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Homogenization and enhancement for the G-equation

Introduction

We study the limit, as ε → 0, of the solution to the level-set equation

(i) u ε t = |Du ε | + V ( x ε , t ε ), Du ε in R N × (0, T ) (ii) u ǫ = u 0 on R N × {0} .
(1.1)

Equation (1.1)(i) is referred to as the G-equation, and is used as a model for flame propagation in turbulent fluids ( [START_REF] Peters | Turbulent Combustion[END_REF][START_REF] Williams | Turbulent Combustion[END_REF]). In that setting, the level sets of the function u ǫ represent the evolving flame surface and -V is the fluid velocity field. At points where u ǫ is differentiable and |Du ǫ | = 0, the level sets of u ǫ move with normal velocity

ν = 1 -V ( x ε , t ε ), n ,
where n = -Du ǫ /|Du ǫ | is the exterior normal vector of the front. When V ≡ 0, level sets move with constant speed s L = 1, which is called the laminar speed of flame propagation. We assume that the vector field V ∈ C 0,1 (R N +1 ; R N ) is Z N +1 -periodic in both x and t, i.e., for all (x, t) ∈ R N +1 , k ∈ Z N and s ∈ Z, V (x + k, t + s) = V (x, t).

(1.2)

Our first result says that there exists a positively homogeneous of degree one, convex and continuous Hamiltonian H such that, as ǫ → 0, the u ε 's converge locally uniformly in R N × [0, ∞) to the solution ū of the initial value problem P. Souganidis was partially supported by the National Science Foundation. P. Cardaliaguet was partially supported by the ANR (Agence Nationale de la Recherche) through MICA project (ANR-06-BLAN-0082).

1    ūt = H(Dū) in R N × [0, ∞), ū = u 0 on R N × {0} . (1.3)
Although V is bounded, we do not assume that |V | < 1, and, hence, the Hamiltonian H(x, t, p) = |p| + V (x, t), p is not coercive in |p| at every point (x, t). This lack of coercivity is the main mathematical challenge in the analysis. If either |V | < 1 or the nonlinearity |Du| were replaced with |Du| 2 , then H would be coercive in |p| and the problem would be within the scope of the theory developed in [START_REF] Lions | Homogenization of Hamilton-Jacovi Equations[END_REF]. There are, however, relatively few homogenization results about noncoercive Hamiltonians [START_REF] Alvarez | Hamilton-Jacobi equations with partial gradient and application to homogenization[END_REF][START_REF] Alvarez | Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations[END_REF][START_REF] Barles | Some homogenization results for non-coercive Hamilton-Jacobi equations[END_REF][START_REF] Cardaliaguet | Ergodicity of Hamilton-Jacobi equations with a non coercive non convex Hamiltonian in R 2 /Z 2[END_REF][START_REF] Imbert | Monneau Homogenization of first-order equations with u/ǫ-periodic Hamiltonians. Part I : local equations[END_REF], and none of them deals with the particular structure considered here.

The following simple example shows that, in the absence of coercivity, some additional assumption about the divergence of V is necessary in order for the u ǫ 's to have a local uniform limit. To this end, let V = V (x) be a smooth Z N -periodic vector field such that, in the cube Q 1 = (- 1 2 , 1 2 ) N , V (x) = -10x, if |x| < 1/6, and V (x) = 0 if |x| ≥ 1/3. It is known that the u ǫ 's have the control representation u ǫ (x, t) = sup(u 0 (X x (t))), (1.4) where the supremum is over all functions X x ∈ W 1,∞ ([0, t]; R N ) such that X x (0) = x and X ′ x (s) = κ(s) + V (X x (s)) with the controls κ(•) satisfying |κ| ≤ 1. If u 0 (x) = p, x with |p| > 0, we see easily that lim ε→0 |u ǫ (0, t)| = 0 for all t > 0. However, lim inf ǫ→0 u ǫ (x ǫ , t) > 0 if t > 0 and {x ǫ } ǫ is any point satisfying |x ǫ | = ǫ/2. Roughly speaking, the problem with such a vector field V is that it traps the trajectories which start at the lattice points. If the divergence of V is sufficiently small, however, it is reasonable to expect that the controls are strong enough to overcome such traps.

