊗Dφ+ has |Dφ+|2 as the only nontrivial eigen-
value. By using Theorem 2.2 we see that there exists a neighborhood V of
∂Ω such that |Dφ+| ≥ c0 > 0 in V , that is, for some k > 0

η(φ+)η−2M−
λ,Λ(Dφ+ ⊗Dφ+) ≥ k(φ+)η−2, (2.7)

in V . Now, recalling that η − 1 < 0 and 2 − η > µη, by the fact that φ+

vanishes on ∂Ω and the inequalities (2.6) and (2.7), we find that for large b
the inequality H(v2) ≤ 0 holds in V . On the other hand, in Ω \ V we find
that H(v2) ≤ 0, again by choosing b large enough.
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Using v1 and v2 as a sub- and a super-solution for (2.4), we may now use
the standard method of monotone iterations, to find a solution uδ for (2.4),
which vanishes on ∂Ω. By the regularity result of [35], uδ is in W 2,N

loc (Ω).
Moreover, by enlarging b we find that uδ ≤ b(ϕ+)η in Ω, so that (2.5) also
holds. ¤
Remark. In the proof of this proposition we need that λ+(F, 1) > 0 and
that the weighted eigenvalue problem has a solution, but we do not use the
sign of λ+(F, p).

We end this section with a proof of Theorem 1.1, the existence and unique-
ness result for the singular equation.
Proof of Theorem 1.1. Take a sequence δn = 1/n and use Proposition 2.1
to find a monotone sequence of solutions un = uδn to equation (2.4) satisfying
(2.5) in Ω. Then, by Theorem 2.3 and a standard diagonal procedure, we
find a solution u to (1.1). Uniqueness follows from Theorem 2.5. ¤

3 Estimates on the solution near the bound-

ary of the domain

The first goal of this section is to obtain a sharp bound for the solutions to
(1.1) near the boundary of Ω, under some extra assumptions on p. Precisely,
we prove the following theorem:

Theorem 3.1 Assume there are constants c1, c2 > 0 such that

c1d
α(x) ≤ p(x) ≤ c2d

α(x), α ≥ 0, (3.1)

where d(x) = d(x, ∂Ω). Let u be the solution to (1.1). Then

(i) If µ < 1 + α then there exist constants a1, a2 > 0 such that

a1d(x) ≤ u(x) ≤ a2d(x), x ∈ Ω.

(ii) If µ = 1 + α then there exist constants a1, a2, D > 0 such that

a1d(x)(D − log d(x))1/(1+µ) ≤ u(x) ≤ a2d(x)(D − log d(x))1/(1+µ).

(iii) If µ > 1 + α then there exist constants a1, a2 > 0 such that

a1d(x)(α+2)/(1+µ) ≤ u(x) ≤ a2d(x)(α+2)/(1+µ), x ∈ Ω.
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In what follows we consider the following two operators

F±(u) = M±
λ,Λ(D2u)± γ|Du| ± γu, (3.2)

which are the extremal operators appearing in hypothesis (H1).
Let us denote by Br the ball with radius r centered at the origin, and set

Aρ,R = {x | ρ < r < R}, for 0 < ρ < R (we denote r = |x|). In our first
lemma we construct an appropriate comparison function, to be used as super-
solution for (1.1) near the boundary of Ω. Note that this construction can
only be done in a small neighbourhood of the boundary, since F+ contains
a positive zero order term, and is therefore not coercive (that is, its first
eigenvalue is not positive) in large domains.

Lemma 3.1 Assume α ≥ 0, µ > 0. There exists R0 > 0 such that for every
0 < ρ < R ≤ R0, C > 0 and M > 0, the problem

F+(v) + C(r − ρ)αv−µ = 0 in Aρ,R, (3.3)

v = 0 on ∂Bρ, v = M on ∂BR, (3.4)

has a unique positive solution.

Proof. Since F+ satisfies (H0)-(H3), by Theorem 2.4 there exist ϕ+ > 0 and
λ+ ∈ R, such that

F+(ϕ+) + λ+(r − ρ)αϕ+ = 0 in Aρ,R, ϕ+ = 0 on ∂Aρ,R.

We also have an eigenpair (λ+
1 , φ+) which solves

F+(φ+) + λ+
1 φ+ = 0 in Aρ,R, φ+ = 0 on ∂Aρ,R,

so, in particular

M+
λ,Λ(D2φ+) + γ|Dφ+| ≥ (−λ+

1 − γ)φ+ in Aρ,R, φ+ = 0 on ∂Aρ,R.

