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Abstract This article is devoted to the stabilization of two under actuated planar

systems, the well known straight beam-and-ball system and an original circular beam-

and-ball system. The feedback control for each system is designed, using the Jordan

form of its model, linearized near the unstable equilibrium. The limits on the voltage,

fed to the motor, are taken into account explicitly. The straight beam-and-ball system

has one unstable mode in the motion near the equilibrium point. The proposed control

law ensures that the basin of attraction coincides with the controllability domain. The

circular beam-and-ball system has two unstable modes near the equilibrium point.

Therefore this device, never considered in the past, is much more difficult to control

than the straight beam-and-ball system. The main contribution is to propose a simple

new control law, which ensures, by adjusting its gain parameters, that the basin of

attraction arbitrarily can approach the controllability domain for the linear case. For

both nonlinear systems, simulation results are presented to illustrate the efficiency of

the designed nonlinear control laws and to determine the basin of attraction.
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1 Introduction

Among the mechanical systems, the under actuated systems, which have fewer con-

trols than configuration variables, represent a great challenge for the control. They are

characterized by the underactuation degree, which is the difference between the num-

bers of configuration variables and controls. An active field of research exists, due to

the applications of under actuated systems such as aircrafts, satellites with thrusters,

spacecrafts, flexible robots, legged robots, which adopt a dynamical stable walking

or running gait, inverted pendulums. For example, for a planar vertical take-off and

landing aircraft (PVTOL), an approximate input-output linearization procedure is de-

veloped in [1] to get a bounded tracking and an asymptotic stability. In paper [2], the

stabilization of a satellite is studied when one of its three thrusters is not efficient.

Flexible robots have an infinite number of flexible modes, which can be damped, using

a controller, based on a discrete model, (see [3], [4], etc...). Inverted pendulum devices

are used like a testbed research or for education application to investigate new con-

trol laws for the stabilization or the swing up (see [5], [6] or [7]). Mechanical models

of two planar systems, which have an unactuated cyclic variable, and all their shape

variables are independently actuated, are considered in [8]. To deal with the stability

of a walking gait for a biped, which is under actuated in single support, because it

has point feet, in the papers [9], [10] and [11], reference trajectories are defined for

the actuated variables as functions of an undriven strictly monotone state variable.

A complete characterization of all mechanical systems with underaction degree one is

given in [12]. In [13], a control law is proposed to stabilize the surge, sway and angular

velocities of the hovercraft system. We can also note the very interesting thesis docu-

ment [14], which is devoted to nonlinear control, reduction, and classification of under

actuated mechanical systems and in particular of high order under actuated systems.

Then numerous mechanical devices associated with underactuation have been studied

in literature. Furthermore this topic is far to be closed, because control design methods

do not exist for many under actuated systems that are important for applications.

This paper deals with the stabilization of two planar under actuated systems. The

first system is the well-known straight beam-and-ball system. The ball is perfectly

rolling without slide on the beam. Due to the complexity of this system, the stabiliza-

tion and the tracking problem using a state or an output feedback have been considered

by many researchers (see [15], [16], [17], [18] or [14]). In paper [15], tracking for this sys-

tem was considered using approximate input-output linearization. Semiglobal stabiliza-

tion of the straight beam-and-ball system using state feedback was addressed by [17].

In [16], this system is stabilized using output feedback. The problem of global stabiliza-

tion of the straight beam-and-ball system with friction was considered in paper [18].

The viscous friction is taken into account in our paper too. Semiglobal stabilization of

this system, using fixed-point state feedback was addressed by [14].

The second system is an original circular beam-and-ball system. For each system,

a control law, based on the linearized model and its Jordan form is designed. The

saturation of the actuator is taken into account explicitly, so the control law is non-

linear. This kind of control has been previously tested to stabilize a biped with point

feet [19], a one-link pendulum with flywheel [6], and to stabilize a two-link pendulum

with flywheel [20]. The main difference between the straight beam-and-ball system and

the circular beam-and-ball system is that the linear model of the second system has two

eigenvalues in the right-half complex plane. Therefore, it is more difficult to stabilize

the circular beam-and-ball system than the straight beam-and-ball system with only
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one eigenvalue in the right-half complex plane. For the linearized model of the straight

beam-and-ball system, the controllability domain, noted Q, and the basin of attraction,

noted B, can coincide under a linear control law with restriction (see [21], [6]). This

property is not satisfied for the linearized model of the circular beam-and-ball system

with two eigenvalues in the right-half complex plane. But the basin of attraction B can

be made arbitrary close to the controllability domain Q (see [22]).

We hope that our study is of theoretical interest and also has some pedagogical

value.