We assume that V has "small divergence", in the sense that, for all t ∈ R,

α(t) = 1 c I -div x V (•, t) L N (Q 1 ) ≥ 0 and α * = 1 0 α(s) ds > 0, (1.5) 
where c I is the isoperimetric constant in the cube Q 1 (see, for instance, [START_REF] Evans | Measure theory and fine properties of functions[END_REF]), i.e., the smallest constant such that, for all measurable subsets E of Q 1 ,

(|E| ∧ |Q 1 \E|) (N -1)/N ≤ c I Per(E, Q 1 ),
and also the optimal constant for the Poincaré inequality

f -f L 1 * (Q 1 ) ≤ c I Df L 1 (Q 1 ) , for f ∈ W 1,1 (Q 1 ), 1 * = N/(N -1) and f = Q 1 f (x) dx.
To state the main results we introduce some additional notation. Throughout the paper we use Q + 1 and BU C( Ū) to denote respectively the space-time cube

Q + 1 = Q 1 × [0, 1] ⊂ R N +1
and the space of bounded uniformly continuous functions on Ū , and we write

V = Q + 1 V (x, t)dx dt and xdivV = Q + 1
xdivV (x, t)dx dt .

We have:

Theorem 1.1. Assume that V ∈ C 0,1 (R N +1 ; R N ) satisfies (1.2) and (1.5) and that u 0 ∈ C 0 (R N ) is bounded. There exists a positively homogeneous of degree one, Lipschitz continuous, convex Hamiltonian H : R N → R such that, if u ε ∈ C 0 (R N × [0, +∞)) and ū ∈ C 0 (R N × [0, +∞)) are the solutions to the initial value problems (1.1) and (1.3) respectively with initial datum u 0 , then, as ε → 0, the u ε 's converge locally uniformly in R N × [0, T ] to ū. Moreover, for all P ∈ R N ,

H(P ) ≥ |P | 1 0 1 -c I divV (•, t) L N (Q I ) dt + V + xdivV , P . (1.6)
Finally, the convex map P → H(P ) -V + xdivV , P is coercive.

For Lipschitz continuous initial datum u 0 , we can actually estimate the convergence rate as ǫ → 0. We have:

Theorem 1.2. Assume that u 0 ∈ C 0,1 (R N ) and let u ǫ , ū ∈ BU C(R N × [0, T ]),
for all T > 0, be respectively the solutions to (1.1) and (1.3). Then, for all T > 0, there exists a positive constant C that depends only on T , N , V and the Lipschitz constant of u 0 , such that, for all

(x, t) ∈ R N × [0, T ], |u(x, t) -u ǫ (x, t)| ≤ Cǫ 1/3 .
In the case that, for all x ∈ R N and t ∈ R,

div x V (x, t) = 0, (1.7) 
we derive some additional properties of the function H. To simplify the statement we also assume, without any loss of generality (see Lemma 3.1 below), that

Q 1 V (x, t)dx = 0 ∀t ∈ R. (1.8)
Then, according to Theorem 1.1, the averaged Hamiltonian H : R N → R satisfies, for all P ∈ R N , H(P ) ≥ |P |.

We establish here a necessary and sufficient condition to have the strict inequality H(P ) > |P |, in which case we have enhancement of the speed due to averaging. Recall that, since H is homogeneous of degree one, the level sets of ū move with speed H(n) in the direction of the normal vector n = -Dū/|Dū|. Therefore, we refer to the situation H(P ) > |P | as "enhancement", because it implies that such velocity fields lead to faster propagation of interfaces compared to the case V ≡ 0.

First, we state the result in the case where V only depends on x. We have:

Theorem 1.3. Assume that V ∈ C 0,1 (R N ) is Z N -periodic, divV = 0 and V = 0, and let P ∈ R N \{0}. Then H(P ) = |P | if and only if, for all x ∈ R N , V (x) 
, P = 0. In particular, if N = 2, then H(P ) = |P | if and only if the stream function E associated to V is of the form E = Ẽ( P, • ) for some Ẽ : R → R, i.e., V is a shear drift in the direction orthogonal to P .