Applying the ABP inequality (see [5]) to φ+ we obtain

sup
Ω

φ+ ≤ Cdiam(Aρ,R)(λ+
1 + γ) sup

Ω
φ+,

so

λ+
1 ≥

C

R− ρ
− γ.

Hence if we choose R0 small enough we have λ+
1 > 0. Thus, proceeding as in

the proof of Proposition 2.1 and that of Theorem 1.1, we only need to find
appropriate sub and super solutions for

F+(v) + C(r − ρ)α(v + δ)−µ = 0, in Aρ,R, (3.5)

v = 0 on ∂Bρ, v = M on ∂BR, (3.6)
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which are independent of δ > 0. If we consider a small enough then v1 = aϕ+,
is a sub-solution for (3.3)-(3.4), as we proved in Pr2.1. We observe that
v1(ρ) = 0 and v1(R) = 0 < M .

Next we find a super-solution for (3.3)-(3.4). As in Proposition 2.1, we
consider a constant 0 < η < 1 such that η < 2/(µ + 1). Let us prove that
v2 = (φ+)η + bφ+ + v is a super-solution, with v := M(r − ρ)/(R − ρ). In
fact, if we define for a function w

H(w) = F+(w) + C(r − ρ)α(w + δ)−µ,

we easily check that

H(v2) ≤ F+((φ+)η) + bF+(φ+) + F+(v) + C(r − ρ)α(φ+)−ηµ

≤ γ2(1− η)(φ+)η − bλ+
1 φ+ + F+(v)

+η(η − 1)λ(φ+)η−2|(φ+)′|2 + C(r − ρ)α(φ+)−ηµ. (3.7)

Recalling that η − 2 < −ηµ < 0 and α ≥ 0, since we have |(φ+)′(R)| > 0,
|(φ+)′(ρ)| > 0, φ+(ρ) = F+(v̄)(ρ) = 0 and F+(v) ≤ C, for a certain constant
C, we see that the right hand side in (3.7) is negative near r = ρ and r = R.
Then we choose b large enough so that H(v2) ≤ 0 in the whole interval,
completing the proof that v2 is a super-solution. We notice that v2 satisfy
the boundary conditions (3.4).

Now we take λ0 large enough so that the function

G(s, r) = −C(r − ρ)α(s + v(r) + δ)−µ − λ0s

is decreasing in s for all r ∈ (ρ,R). Then by the usual iteration procedure
we can solve the hierarchy of equations

F (D2wi+1 + D2v, Dwi+1 + Dv,wi+1 + v, r)−λ0wi+1 = G(wi, r), r ∈ (ρ, R),

with Dirichlet boundary conditions wi+1(ρ) = wi+1(R) = 0. The sequence
vi = wi + v is decreasing and bounded, so convergent to a solution of (3.5)-
(3.6). By letting δ → 0 we then get a solution to our problem. ¤

Proof of Theorem 3.1.
Proof of statement (i). We first consider the case α − µ > −1. We start by
analyzing the behavior of the radial solution u of (3.3)-(3.4), found in Lemma
3.1. We will prove that there is a positive constant a2 such that

u(r) ≤ a2(r − ρ), for all r ∈ [ρ,R]. (3.8)

We will assume, without loss of generality, that R ≤ 1. It is convenient to
define the function θ(s) by θ(s) = Λ if s ≥ 0, and θ(s) = λ if s < 0. Then,
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since u is radially symmetric, the eigenvalues of D2u are u′′(r) and u′(r)/r,
so by the properties of M+ we have

M+(D2u)(r) = θ(u′′(r))u′′(r) + θ(u′(r))(N − 1)
u′(r)

r
.

Thus u satisfies the equation

θ(u′′(r))u′′ + θ(u′(r))(N − 1)
u′

r
+ γ|u′|+ γu + C(r − ρ)αu−µ = 0. (3.9)

In order to write this equation in a simpler form, we define

ν(r) =
θ(u′(r))(N − 1)

θ(u′′(r))r
,

ζ(r) = exp(

∫ r

1

ν(s)ds) and ζ̃(r) =
ζ(r)

θ(u′′(r))
.

Then (3.9) can be written as

(ζu′)′ + ζ̃{−γ|u′| − γu + C(r − ρ)αu−µ} = 0. (3.10)

If we set N+ = λ
Λ
(N − 1) + 1, and N− = Λ

λ
(N − 1) + 1, then we easily see

that for all ρ ≤ r ≤ R ≤ 1 we have

N+ − 1 ≤ ν(r)r ≤ N− − 1,

rN−−1 ≤ ζ(r) ≤ rN+−1 and
ζ(r)

Λ
≤ ζ̃(r) ≤ ζ(r)

λ
.