The paper is organized as follows: Section 2 is devoted to the straight beam-and-

ball system. In Subsection 2.1, the equations of motion are written. The linear model

is presented in Subsection 2.2. Subsections 2.3, 2.4, 2.5 are organized to introduce a

control law with saturation, to get a basin of attraction B, which coincides with the

controllability domain Q. The circular beam-and-ball system is studied in Section 3.

In Subsection 3.1, the equations of motion are written. The linear model is presented

in Subsection 3.2. Subsections 3.3, 3.4, 3.5 are organized to introduce a control law

with saturation, to get a large basin of attraction B inside the controllability domain

Q. Simulation results for the complete nonlinear systems are shown to illustrate the

efficiency of the proposed control laws. Finally, Section 4 contains our conclusion and

perspectives.

2 Straight beam-and-ball system

The straight beam-and-ball system consists of a straight beam and a ball on it, see

Figure 1. The ball is rolling on the beam without slide. The point C1 is center of mass

of the beam with its holder OA. The point C2 and and value r are center and radius

of the ball. The point C2 is also the center of mass of the ball.

2.1 Equations of motion

Let m1 and m2 denote the mass of the beam with its holder OA and the mass of the

ball, respectively. Let us introduce ρ1 and ρ2 the radii of inertia such that I1 = m1ρ
2
1

and I2 = m2ρ
2
2 are respectively the inertia moment of the beam with its holder OA

around the suspension point O and the inertia moment of the ball around its center

C2; let OC1 = a and OA = l.

Two generalized coordinates, the angular variables θ and ϕ characterize the be-

havior of this system. Position of the ball on the beam is defined also by the distance

s = rϕ. Let Γ be the torque, which is directly proportional to the electrical current

in the armature winding. By neglecting the armature inductance (in other words, the

electromagnetic time constant in the rotor circuit), this torque can be written in the

form (see [23]):

Γ = cuu− cv θ̇ (1)

where u is the voltage, supplied to the motor. The positive constants cu and cv for a

given motor can be calculated by using the values for the starting torque, the nominal

voltage, the nominal torque and the nominal angular velocity [23]. Product cv θ̇ is the

torque of the back electromotive force. The torque of the viscous friction force in the
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joint O (if it is taken into account) is also proportional to angular velocity θ̇. We will

consider the following constraint, imposed on the voltage u:

|u| ≤ u0, u0 = const (2)

The expressions for the kinetic energy K and the potential energy Π are the fol-

lowing (g is the gravity acceleration):

2K = m1ρ
2
1θ̇

2 +m2[r
2ϕ2 + (r + l)2]θ̇2 + 2m2r(l + r)ϕ̇θ̇ +m2(r

2 + ρ22)ϕ̇
2

Π = m1gacosθ +m2g[−rϕsinθ + (l + r)cosθ]

(3)

The equations of the mechanism motion can be derived, using Lagrange’s method:

[

m1ρ
2
1 +m2(r + l)2 +m2r

2ϕ2
]

θ̈ +m2r(r + l)ϕ̈+ 2m2r
2ϕϕ̇θ̇−

−g[m1a+m2(r + l)]sinθ −m2grϕcosθ = cuu− cv θ̇
(4)

r(r + l)θ̈ + (r2 + ρ22)ϕ̈− r2ϕθ̇2 − grsinθ = 0 (5)

If u = 0, system (4), (5) has one unstable equilibrium state:

θ = 0, ϕ = 0 (s = 0), θ̇ = 0, ϕ̇ = 0 (ṡ = 0) (6)

2.2 Linearized Model

Corresponding to the nonlinear equations (4), (5), the linear model of the motion near

the unstable equilibrium state (6) is:

[

m1ρ
2
1 +m2(r + l)2

]

θ̈+m2r(r+ l)ϕ̈− g[m1a+m2(r+ l)]θ−m2grϕ = cuu− cv θ̇ (7)

r(r + l)θ̈ + (r2 + ρ22)ϕ̈− grθ = 0 (8)

2.3 Kalman controllability

The determinant of the controllability matrix (see [24]) for the linear model (7), (8) is

not null, if and only if:

r2g2
[

(2r2 + ρ22)ρ
2
2 + r4

]

6= 0 (9)

Thus, inequality (9) is valid, if r 6= 0. If r = 0, then the ball becomes a material point

and we do not consider this case. Thus, the linear model of the straight beam-and-ball

system is always controllable.
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2.4 Spectrum of Linear System

The state form of system (7), (8), using the state vector x = (θ, ϕ, θ̇, ϕ̇)T , is:

ẋ = Ax+ bu =









02×2 I2×2

D−1E D−1

(

−cv 0

0 0

)









x+









0

0

D−1

(

cu
0

)









u (10)

The notations 02×2 and I2×2 define a zero matrix and an identity matrix, respectively.