When V is also time dependent, the characterization of equality H(P ) = |P | is provided by Theorem 1.4. Assume that, for all t ∈ R, div x V (•, t) = 0 and Q 1 V (x, t)dx = 0, and fix P ∈ R N \{0}. Then H(P ) = |P | if and only if there exists ẑ ∈ BV loc (R) such that ẑ′ ≥ -|P | in the sense of distribution and the function z(x, t) = ẑ( P,x |P | + t) is Z N +1 -periodic and satisfies, for all t ∈ R, in the sense of distributions div ((z(•, t)

+ P, • )V (•, t)) = 0 in R N .
(1.9)

We continue with some observations about these results. Theorem 1.3 yields that, if N = 2, H(P ) = |P | and V is not constant, then P = (P 1 , P 2 ) must be a rational direction, i.e., either P 2 = 0 or P 1 /P 2 ∈ Q, since V is Z 2 -periodic. For Theorem 1.4, observe that, if z is not constant, then P/|P | must be a rational vector.

Also (1.9) is equivalent to saying (see Lemma 3.2 below) that, for any fixed t > 0, the map x → z(x, t) + P, x is constant along the flow of the differential equation X ′ (s) = V (X(s), t).

We remark that it is possible to construct nontrivial examples of time-dependent flows for which H(P ) = |P |. Indeed when N = 2 for any smooth,

Z 1 -periodic (E 1 , E 2 ) such that E 1 (0) = 0, let E(x 1 , x 2 , t) = E 1 (x 1 + t)E 2 (x 2 ), V = ∇ ⊥ E and P = (1, 0). Then H(P ) = |P | because the map ẑ(s) = [s] -s, where [s]
stands for the integer part of s, satisfies the condition of Theorem 1.4. For more analysis and numerical computation of H for specific flow structures, we refer to [START_REF] Cencini | Thin front propagation in steady and unsteady cellular flows[END_REF][START_REF] Embid | Comparison of turbulent flame speeds from complete averaging and the G-equation[END_REF][START_REF] Majda | Large-scale front dynamics for turbulent reactiondiffusion equations with separated velocity scales[END_REF][START_REF] Nolen | Bounds on front speeds for inviscid and viscous G-equations[END_REF][START_REF] Oberman | [END_REF].

The next result of the paper is about the long time behavior of the solution to (1.1) with ε = 1 and, in particular, the convergence, as t → ∞, of its zero level set to the Wulff-shape associated with the effective H, which is given by W = {y ∈ R N : P, y + H(P ) ≥ 0 for all P ∈ R N }.

(1.10)

We consider the initial value problem   

u t = |Du| + V (x, t) , Du in R N × (0, ∞), u = u 0 on R N × {0} , (1.11) 
and set, for all t ≥ 0,

K(t) = {x ∈ R N : u(x, t) ≥ 0}.
Recall that, in the language of front propagation (see, for example, [START_REF] Barles | Front propagation and phase field theory[END_REF]), the family of closed sets (K(t) t≥0 is solution of the front propagation problem

ν = 1 -V (x, t), n starting from K(0) = K 0 .
We have:

Theorem 1.5. Let K 0 be a non-empty compact subset of R N . There exist C > 0 and T > 0 such that, for all t ≥ T ,

K(t) ⊂ (t + C)W.
(1.12)

Moreover, there exists a constant C 0 > 0, independent of K 0 , such that, if K 0 contains a cube of side length C 0 , then there exist C > 0 and T > 0 such that, for all t ≥ T , (t -Ct 2/3 )W ⊂ K(t).

(1.13)

We note that we do not know whether the size condition on K 0 is actually necessary.