Let r0 = sup{r ∈ [ρ,R] |u′(s) > 0, s ≤ r}. By Hopf’s lemma r0 > ρ.
Integrating for r ∈ (ρ, r0), we find

u′(r) ≤ (ζ(r))−1

∫ r0

r

ζ̃(s)[Ca−µ
1 (s− ρ)α−µ + γu′(s) + γu(s)]ds

≤ C

{
1 +

1

ξ(r)

∫ r0

r

u′(s)ξ(s) ds +

∫ r0

r

(s− ρ)α−µ ds

}
< ∞,

since α − µ > −1, 0 < c(ρ) ≤ ξ(r), ξ̃(r) ≤ C, and u is bounded. Thus u′(r)
is bounded for r ∈ [ρ, r0], from which we deduce the existence of a constant
a2 such that u(r) ≤ a2(r− ρ) for all r ∈ [ρ,R], completing the proof of (3.8).

Now we prove Theorem 3.1 (i). Since Ω is smooth and bounded we can
find ρ > 0 such that for every point x0 ∈ Ω such that d(x0) < ρ, there exist
points y0 = y(x0) ∈ ∂Ω and z0 = z(x0) 6∈ Ω along the normal direction at y0,
with |y0− z0| = ρ. Set R = 2ρ and decrease ρ, if necessary, to have 2ρ < R0,
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where R0 was given in Lemma 3.1. Note that B(z0, ρ) is an exterior tangent
ball to ∂Ω.

Using the hypothesis (3.1) we see that for all x ∈ Ω ∩B(z0, R)

p(x) ≤ c2d
α(x) ≤ c2(|x− z0| − ρ)α.

Now we consider the solution u of the singular equation (1.1), given by
Theorem 1.1, together with the solution v of (3.3)-(3.4) with C ≥ c2 and
M = supx∈Ω u(x). By using Theorem 2.5 we conclude that u(x) ≤ v(x) for
all x ∈ B(z0, R) \B(z0, ρ). Finally, using (3.8) we get that

u(x0) ≤ v(x0) = v(|x0 − z0|) ≤ a2(|x0 − z0| − ρ) = a2d(x0). (3.11)

Since x0 is arbitrary among the points x ∈ {x ∈ Ω | d(x) < ρ} we obtain the
desired upper estimate. The lower estimate is given in the proof of Theorem
1.1, thus case (i) is complete.

Remark. Note that only the inequality p(x) ≤ dα(x) was needed for this
proof.

Proof of statement (ii). This case can be treated by giving explicit super and
sub-solutions as in [18]. Let us construct a super-solution, in order to obtain
the upper estimate. As above, we consider ρ and R = (1 + σ)ρ, with ρ small
enough and σ > 0 to be fixed later. We further assume R = (1 + σ)ρ < 1.
We define

u2(r) = C̄(r − ρ)(D − log(r − ρ))1/(1+µ), (3.12)

where D > 1 + log(2diam(Ω)) and C̄ are chosen later. Setting

h(r) = (D − log(r − ρ))−µ/(1+µ),

a simple computation shows that

u′2(r) = C̄h(r)(D − log(r − ρ)− 1/(1 + µ)) (3.13)

u′′2(r) =
−C̄

(1 + µ)(r − ρ)
h(r){1 +

µ

1 + µ
(D − log(r − ρ))−1)}, (3.14)

c2(r − ρ)α

uµ
2

=
c2h(r)

C̄µ(r − ρ)
, (3.15)

where we used the assumption µ = α + 1. Next we observe that u′2(r) > 0,
u′′2(r) < 0, and we claim that σ can be chosen to have

M+
λ,Λ(D2u2) = λu′′2 + Λ(N − 1)

u′2
r

≤ − C̄λ h(r)

2(1 + µ)
(r − ρ)−1 (3.16)
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for all r ∈ (ρ,R). In fact, we compute

M+
λ,Λ(D2u2) = C̄(r − ρ)−1h(r)Aλ,Λ(r),

where Aλ,Λ(r) denotes the following expression

Λ(N − 1)(r − ρ)

r
(D− 1

1 + µ
−log(r−ρ))− λ

1 + µ
(1+

µ

1 + µ
(D−log(r−ρ))−1).