The expressions of matrices D and E are

D =

(

m1ρ
2
1 +m2(r + l)2 m2r(r + l)

r(r + l) r2 + ρ22

)

E = g

(

m1a+m2(r + l) m2r

r 0

)

(11)

Introducing a nondegenerate linear transformation x = Sy with a constant matrix

S, it is possible to get the well-known Jordan form of the matrix equation (10)

ẏ = Λy + du (12)

where

Λ = S−1AS =









λ1 0

λ2
λ3

0 λ4









, d = S−1b = [di]
T (i = 1, ..., 4). (13)

Here, λ1, ..., λ4 are the eigenvalues of the matrix A. They are the roots of the charac-

teristic equation of system (7), (8):

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 (14)

with

a0 = detD > 0, a1 = cv(r
2 + ρ22) > 0, a2 = m2(r + l)(r2 − ρ22)−m1a(r

2 + ρ22),

a3 = 0, a4 = detE = −m2g
2r2 < 0.

If all physical parameters of the studied system are known, matrix S of the transfor-

mation x = Sy can be calculated.

According to the theorem of Routh-Hurwitz (see [25]), equation (14) has one root

in the right-half complex plane and three roots in the left-half complex plane (see

also [14]). This assertion does not depend on the sign of the coefficient a2. Of course,

the unique root in the right-half complex plane is located on the real axis.

In Section 3, we consider the ball on the circular beam and use linearized model

in the same matrix form (10) as for the ball on the straight beam, but with different

submatrices D and E.
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2.5 Problem Statement

Let x = 0 (here 0 is a (4× 1) zero-column) be the desired equilibrium state of system

(10). Let us design the feedback control u(x) to stabilize this equilibrium state x = 0,

under constraint (2). In other words, we want to design an admissible (satisfying the

inequality (2)) feedback control |u(x)| ≤ u0 to ensure the asymptotic stability of the

desired state x = 0. Let W be the set of piecewise continuous functions of time u(t),

satisfying inequality (2). Let Q be the set of the initial states x(0) of system (10), from

which origin x = 0 can be reached, using admissible control functions of time u(t).

In other words, system (10) can reach the origin x = 0 with the control u(t) ∈ W ,

only starting from the initial states x(0) ∈ Q. Set Q is called controllability domain.

If the matrix A has eigenvalues with positive real parts and the control variable u is

restricted, then the controllability domain Q for system (10) is an open subset of the

phase space X (see [21], [6]).

For any admissible feedback control u = u(x) with saturation |u(x)| ≤ u0 the

corresponding basin of attraction belongs to the controllability domain: B ⊂ Q. Here,

as usual, B is the set of initial states x(0), from which system (10), with feedback

u = u(x) asymptotically tends to the origin point x = 0 as t→ ∞.

In the following section, a control law will be presented for the straight beam-and-

ball system to get a basin of attraction B, which coincides with the controllability

domain Q: B = Q.

2.6 Feedback Control for the straight beam-and-ball system

A control law is proposed here to stabilize the straight beam-and-ball system with

basin of attraction as large as possible.

2.6.1 Control design

Let λ1 be the real positive eigenvalue, Reλi < 0 (i = 2, 3, 4) and let us consider the

first scalar differential equation of system (12) corresponding to eigenvalue λ1,

ẏ1 = λ1y1 + d1u (15)

System (10), is a Kalman controllable system, therefore scalar d1 6= 0. The controlla-

bility domain Q of the equation (15) and consequently of system (12) is described by

the following inequality (see [21], [6])

|y1| < |d1|
u0
λ1

(16)

The instability of the coordinate y1 can be “suppressed” by a linear feedback con-

trol,

u = γy1 (17)

with the following condition,

λ1 + d1γ < 0 (18)

For system (10) under the feedback control (17) with inequality (18), only the pole

λ1 is replaced by a negative pole λ1 + d1γ. The poles λ2, λ3, λ4 do not change.
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If constraint (2) is taken into account, the linear feedback control (17) becomes

with saturation,

u = u(y1) =























u0, if γy1 ≥ u0

γy1, if |γy1| ≤ u0

−u0, if γy1 ≤ −u0

(19)

The unit of coefficient γ is volt.

It is possible to see that if |y1| < |d1|u0/λ1, then under condition (18) the right

part of equation (15) with the nonlinear control (19) is negative when y1 > 0 and

positive when y1 < 0. Consequently, if |y1(0)| < |d1|u0/λ1, then the solution y1(t)

of system (15), (19) tends to 0 as t → ∞. But if y1(t) → 0, therefore, according to

expression (19), u(t) → 0 as t → ∞. Therefore, the solutions yi(t) (i = 2, 3, 4) of

the second, third and fourth equations of system (12) with any initial conditions yi(0)

(i = 2, 3, 4) converge to zero as t → ∞, because Reλi < 0 for i = 2, 3, 4. Thus, under

the nonlinear control (19) and with inequality (18), the basin of attraction B coincides

with the controllability domain Q (see [21], [6]): B = Q. So, the basin of attraction B

for system (10), (19) is as large as possible and it is described by inequality (16).