The final result of the paper is about homogenization when V depends on x also at the integral scale, i.e., we are interested in the behavior as ε → 0 of the solutions to the initial value problem

u ε t = |Du ε | + V (x, x ε , t ε ), Du ε in R N × (0, T ) u ε = u 0 on R N × {0} , (1.14) 
where

V : R N × R N × R → R N is smooth, bounded, Z N -
periodic with respect to the last two variables, i.e., for all (x, y, s

) ∈ R N × R N × R, V (x, y + k, s + h) = V (x, y, s) , (1.15) 
is divergence free in the fast variable, i.e., for all (x, y, s

) ∈ R N × R N × R, div y V (x, y, s) = 0 , (1.16) 
and satisfies, for all x ∈ R N the "smallness" condition

1 0 Q 1 V (x, y, s)dyds < 1 . (1.17) 
The homogenized initial value problem is

ūt = H(x, Dū) in R N × (0, T ), ū = u 0 on R N . (1.18) 
We have:

Theorem 1.6. Assume (1.15), (1.16) and (1.18). There exists H ∈ C 0 (R N × R N ), which is positively homogeneous of degree one and convex with respect to the second variable, such that, for any initial condition u 0 ∈ BU C(R N ), the solution u ε to (1.14) converges, as ε → 0, locally uniformly in R N × [0, T ] to the solution ū of (1.18). Moreover H satisfies, for all (x, P

) ∈ R N × R N , H(x, P ) ≥ |P | + 1 0 Q 1 V (x, y, s)dyds, P . (1.19) 
The paper is organized as follows. Theorem 1.1 and Theorem 1.2 are proved in Section 2. In Section 3 we prove Theorem 1.3 and Theorem 1.4, while Theorem1.5 is proved in Section 4. In Section 5, we prove an extension of Theorem 1.1 to the case where V = V (x, x/ε, t/ε) has large-scale spatial variation. The Appendix contains a proof of Lemma 2.3, which plays an important role in the proof of Theorem 1.1. About the time this paper was completed, we learned about a similar but less general homogenization result obtained by different methods in [START_REF] Xin | Periodic Homogenization of Inviscid G-Equation for Incompressible Flows[END_REF]. In particular it is proved in [START_REF] Xin | Periodic Homogenization of Inviscid G-Equation for Incompressible Flows[END_REF] that homogenization takes place for time independent advection satisfying

V = V 1 + V 2 with divV 1 = 0 and |V 2 | < 1.
Finally we remark that throughout the paper we will need some basic results from the theory of viscosity solutions, like comparison principles, representation formulae, etc.. All such results can be found, for instance, in [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications[END_REF].

Homogenization

We begin with some preliminary discussion and results to set the necessary background for the proofs of Theorem 1.1 and Theorem 1.2. First, we recall that for any λ > 0 and any P ∈ R N , the "penalized" cell problem

v λ,t + λv λ = |Dv λ + P | + V, Dv λ + P in R N +1 , (2.1) 
has a unique Z N +1 -periodic solution v λ ∈ BU C(R N +1 ), which is actually Hölder continuous and satisfies, for all (x, t) ∈ R N +1 , the bound

-λ -1 |P |(1 + V ∞ ) ≤ v λ ≤ λ -1 |P |(1 + V ∞ ). (2.2)
We also recall that, in the periodic setting, homogenization is equivalent to proving that the (λv λ )'s converge uniformly in R N +1 , as λ → 0, to some constant c(P ) and that c ∈ C 0 (R N ). In this case, H(P ) = c(P ).

In view (2.2), to prove the convergence of the λv λ 's, we need to control their oscillations. We have:

Lemma 2.1. For all P ∈ R N and λ ∈ (0, 1], osc(λv λ ) ≤ C|P |λ, (2.3) 
where

C = 4(1 + V ∞ )(2 1/N α * -1 N + 3).
Before we present the proof of Lemma 2.1, which is one of the most important parts of the paper, we point out its main consequence in the next Corollary 2.2. Let C be the constant given by Lemma 2.1. There exists some H(P ) ∈ R such that λv λ -H(P ) ∞ ≤ C|P |λ .