Then we see that for every r ∈ (ρ,R)

Aλ,Λ(r) ≤ − λ

1 + µ
+ Λ(N − 1)σ(D − 1

1 + µ
− log σ),

from which we infer that σ can be chosen small enough to verify the claim.
Then, from (3.2), (3.16) and the explicit formulae (3.12)-(3.15) we easily see
that by choosing C̄ large and σ small we obtain

F+(u2) +
c2(r − ρ)α

uµ
2

≤ −C̄h(r)

r − ρ

(
1 + k1(r − ρ) log(r − ρ)− k2

C̄µ+1

)
≤ 0.

We may choose C̄ even larger so that u2(R) ≥ M , where M = supx∈Ω u(x).
As before we use Theorem 2.5 and obtain

u(x0) ≤ u2(x0) = cd(x0)(D − log(d(x0)))
1/(1+µ) (3.17)

for all x0 ∈ {x ∈ Ω | d(x) < ρ}. By enlarging D, if necessary, we see that this
inequality holds for all x0 ∈ Ω, as desired.

To obtain the lower bound the argument is symmetric. We consider ρ
small enough and

u1(r) = c̄(ρ− r)(D − log(ρ− r))1/(1+µ), (3.18)

where D and c̄ are chosen later. From the definition of F− given in (3.2) and
the formulae (3.13)-(3.15) we easily see that by choosing c̄ small enough we
obtain for r ∈ (ρ/2, ρ)

F−(u1) +
c1(ρ− r)α

uµ
1

≥ c̄h(r)

r − ρ

(
−AΛ,λ(r)− k1(r − ρ) log(r − ρ) +

k2

c̄µ+1

)
,

which is positive for small c̄ > 0, since AΛ,λ(r) ≤ const. We decrease c̄, if
necessary, so that u1(ρ/2) ≤ m, where

m = min{u(x) | d(x) ≥ ρ/2}.
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Now, given x0 ∈ Ω such that d(x0) < ρ/2, there are points y0 = y(x0) ∈ ∂Ω
and z0 = z(x0) ∈ Ω such that |y0 − z0| = ρ and d(x0) = ρ − |x0 − z0|. Now
B(z0, ρ) is an interior tangent ball to ∂Ω. Then we again use Theorem 2.5
in the annulus B(z0, ρ) \B(z0, ρ/2), to obtain in particular that

u(x0) ≥ u1(x0) = cd(x0)(D − log(d(x0)))
1/(1+µ). (3.19)

This inequality holds for all x0 ∈ {x ∈ Ω / d(x) < ρ/2}. By decreasing c even
more, if necessary, we see that this inequality holds for all x0 ∈ Ω, as desired.
Proof of statement (iii). Finally we study the case α + 1 < µ. We take again
ρ small and R = (1 + σ)ρ, with σ to be chosen later. We consider

u2(r) = C̄(r − ρ)(2+α)/(1+µ), u′2(r) =
C̄(2 + α)

1 + µ
(r − ρ)h(r),

u′′2(r) =
C̄(2 + α)(1 + α− µ)

(1 + µ)2
h(r) and

c2(ρ− r)α

uµ
2

=
c2h(r)

C̄µ
, with h(r) = (r − ρ)(2+α)/(1+µ)−2.

Then we claim that, if we choose σ small enough, we have

M+
λ,Λ(D2u2) ≤ C̄λ

(2 + α)(1 + α− µ)

2(1 + µ)2
h(r) (3.20)

for all r ∈ (ρ,R). We compute and we find

M+
λ,Λ(D2u2) =

(2 + α)h(r)

1 + µ

(
λ(1 + α− µ)

1 + µ
+

Λ(N − 1)(r − ρ)

r

)
.

Since (r− ρ)/r ≤ σ, for all r ∈ (r, R), by choosing σ small enough, the claim
follows. Now, taking into account the formulae obtained above we easily see
that, by choosing c large enough we we obtain

F+(u2) +
c2(r − ρ)α

uµ
2

≤ 0.

Then we continue with the comparison exactly as in case (ii).
In order to obtain the lower bound, we proceed as in case (ii), but taking

as sub-solution u1(r) = c̄(r − ρ)(2+α)/(1+µ). This completes the proof of
Theorem 3.1. ¤
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4 Global regularity of the solution in Ω

In this section we prove Theorem 1.2, that is, we obtain regularity results in
the whole domain Ω. We notice that interior regularity of the solutions can
be obtained by the general theory as in [35]. However, due to the singularity
of the equation at u = 0, that is, on the boundary of the domain, global
regularity requires additional arguments which we provide in this section.
We recall that we have already obtained bounds on the solutions in Theorem
3.1.