Note that the variable y1 depends on the original variables from the vector x,

according to the transformation x = Sy or y = S−1x. Due to this, formula (19) defines

the control feedback, which depends on the vector x of the original variables. If the

matrix S is calculated, then all coefficients of the designed control can be defined. Only

the constant γ is an arbitrary multiplier, but it has to satisfy inequality (18)

Thus, linearizing nonlinear system (4), (5), (19) near the equilibrium state we obtain

a system, which is asymptotically stable. Using Lyapounov’s theorem (see [26]), we

conclude that equilibrium (6) of the nonlinear system (4), (5) is asymptotically stable

under control (19) with some basin of attraction. In the next Subsection, numerically

we find the upper bounds of the initial values of some variables, which can be handled

for the linear and nonlinear models under the designed control.

2.6.2 Numerical results

Let

m1 = 1.0 kg, m2 = 0.2 kg, g = 9.81m/s2,

r = 0.05m, l = 0.2m, a = 0.15m, ρ1 = 0.2179m, ρ2 = 0.1414m,

cu = 0.007N .m/V, cv = 0.0001N .m/s, u0 = 19 V.

(20)

In open-loop the poles of the linear system (10) (the roots of equation (14)) with

parameters (20) are:

λ1 = 5.7202, λ2 = −5.7218, λ3, λ4 = −2.8.10−7 ± 1.0558i, (21)

Now we can use inequality (16) to evaluate the basin of attraction B for system

(10), (19). If θ(0) = θ̇(0) = ϕ̇(0) = 0, the upper bound of the initial angles ϕ, which

can be handled for the linear model (10) is ϕ(0) ∼= 77.679◦ . The corresponding initial

distance s(0) is equal to 0.0678 m. This value for the distance s is close to the value

s(0) =
cuu0
m2g

(22)
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With θ = 0 product sm2g is the torque about joint O of the gravity force of the ball

(see the nonlinear equations (4), (5) and the linear equations (7), (8)), the product

cuu0 is the torque (maximal as possible) developed by the motor in static. Thus, the

point

θ = θ̇ = ṡ = 0, s =
cuu0
m2g

(23)

is the equilibrium state (unstable) for our system (nonlinear (4), (5) and linear (7),

(8)). It is easily to see that the equilibrium point (23) is located on the boundary of

the controllability region (16). Simulation shows that, if

θ(0) = θ̇(0) = ṡ(0) = 0, s(0) ≥
cuu0
m2g

, (24)

then it is not possible to bring the nonlinear system (4), (5) under control (19) to the

equilibrium (6); but it is possible to do that, if s(0) < cuu0
m2g

. Furthermore, we think

there is no an admissible control |u(x)| ≤ u0 to bring system (4), (5) to the equilibrium

point (6) from the initial states (24). This opinion is based on the numerical studies

and physical feeling. We do not prove here corresponding assertion strictly.

The eigenvalues λ3, λ4 are very close to the imaginary axis (see (21)) and therefore

under the control (19), the transient process is very long. Let us take into account a

viscous friction in the joint O defined by the torque fθ̇. The consideration of the torque

fθ̇ of the friction force is equivalent to the consideration in equation (1) of the term

(cv + f)θ̇ instead of the term cv θ̇. With f = 0.4 N .m.s for example the poles of the

corresponding linear system (10) in open-loop are:

λ1 = 3.4001, λ2 = −10.0181, λ3, λ4 = −0.1041 ± 1.0297i (25)

The technique of the feedback control design with a viscous friction (with new poles

(25)) remains the same exactly. And the structure of this control remains the same -

(19). Under the control law (19) with new coefficients, the transient process converges

to the equilibrium state (6) faster than without friction. Using inequality (16), or the

equality (22) we get of course the same value s(0) as above without friction. So, we can

use formula (22) for the linear and nonlinear systems to calculate the upper bound of

the initial distances s, which are possible to stabilize the equilibrium state (6).

Figures 2 and 3 show a numerical test with an initial tilt ϕ(0) = 77.65◦ for the

nonlinear system (4), (5) with the coefficient f = 0.4 N .m.s under the control law (19)

with γ = −122. The voltage, supplied to the motor, is shown in Figure 3. The limit

value u0 = −19 V is reached at initial time.

Let F be the reaction force, applied to the ball orthogonally to the beam in their

contact point. The following formula for this force holds:

F = m2

[

g cosθ − (l + r)θ̇2 − 2rϕ̇θ̇ − rϕθ̈
]

(26)

If the reaction force F becomes negative, then the ball loses contact with the beam

and our model (with contact) becomes false to describe the physical process. In the

numerical experiment, presented in Figures 2 and 3, the force F is always positive.