Proof: The maps λ → λ min v λ and λ → λ max v λ are respectively nonincreasing and nondecreasing. For the sake of completeness we present a formal proof, which can be easily made rigorous using viscosity solutions arguments. Since the two claims are proved similarly, we present details only for the former. To this end, for 0 < λ < µ, let (x, t) be a maximum of v µv λ . Then, at least formally, at (x, t), we have D x,t v µ = D x,t v λ , and

v µ,t + µv µ ≤ |Dv µ + P | + V, Dv µ + P and v λ,t + λv λ ≥ |Dv λ + P | + V, Dv λ + P .
It follows that µv µ (x, t) ≤ λv λ (x, t)

. Let (y, s) be a minimum point of λv λ . Then

µv µ (y, s) ≤ µ(v µ (x, t) -v λ (x, t) + v λ (y, s)) ≤ λv λ (x, t) -µv λ (x, t) + µv λ (y, s) ≤ λv λ (x, t) + λ(v λ (y, s) -v λ (x, t)) ≤ λv λ (y, s),
and, hence, min µv µ ≤ min λv λ .

The above remark combined with Lemma 2.1 implies that the λv λ 's converge uniformly to some constant H(P ) and that λ min v λ ≤ H(P ) ≤ λ max v λ .

2

We continue with the Proof of Lemma 2.1: Without any loss of generality, we may assume that V is smooth. Indeed, if the result holds for any smooth V , then it also holds by approximation for any V ∈ C 0,1 .

Recalling (2.2), w λ = λv λ satisfies, in the viscosity sense,

w λ,t -|Dw λ (x, t)| -V (x, t), Dw λ (x, t) ≥ -C 0 λ in R N +1 , (2.4) 
where

C 0 = 2(1 + V ∞ )|P | .
It follows that (x, t) → w λ (x, t) + C 0 λt is a viscosity super-solution of the level-set initial value problem

   (i) z t = |Dz| + V, Dz in R N × (0, ∞), (ii) z = w λ on R N × {0} . (2.5)
The standard comparison of viscosity solutions then implies that, for all (x, t) ∈

R N +1 , w λ (x, t) + C 0 λt ≥ z(x, t) . (2.6) 
The next step is to understand the evolution of the perimeter of the level-sets of z. For this we need the following result, which is proved in the Appendix.

We have:

Lemma 2.3. Assume that V ∈ C 1,1 (R N +1 ) and let z ∈ BU C(R N +1 ) be a solu- tion of (2.5)(i). Then, for any level θ ∈ ( inf z(•, 0), sup z(•, 0) ) such that {z(•, 0) = θ} = ∂{z(•, 0) > θ} = ∂{z(•, 0) < θ} and |{z(•, 0) = θ}| = 0 ,
and for all t > 0, we have

{z(•, t) = θ} = ∂{z(•, t) > θ} = ∂{z(•, t) < θ}
as long as {z(•, t) < θ} = ∅. Moreover the sets {z(•, t) > θ} and {z(•, t) < θ} have locally of finite perimeter, and |{z(•, t) = θ}| = 0. Finally, for any compactly supported ϕ ∈ C 0 (R N ), the maps t → I(t) = {z(•,t)>θ} ϕ(x)dx and t → J(t) = {z(•,t)<θ} ϕ(x)dx are absolutely continuous and satisfy, for almost all t > 0,

d dt I(t) = {z(•,t)=θ} ϕ(x)(1 -V (x, t), ν(x, t) )dH N -1 (x), and 
d dt J(t) = - {z(•,t)=θ} ϕ(x)(1 + V (x, t), ν(x, t) )dH N -1 (x),
where ν(x, t) denotes in the former identity the measure theoretic outward unit normal to {z(•, t) > θ} at x ∈ ∂{z(•, t) > θ}, while in the latter is the measure theoretic outward unit normal to {z(•, t) < θ} at x ∈ ∂{z(•, t) < θ}.

Continuing with the ongoing proof, suppose that there exists θ ∈ R with

inf w λ (•, 0) < θ < sup w λ (•, 0) , such that {w λ (•, 0) = θ} = ∂{w λ (•, 0) > θ} = ∂{w λ (•, 0) < θ} and |{w λ (•, 0) = θ}| = 0 , and such that |{x ∈ Q 1 : w λ (x, 0) < θ}| < 1/2 .
For all t ≥ 0, set

ρ(t) = |{x ∈ Q 1 : z(x, t) < θ}| .
Let [0, T ) be the maximal interval on which ρ(t) < 1/2 for any t ∈ [0, T ). Note that T > 0 because ρ(0) < 1/2. We claim that, for all 0 ≤ t 1 ≤ t 2 < T ,