Our first theorem deals with the case of a strong singularity which occurs
when α− µ + 1 ≤ 0.

Theorem 4.1 (i) Assume α + 1 < µ and (3.1) holds. Then the solution u

of (1.1) is in C
α+2
1+µ (Ω).

(ii) Assume α + 1 = µ and (3.1) holds. Then the solution u of (1.1) is in
Cβ(Ω), for all β < 1.

Proof. The first step is to straighten the boundary, which is assumed at
least C2-smooth. This can be done easily by using the computation in the
proof of Lemma 6.5 in [16] and the representation of F as a supremum
(or a sup-inf) of linear operators. With the change of variables each linear
operator is modified, but the resulting supremum satisfies (H0)-(H3), possibly
with modified constants. More precisely, if x0 is fixed point on ∂Ω there
exists a neighbourhood Ax0 and a C2-diffeomorphism y = Ψ0(x) such that
Ψ0(Ax0 ∩ ∂Ω) is a hyperplane portion of the boundary of Ψ0(Ax0 ∩ Ω), say
a portion of {yN = 0}. From now on we assume u is a viscosity solution in
C0(B̄+) of

F (D2u,Du, u, x) = g(x) in B+, u = 0 on T, (4.1)

where B+ := BR0 ∩ RN
+ and T = BR0 ∩ ∂RN

+ , for some ball BR0 of small
radius R0.

We first consider the case α − µ + 1 < 0. By (H1) and Theorem 3.1 we
know that the solution of (1.5) satisfies (4.1), with a function g such that for
some a > 0

|g(x′, xN)| ≤ ax
(α−2µ)/(µ+1)
N in B+. (4.2)

Let 0 < R2 < R1 < R0 and T2 = BR2 ∩ ∂RN
+ . There is ρ0 > 0 so that

(x′, 6ρ0) ∈ B+
R1

for all (x′, 0) ∈ T2. Then fix (x̄′, 0) ∈ T2, define xρ = (x̄′, 3ρ),
for 0 < ρ < ρ0 and the scaled function

w(y) =
u(ρy + xρ)

ρτ1
, y ∈ B3,
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where τ1 := (2 + α)/(1 + µ). By Theorem 3.1 w is bounded independently
of ρ in B3, and satisfies

Fρ[w] := F (D2w, ρDw, ρ2w, ρy + xρ) = gρ(y) in B3, (4.3)

where gρ(y) = g(ρy + xρ)ρ
2−τ1 . By (4.2) and our choice of τ1 we see that

|gρ(y)| ≤ c for all y ∈ B2, with c independent of ρ. Observe that Fρ satisfies
(H0)-(H3), since ρ ≤ 1. Then we use the interior elliptic estimates for this
problem, as in [35], to deduce that w ∈ C1(B̄2). Thus there exists a constant
C independent of ρ, such that

|w(y1)− w(y2)| ≤ C|y1 − y2|, for all y1, y2 ∈ B2.

From this we infer that

|u(x1)− u(x2)| ≤ C|x1 − x2|τ1 , for all y1, y2 ∈ B(xρ, ρ), (4.4)

where the estimate is uniform in ρ ∈ (0, ρ0) and x̄′ ∈ T2.
Next we claim that for a given x̄′ the one-dimensional function z(s) =

u(x̄′, s) satisfies

|z(s1)− z(s2)| ≤ C|s1 − s2|τ1 , for all s1, s2 ∈ [0, 4ρ0), (4.5)

where the constant C can be chosen independently of x̄′ ∈ T2. To prove the
claim we define the sequence ρi = (1/2)iρ0 for i ∈ N. We assume first that
s1 > s2 > 0 and later consider the case s2 = 0. Let i ≤ j be indices such
that s1 ∈ [2ρi+1, 2ρi] and s2 ∈ [2ρj+1, 2ρj]. If i = j then (x̄′, s1), (x̄

′, s2) ∈
B(xρi+1

, ρi+1) and (4.5) holds, by (4.4). If j = i + 1 then

|z(s1)− z(s2)|
|s1 − s2|γ ≤ |z(s1)− z(2ρi+1)|

|s1 − s2|γ +
|z(2ρj)− z(s2)|
|s1 − s2|γ ≤ 2C,

since s1 − s2 ≥ s1 − 2ρi+1 and s1 − s2 ≥ 2ρj − s2. If i < j + 1 then we have

|z(s1)− z(s2)|
|s1 − s2|γ ≤ |z(s1)− z(2ρi+1)|

|s1 − s2|γ +

k=j−1∑

k=i+1

{|z(2ρk)− z(2ρk+1)|
|s1 − s2|γ }

+
|z(2ρj)− z(s2)|
|s1 − s2|γ

≤ 2C + C

k=j−1∑

k=i+1

(
1

2

)γ(k−i−1)