This force is shown in Figure 4.

If ϕ(0) = ϕ̇(0) = θ̇(0) = 0, then, using inequality (16), the upper bound of the

initial tilts of the beam, which can be handled, for the linear model (10) with the

friction is θ(0) = 3.61◦. The computations show that the upper bound of the initial

tilts for the nonlinear system (4), (5) under control (19) is θ(0) = 3.64◦. So, this value

is little more important than for the linear system (10) under the same control (19).
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3 Circular beam-and-ball system

The circular beam-and-ball system consists of a circular beam with the center C and

the radius R and a ball on it with the center C2 and the radius r, see Figure 5. The

point C1 is the center of mass of the beam with its holder OA.

3.1 Equations of motion

Here the same notations are used, that for the straight beam-and-ball system.

Let m1 and m2 denote the mass of the beam with its holder OA and the mass of

the ball, respectively. Let ρ1 and ρ2 be the radii of inertia respectively of the beam

with its holder OA and of the ball; let OC1 = a and OA = l be.

The generalized coordinates are the joint variable θ and the angle variable ϕ. Po-

sition of the ball on the beam is also defined by distance s = rϕ. The relation between

the angle ϕ and angle ψ is:

rϕ = Rψ

Let us assume that the motor is the same that for the straight beam-and-ball

system with torque (1) and constraint (2). The constants cu, cv and u0 are the same.

The expressions for the kinetic energy K and the potential energy Π are the fol-

lowing:

2K =
{

m1ρ
2
1 +m2

[

(R+ r)2 + (l −R)2 + 2(R + r)(l −R)cos rϕR
]}

θ̇2+

+m2

[

(R+ r)2 +
(ρ2R)2

r2

]

(rϕ̇)2

R2 +

+2m2

[

(R+ r)2 + (R+ r)(l −R)cos rϕR
]

θ̇ rϕ̇R

Π = [m1a+m2(l −R)]gcosθ +m2g(R+ r)cos( r
Rϕ+ θ)

(27)

The equations of the mechanism motion are derived, using Lagrange’s method:

[

m1ρ
2
1 +m2(r

2 + l2 + 2rlcos rϕR ) + 2m2R(R+ r − l)(1− cos rϕR )
]

θ̈+

+m2r(1 +
r
R )

[

R + r + (l −R)cos rϕR
]

ϕ̈+m2r(1 +
r
R )(R− l)(2θ̇ + rϕ̇

R )ϕ̇sin rϕ
R −

−g[m1a +m2(l −R)]sinθ −m2g(R+ r)sin(θ + rϕ
R ) = cuu− cv θ̇

(28)

r(1 + r
R )

[

R + r + (l −R)cos rϕR
]

θ̈ +
[

ρ22 + r2(1 + r
R )2

]

ϕ̈+

+(1 + r
R )(l −R)θ̇2sin rϕ

R − gr(1 + r
R )sin(θ + rϕ

R ) = 0

(29)

If u = 0, system (28), (29) has one unstable equilibrium state (6).
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3.2 Linearized Model

Linearizing the equations (28), (29) near the unstable equilibrium state (6), we get the

following model:
[

m1ρ
2
1 +m2(r + l)2

]

θ̈ ++m2r
(

1 + r
R

)

(r + l)ϕ̈−

−g[m1a+m2(r + l)]θ −m2g(r +R) rϕR = cuu− cv θ̇

(30)

r
(

1 + r
R

)

(r + l) θ̈ +
[

ρ22 + r2
(

1 + r
R

)2
]

ϕ̈− gr
(

1 + r
R

) (

θ + rϕ
R

)

= 0 (31)

3.3 Kalman controllability

The determinant of the controllability matrix for the model (30), (31) is not null, if

and only if:

Rr2(R− l) +R2ρ22 + r3(R− l) 6= 0 (32)

If r = 0, then the ball becomes a material point and ρ2 = 0. In this case, instead

of inequality (32) the equality is correct. However, we do not consider a material point

on the beam and therefore assume r 6= 0.

Let r 6= 0, but the mass of the ball is concentrated in its center (ρ2 = 0) and the

suspension point O coincides with the curvature center C of the circular beam (R = l).

In this case, inequality (32) is not satisfied and the linear system is not controllable.

Consider the controllability of the original nonlinear system (28), (29) in the case ρ2 = 0

and R = l. Introduce the angle α = θ + rϕ
R . The nonlinear system (28), (29) becomes:

m1ρ
2
1θ̈ −m1gasinθ = cuu− cv θ̇ (33)

(R + r)α̈− gsinα = 0 (34)

The equations (33) and (34) are separated. The control u has no action on the angle

α and system (33), (34) is not controllable.

Inequality (32) is satisfied, if

l −R 6=
R2ρ22

(R + r)r2
(35)

and we will consider only this case.

3.4 Spectrum of Linear System

The state form of system (30), (31) can be presented in the same matrix form (10) as

for the straight beam, but with the following submatrices D and E:

D =





m1ρ
2
1 +m2(r + l)2 m2r(1 +

r
R )(r + l)

r(1 + r
R )(r + l) ρ22 + r2(1 + r

R )2





E = g





m1a+m2(r + l) m2r(1 +
r
R )

r(1 + r
R ) r(1 + r

R ) r
R





(36)
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Introducing a nondegenerate linear transformation x = Sy with a constant matrix

S, we can get the Jordan form similar to (12), (13).

The characteristic equation of system (30), (31) has form (14) with

a0 = detD > 0, a1 = cv

[

ρ22 + r2

R2 (R + r)2
]

> 0,

a2 = −m1g
[

(ρ22 + r2)aR2 + (2ar + ρ21)Rr
2 + (ar + ρ21)r

3
]

−

−m2g
[

(r + l)R2(r2 − ρ22) + (r2 − l2)r2R − (r + l)lr3
]

,

a3 = −cvg
r2

R2 (R+ r) < 0, a4 = detE = g2 r2

R2 (R + r)[m1a+m2(l −R)].

We assume that

m1a+m2(l −R) > 0 (37)

Inequality (37) is satisfied, if the radius R of the circular beam is sufficiently small (the

curvature of the beam is sufficiently large). But we have not to forget condition (32)

(or (35)) of controllability.

Under condition (37), the coefficient a4 is positive. Using the theorem of Routh-

Hurwitz (see [25]), we can conclude that the characteristic equation (14) has two roots

in the right-half complex plane and two roots in the left-half complex plane. This

conclusion does not depend on the sign of the coefficient a2.

3.5 Problem Statement

We will consider the same problem, as before for the straight beam-and-ball system.

We want to design an admissible (satisfying inequality (2)) feedback control to ensure

the asymptotic stability of the state x = 0 with a large basin of attraction for this

equilibrium state.

3.6 Feedback control for the circular beam-and-ball system

A feedback control law u(x), satisfying inequality (2), is proposed here to stabilize the

circular beam-and-ball system with a large basin of attraction. Under condition (37),

the linear model of the system has two eigenvalues λ1, λ2 in the right-half complex

plane and two eigenvalues λ3, λ4 in the left-half complex plane.

3.6.1 Control design

Let λ1 and λ2 be the real positive eigenvalues, and let us consider the first two scalar

differential equations of system (12), (13) for the circular beam, corresponding to these

eigenvalues λ1 and λ2:

ẏ1 = λ1y1 + d1u, ẏ2 = λ2y2 + d2u (38)

Under condition (35) system (10) for the circular beam is Kalman controllable.

Therefore, subsystem (38) is controllable too (see [24]) and d1 6= 0, d2 6= 0. The
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controllability domain Q of the equations (38), and consequently of system (12), is an

open bounded set with the following boundaries (see [27])

y1(τ ) = ±d1u0
λ1

(

2e−λ1τ − 1
)

,

y2(τ ) = ±d2u0
λ2

(

2e−λ2τ − 1
)

(0 ≤ τ <∞)

(39)

If the system has two complex poles in the right-half complex plane, then instead

of (39) we will get other formulas (see [21]).

Set Q belongs to the rectangle, defined by inequalities:

|y1| < |d1|
u0
λ1
, |y2| < |d2|

u0
λ2

The boundary of the controllability region Q has two corner points (see Figure 6):

y1 = −d1
u0
λ1
, y2 = −d2

u0
λ2

;

y1 = d1
u0
λ1
, y2 = d2

u0
λ2

(40)

These points (40) are the equilibrium points of system (38) under the constant controls:

u = ±u0 (41)

We can “suppress” the instability of the state y1 = 0, y2 = 0 by a linear feedback

control,

u = k1y1 + k2y2 (42)

with k1 = const and k2 = const. It is shown in paper [22] that using a linear feedback

(42) with saturation (γ = const):

u =























u0, if γ(k1y1 + k2y2) ≥ u0

γ(k1y1 + k2y2), if |γ(k1y1 + k2y2)| ≤ u0

−u0, if γ(k1y1 + k2y2) ≤ −u0

(43)

the basin of attraction B can be made arbitrary close to the controllability domain Q.