≤ kC,
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where k > 0 independent of i, j since the series converges, proving the claim in
case s2 > 0. Here we used that s1−s2 ≥ (1/2)i+1ρ0 = (1/2)i+1−k(2ρk−2ρk+1)
In the case s2 = 0, we use the continuity of u to obtain that

z(s1)− z(0) = z(s1)− z(2ρi+1) +
k=∞∑

k=i+1

{z(2ρk)− z(2ρk+1)},

from where we proceed as before, completing the proof of the claim.
Then we prove Hölder continuity of u in all B̄+

R2
as follows. Given x =

(x′, xN), y = (y′, yN) ∈ B̄+
R2

we consider two cases:
i) If we have |x− y| < xN/3 (or |x− y| < yN/3) we just apply (4.4) in a

ball containing both x and y.
ii) Otherwise we have

|u(x)− u(x′, 0)|
|x− y|γ ≤ 3γ |u(x)− u(x′, 0)|

xγ
N

≤ 3γC,

|u(y)− u(y′, 0)|
|x− y|γ ≤ 3γ |u(y)− u(y′, 0)|

xγ
N

≤ 3γC,

by using (4.5). Since u(x′, 0) = u(y′, 0) = 0, the Hölder continuity follows.
In case α − µ = −1, we just take any τ1 < 1 and the same argument

applies. ¤
Next, we are going to show that in the case α−µ+1 > 0 we can improve

the global regularity of the solution, obtaining a Hölder estimate for the
gradient in Ω. Here naturally the interesting case occurs when α − µ < 0,
since otherwise there is no singularity on the boundary, and the proof is much
easier.

Theorem 4.2 Assume that (3.1) holds, with α − µ ∈ (−1, 0). Then there
exists β ∈ (0, 1) such that the solution u of (1.1) is of class C1,β(Ω).

In order to prove Theorem 4.2 we start with a preliminary result, which is
an extension of Theorem 9.31 in [16] to viscosity solutions of fully nonlinear
equations with singular right-hand sides.

Proposition 4.1 Assume F satisfies (H1) and u ∈ C0(B̄+) is a solution to

F (D2u,Du, u, x) = g(x) in B+, u = 0 on T, (4.6)

where B+ := BR0 ∩RN
+ and T = BR0 ∩ ∂RN

+ , for some R0 ≤ 1. Suppose that
u/xN is bounded in B+, and for some a > 0

|g(x′, xN)| ≤ axα−µ
N in B+. (4.7)
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Then there are R1 ∈ (0, R0) and τ, C > 0 such that for all 0 < R ≤ R1

oscB+
R

u

xN

≤ CRτ .

Proof. Suppose first that u ≥ 0 and u ∈ W 2,N(B+). As in [16] we start by
proving that there exists δ > 0 such that

inf
|x′|<R
xN =δR

v ≤ 2 inf
BR/2,δ

v (4.8)

for any R ≤ R0, where

v(x) =
u(x)

xN

and BR,δ = {x | |x′| < R, 0 < xN < δR}.

We may assume that the left hand side in (4.8) is positive, since otherwise
the inequality is trivial, and we normalize so that R = 1 and inf |x′|<R

xN =δR

v = 1.

Now we consider in B1,δ the following barrier function

w(x) = (1− |x′|2 +
x1−ν

N − δ1−ν

δ(1−ν)/2
)xN ,

where ν is some fixed number in the interval (µ− α, 1). Then we compute

Dw = (−2x1xN , . . . ,−2xN−1xN , 1− |x′|2 + δ(ν−1)/2((2− ν)x1−ν
N − δ1−ν)),

D2w(x) =




−2xN 0 ... 0 − 2x1

0 −2xN ... 0 − 2x2

...
. . .

...