The straight line crossing two points (40) is the following:

k1y1 + k2y2 = 0

with

k1 = −
d2
λ2
, k2 =

d1
λ1

(44)

If

signγ = sign [d1d2 (λ1 − λ2)] (45)

and |γ| → ∞, then the basin of attraction B of system (38) under the nonlinear control

(43) with coefficients (44) tends to the controllability region Q. Consequently, using the

coefficients (44), the basin B can be made arbitrary close to the domain Q. If |γ| → ∞,

control (43) tends to the bang-bang control.
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The solutions y1(t) and y2(t) of system (38), (43) tend to 0 as t→ ∞ for the initial

values y1(0), y2(0), belonging to the basin of attraction of system (38), (43). But if

y1(t) → 0 and y2(t) → 0, then, according to the expression (43), u(t) → 0 as t → ∞.

Therefore, solutions y3(t), y4(t) of the third and fourth equations of system (12) with

any initial conditions y3(0), y4(0) converge to zero as t → ∞, because Reλ3 < 0,

Reλ4 < 0. Thus, under control (43) with coefficients (44), the basin of attraction

of system (12), (43) is described by the same relations, which describe the basin of

attraction of system (38), (43).

The variables y1 and y2 depend on the original variables from the vector x, ac-

cording to the transformation y = S−1x. Due to this, formula (43) defines a nonlinear

feedback control, which depends on the vector x of the original variables. If the matrix

S is calculated, then all coefficients of the designed control can be found. Only the

constant multiplier γ is an arbitrary one; but it has to satisfy relation (45) and to be

sufficiently large in modulus.

Thus, linearizing the nonlinear system (28), (29), (43) near the equilibrium state we

get the system, which is asymptotically stable. Then according to Lyapounov’s theorem

(see [26]), the equilibrium state (6) of the nonlinear system (28), (29) is asymptotically

stable under control (43) with some basin of attraction. In the next Subsection, nu-

merically we find the upper bounds of the initial values of some variables, which can

be handled under designed control.

3.6.2 Numerical results

Let

m1 = 1.0 kg, m2 = 0.2 kg, g = 9.81m/s2,

r = 0.05m, R = 0.8m, l = 0.2m, a = 0.15m, ρ1 = 0.2646m, ρ2 = 0.1414m

(46)

In open-loop the poles of the linear system (10) with parameters (46) are:

λ1 = 4.89589, λ2 = 0.46516, λ3 = −4.89706, λ4 = −0.46523 (47)

Using formulas (39), the controllability domain Q for system (38) is designed. It is

bounded in Figure 6 by dashed line. Its boundary contains the corner points (40).

Using the linear model (30), (31), we can define the following equilibrium points under

controls (41) with the original variables:

θ = ∓ cuu0

g[m1a+m2(l−R)]
, θ̇ = 0,

ϕ = −R
r θ (s = −Rθ), ϕ̇ = 0 (ṡ = 0).

(48)

Points (48) are located on the boundary of the controllability region.

Using the nonlinear model (28), (29), instead of (48) we get the following expres-

sions:
θ = ∓arcsin cuu0

g[m1a+m2(l−R)]
, θ̇ = 0,

ϕ = −R
r θ (s = −Rθ), ϕ̇ = 0 (ṡ = 0).

(49)

In equilibriums (49), the ball is located on the highest point of the circular beam and

consequently in this point of contact between the ball and the beam the tangent to the

beam is horizontal. Remind, if u = 0, we have the equilibrium state (6).
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The basin of attraction B for system (38) under the control (43) is shown in the

same Figure 6. Its boundary is drawn in Figure 6 by solid line. This boundary is

the periodical motion (cycle) of system (38), (43). This cycle is computed, using the

backward motion of system (38), (43) from a state close to the origin y1 = y2 = 0.

The basin B depends on the coefficient γ. We show in Figure 6 the basin of attraction

B, with γ = 4000. If the coefficient γ is smaller, then the basin of attraction is smaller

too.

In simulation, the control law (43) is applied to the nonlinear model (28), (29).

Figure 7 shows the graphs of the angular variables θ and ϕ. These graphs are designed

for the initial angle ϕ(0) = 70.39◦ and θ(0) = θ̇(0) = ϕ̇(0) = 0. This value ϕ(0) =

70.39◦ is close to the upper bound of the initial angles ϕ(0), which are possible to

stabilize the equilibrium state (6). The corresponding initial distance s(0) is equal to

0.061 m. No oscillations appear during the transient process, because matrix A does

not have complex poles. The voltage, supplied to the motor, is shown in Figure 8. The

limit value u0 = −19 V is reached at initial time. No oscillations also appear in the

graph of voltage u(t).

The following formula holds for the reaction force F , applied to the ball orthogonally

to the beam in their contact point:

F = m2

[

g cos
(

θ +
rϕ

R

)

− (R + r)

(

θ̇ +
rϕ̇

R

)2

+ (R − l)θ̇2cos
rϕ

R
− (R− l)θ̈sin

rϕ

R

]

(50)

In the numerical experiment, presented in Figures 7 and 8, force F is always positive.