0 ... 0 −2xN − 2xN−1

−2x1 ... −2xN−1 bx−ν
N




,

with b = (2− ν)(1− ν)/(δ(1−ν)/2). Note that b is large when δ is small.
It is convenient to write D2w(x) = A + B, where

A := diag(−2xN , ...,−2xN , b(2− ν)(1− ν)x−ν
N )

and the matrix B has only two nontrivial eigenvalues, which are ±2|x′|. To
see this last point, take χ = (x̃, 0) with x̃ ⊥ x′, x̄± = (x′,±|x′|), and check
that

B(χ) = 0 and Bx̄± = ±2|x′|x̄±.
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It is simple to check that xN ∈ (0, δ) implies |w|, |Dw| ≤ C in B1,δ. Then we
estimate

M−
λ,Λ(D2w)− γ|Dw| ≥ M−

λ,Λ(A) +M−
λ,Λ(B)− γ|Dw|

≥ −ΛxN(N − 1) + 2(λ− Λ)|x′|+ λbx−ν
N − C

≥ 2c0x
−ν
N − C ≥ c0x

−ν
N ,

provided δ is sufficiently small. On the other hand

M−
λ,Λ(D2u)− γ|Du| ≤ F [u] + γ|u| ≤ axα−µ

N + C ≤ c0x
−ν
N ,

since α−µ > −ν, again for sufficiently small δ. Finally, we observe that w ≤ 0
on the lateral and the lower boundaries of B1,δ, while w/xN ≤ 1 ≤ u/xN on
the upper boundary of B1,δ. Hence w ≤ u on ∂B1,δ, and we can apply
the usual comparison principle, by condition (C), to obtain u ≥ w in B1,δ.
Therefore

v ≥ (1− |x′|2 +
x1−ν

N − δ1−ν

δ(1−ν)/2
) ≥ 3

4
− δ1−ν/2 ≥ 1

2
in B 1

2
,δ,

where the last inequality holds by making δ smaller, if necessary. By remov-
ing the normalization we get (4.8).

Define now the set

B∗
R/2,δ := {x | |x′| < R, δR/2 < xN < 3δR/2}.

Then by the Harnack inequality, applied in B∗
R/2,δ, we obtain

sup
B∗

R/2,δ

u ≤ C( inf
B∗

R/2,δ

u + R‖ax−ν
N ‖LN (B∗

R/2,δ
)). (4.9)

But ‖ax−ν
N ‖LN (B∗

R/2,δ
) ≤ C1R

1−ν and

2

3δ

u

R
≤ v ≤ 2

δ

u

R
in B∗

R/2,δ,

so, using (4.8) and dividing (4.9) by R, we obtain

sup
B∗

R/2,δ

v ≤ C( inf
B∗

R/2,δ

v + C1R
1−ν) ≤ C( inf

|x|<R
xn=δR

v + C1R
1−ν)

≤ C( inf
BR/2,δ

v + C1R
1−ν).

Now we set M = supB2R,δ
v and m = infB2R,δ

v. We define the positive
functions v1 = M − v , v2 = v − m and the associated u1 = MxN − u,
u2 = u−mxN . Applying the above argument to v1 and v2 we get

sup
B∗

R/2,δ

(M − v) ≤ C(M −m1 + C1R
1−ν)
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and
sup

B∗
R/2,δ

(v −m) ≤ C(M1 −m + C1R
1−ν),

where M1 = supBR/2,δ
v1 and m1 = supBR/2,δ

v1. Here we should notice that
u1 and u2 satisfy elliptic equations with modified right-hand sides, which
however satisfy (4.7) with a replaced by a+1, provided we restrict to a suffi-
ciently small neighbourhood of the boundary. Also, u1 satisfies an equation
with the operator F replaced by G[u] := −F [−u], which also satisfies (H1).

Adding the last two inequalities we obtain

M −m ≤ C(M −m1 + M1 −m + C1R
1−ν),

which implies
oscBR/2,δ

v ≤ σ(oscB2R,δ
v + CR1−ν),

with 0 < σ = (C − 1)/C < 1. From this and Lemma 8.23 in [16] we obtain
τ and C with the desired property. ¤

Proposition 4.2 Under the hypothesis of Proposition 4.1, there are numbers
R1 ∈ (0, R0) and β ∈ (0, 1) such that u ∈ C1,β(B̄+

R1
).

Proof. It is a direct consequence of Proposition 4.1 that the function u is
differentiable on T1 = BR1 ∩ ∂RN

+ and that Du(·, 0) ∈ Cτ (T1). We observe
that we also have

lim
(x′,xN )→(x̄′,0)

∂u(x′, 0)

∂xN

− u(x′, xN)

xN

= 0, (4.10)

uniformly in (x̄′, 0) ∈ T2 = BR2 ∩ ∂RN
+ , for any fixed R2 ∈ (0, R1).

Now, let us consider ρ0 > 0 so that (x′, 6ρ0) ∈ B+
R1

for all (x′, 0) ∈ T2

and define τ1 = min{1 − ν, τ}. Then for any fixed (x̄′, 0) ∈ T2 we define
xρ = (x̄′, 3ρ), for 0 < ρ < ρ0, and the scaled function

w(y) =
1

ρ1+τ1
{u(ρy + xρ)− d0ρ(yN + 3)}, y ∈ B3,

where d0 = d0(x̄
′) := ∂u(x̄′,0)

∂xN
is uniformly bounded. By Proposition 4.1

u(x)− xNd0(x̄
′) ≤ Cx1+τ

N ,

so w is a bounded function in B3 satisfying

F (D2w, ρDw + ρ1−τ1d, ρ2w + ρ2−τ1dyN , ρy + xρ) = gρ(y),
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where gρ(y) = g(ρy + xρ)ρ
1−τ1 . By our choice of τ1 we see that |gρ(y)| ≤ c

for all y ∈ B2, with c independent of ρ. Then the interior elliptic estimates
for this problem give a constant β ∈ (0, 1) such that w ∈ C1,β(B1), that is,
for some constant C we have

|Dw(y1)−Dw(y2)| ≤ C|y1 − y2|β, for all y1, y2 ∈ B1.

Here, as in Theorem 4.1, β and C are independent of ρ and x′ ∈ T2. We
decrease β, if necessary, so that β ≤ τ1 and we see that, by the definition of
w,

|Du(x1)−Du(x2)| ≤ C|x1 − x2|γ, for all x1, x2 ∈ B(xρ, ρ), (4.11)

where the estimate is uniform in ρ ∈ (0, ρ0) and x̄′ ∈ T2. Hence we can prove,
following the same steps as in the proof of Theorem 4.1, that for any given
x̄′ the one dimensional function z(s) = Du(x̄′, s) satisfies

|z(s1)− z(s2)| ≤ C|s1 − s2|γ, for all s1, s2 ∈ (0, 4ρ0), (4.12)

where the constant C can be chosen independent of x̄′ ∈ T2.
To extend this to s1 = 0 we need to prove that the gradient of u is

continuous in B̄+
R2

. Observe that

|Du(x′, xN)− u(x′, xN)

xN

| = |Du(x′, xN)−D(x′, ξ)|
≤ C|xN − ξ|γ ≤ C|xN |γ, (4.13)

where we used the mean value theorem to find ξ ∈ (0, xN) and then (4.12),
recalling that this inequality holds uniformly in x′ ∈ T2. Hence if (x̄′, 0) ∈ T2,
then by

Du(x′, xN)−D(x̄′, 0) = Du(x′, xN)− u(x′, xN)

xN

+
u(x′, xN)

xN

−D(x̄′, 0),

we get the continuity, thanks to (4.10) and (4.13).
Therefore we can extend (4.12) to all s ∈ [0, 4ρ0], exactly as in Theorem

4.1. Then we can finally prove the global Hölder continuity in B̄+
R2

as follows.
Given x = (x′, xN), y = (y′, yN) ∈ B̄+

R2
, we consider two cases:

i) If we have |x− y| < xN/3 or |x− y| < yN/3 we just apply (4.11) in a
ball containing both x and y.

ii) Otherwise we have, by using (4.12),

|Du(x)−Du(x′, 0)|
|x− y|γ ≤ 3γ |Du(x)−Du(x′, 0)|

xγ
N

≤ 3γC,
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|Du(y)−Du(y′, 0)|
|x− y|γ ≤ 3γ |Du(y)−Du(y′, 0)|

xγ
N

≤ 3γC,

and |Du(x′, 0)−Du(y′, 0)

|x− y|γ ≤ |Du(x′, 0)−Du(y′, 0)

|x′ − y′|γ C,

where we used |x− y| ≥ |x′ − y′| and the Hölder continuity of Du on T2, as
mentioned at the beginning of the proof. Here may need to decrease γ, if
necessary to have γ ≤ τ . ¤
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[4] X. Cabré, L.A. Caffarelli, Fully Nonlinear Elliptic Equations, American
Mathematical Society, Colloquium Publications, 43 (1995).

[5] L.A. Caffarelli, M.G. Crandall, M.Kocan, A. Świech, On viscosity solutions
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V-110, Avda. España 1680, Valparáıso, Chile. (alexander.quaas@usm.cl)

Boyan Sirakov, UFR SEGMI, Université de Paris 10, 92001 Nanterre Cedex,
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