This force is shown in Figure 9.

Calculating the values θ and s with first and third formulas in (49), we obtain

θ = 0.469, s = −0.375 m (51)

Consider the initial velocities θ̇(0) = 0, ṡ(0) = 0 and let s(0) = −Rθ(0) be (see

third equality in (49)). Simulating the nonlinear system (28), (29) under control (43)

(γ = 4000), we get values which are close to the boundary of the attraction basin

θ(0) = 0.397, s(0) = −0.318 m (52)

These values (52) equal to values (51) divided by 1.18. Under the nonlinear control law

(43) with γ = 8000 we come to the values

θ(0) = 0.430, s(0) = −0.344 m

These initial conditions equal to values (51) divided by 1.09 and they are closer to (51)

than values (52). Our numerical experiments show that possible for stabilization initial

values θ(0), s(0) tend to values (51) as γ → ∞. Thus, formulas (49) can be used to

evaluate the basin of attraction for the original nonlinear system (28), (29).

We think there is no admissible control |u(x)| ≤ u0 to bring system (28), (29) to

equilibrium (6) from the initial states

θ̇(0) = ϕ̇(0) = 0, |θ(0)| ≥ arcsin cuu0

g[m1a+m2(l−R)]
,

ϕ(0) = −R
r θ(0) (s(0) = −Rθ(0)).

This hypothesis is similar to the corresponding hypothesis for the straight beam-and-

ball system (see subsection 2.6.2).
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4 Conclusion

In this article, we consider the well known straight beam-and-ball system and an orig-

inal circular beam-and-ball system. The problem of stabilization of unstable equilibri-

ums of these systems is studied. The model linearized near the unstable equilibrium

of the straight beam-and-ball system has one unstable mode. The difficulty is greater

to stabilize the circular beam-and-ball system, because its linear model has two un-

stable modes. For each system we use the Jordan form of the linear model to extract

the unstable part and to stabilize the equilibrium. Considering the restriction on the

voltage of the motor, the objective is to get a large basin of attraction. The designed

feedback control contains the unstable Jordan variables only. All parameters of this

control are defined up to a constant multiplier. Simulation results for the complete

nonlinear systems are shown. These results are close for linear and nonlinear systems.

All the numerical results, obtained in this paper for nonlinear systems, are realistic

and illustrate the efficiency of the designed control laws. Using the described above

approach for both cases it is easily to take into account the friction forces also. Testbed

devices can be now imagined to test the designed control laws experimentally. The

original circular beam-and-ball system will be interesting for demonstrations, devoted

to education and to investigate new nonlinear control laws.

5 List of Captions

1. Figure 1: Diagram of the straight beam-and-ball system

2. Figure 2: Stabilization of the Straight beam-and-ball system, θ → 0 and ϕ→ 0 (in

radians).

3. Figure 3: Voltage u(t), supplied to the motor for the stabilization of the Straight

beam-and-ball system.

4. Figure 4: The reaction force F (t), applied to the ball during the stabilization pro-

cess.

5. Figure 5: Diagram of the circular beam-and-ball system.

6. Figure 6: Controllability domain Q (dashed line) for system (38) and basin of

attraction B (solid line) with γ = 4000.

7. Figure 7: Stabilization of the Circular beam-and-ball system, θ → 0 and ϕ → 0 (in

radians).

8. Figure 8: Voltage u(t), supplied to the motor for the stabilization of the circular

beam-and-ball system.

9. Figure 9: The reaction force F (t), applied to the ball during the stabilization pro-

cess.
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Fig. 1 Diagram of the straight beam-and-ball system.

0 2 4 6 8 10 12 14 16 18 20
−0.04

−0.02

0

0.02

0.04

0.06

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0

0.5

1

1.5

Time [s]

Time [s]

θ
(t
)

ϕ
(t
)

Fig. 2 Stabilization of the Straight beam-and-ball system, θ → 0 and ϕ → 0 (in radians).
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Fig. 3 Voltage u(t), supplied to the motor for the stabilization of the Straight beam-and-ball
system.
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Fig. 4 The reaction force F (t), applied to the ball during the stabilization process.
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Fig. 5 Diagram of the circular beam-and-ball system.
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Fig. 6 Controllability domain Q (dashed line) for system (38) and basin of attraction B (solid
line) with γ = 4000
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Fig. 7 Stabilization of the Circular beam-and-ball system, θ → 0 and ϕ → 0 (in radians).
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Fig. 8 Voltage u(t), supplied to the motor for the stabilization of the Circular beam-and-ball
system.
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Fig. 9 The reaction force F (t), applied to the ball during the stabilization process.
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