ρ(t 2 ) -ρ(t 1 ) ≤ - t 2 t 1 α(s)ρ(s) (N -1)/N ds .
(2.7)

Indeed fix a positive integer R and let Q R = (-R 2 , R 2 ) N . The space periodicity of z gives ρ(t) = R -N |{x ∈ Q R : z(x, t) < θ}| . For h > 0 small, let χ h ∈ C 0,1 (R N ; [0, 1]) be such that χ h = 1 in Q R and χ h = 0 in R N \Q R+h ,
and, for any

t ∈ [0, T ], set ρ R,h (t) = R -N {z(•,t)<θ} χ h (x)dx ,
and note that, lim

h→0 ρ R,h (t) = ρ(t) .
It follows from Lemma 2.3 that, for almost all t ∈ (0, T ),

d dt ρ R,h (t) = -R -N {z(•,t)=θ} χ h (x)(1 + V (x, t), ν(x, t) )dH N -1 (x) . Moreover {z(•,t)=θ} χ h (x)dH N -1 (x) ≥ H N -1 ({z(•, t) = θ} ∩ Q R ),
and, in view of the spatial periodicity of z,

H N -1 ({z(•, t) = θ} ∩ Q R ) ≥ R N H N -1 ({z(•, t) = θ} ∩ Q 1 ) .
The isoperimetric inequality in the box Q 1 and the fact that |{z(

•, t) < θ} ∩ Q 1 | < 1/2 give H N -1 ({z(•, t) = θ} ∩ Q 1 ) ≥ 1 c I |{z(•, t) < θ} ∩ Q 1 | (N -1)/N .
Using once more the space periodicity of z we get

|{z(•, t) < θ} ∩ Q 1 | (N -1)/N = (R + 1) -(N -1) |{z(•, t) < θ} ∩ Q R+1 | (N -1)/N ≥ (R(R + 1) -1 ) N -1 (ρ R,h (t)) (N -1)/N .
Combining all the above we obtain

R -N {z(•,t)=θ} χ h (x)dH N -1 (x) ≥ 1 c I (R(R + 1) -1 ) N -1 (ρ R,h (t)) (N -1)/N .
Next we estimate the integral

{z(•,t)=θ} χ h (x) V (x, t), ν(x, t) dH N -1 (x).
For some constant k depending only on N we have:

- {z(•,t)=θ} χ h (x) V (x, t), ν(x, t) dH N -1 (x) = - {z(•,t)<θ} div(χ h V )(x, t) dx ≤ - {z(•,t)<θ} χ h (x)divV (x, t)dx + Dχ h ∞ V ∞ |Q R+h \Q R | ≤ ( Q R+1 |divV (x, t)| N dx) 1/N ( {z(•,t)<θ} χ h (x) N/(N -1) dx) (N -1)/N + kR N -1 V ∞ ≤ (R + 1)R N -1 divV (•, t) L N (Q 1 ) (ρ R,h (t)) (N -1)/N + kR N -1 V ∞ .
Hence, for almost all t ∈ (0, T ), we get

d dt ρ R,h (t) ≤ -( 1 c I R R + 1 N -1 - R + 1 R divV (•, t) L N (Q 1 ) )(ρ R,h (t)) (N -1)/N + k R V ∞ .
Integrating first over [t 1 , t 2 ] and then letting h → 0 and R → +∞ gives (2.7).

Since α(t) ≥ 0, ρ(t) is non increasing on [0, T ). Hence T = +∞. Integrating (2.7) over (0, t) we obtain, for every t ≥ 0, that

ρ(t) ≤ ρ 1/N (0) - 1 N t 0 α(s) ds N + ,
where [s] + = max{s, 0}.

From the assumption ρ(0) < 1/2, it follows that

t * = 1 + N 2 1/N α * ≥ inf t : t 0 α(s) ds ≥ N 2 1/N ,
and, hence, ρ = 0 in [t * , ∞). The continuity and the spatial periodicity of z then yield that

z ≥ θ in R N × [t * , ∞).
Let k be an integer in the interval [t * , t * + 1]. The space-time periodicity of w λ and (2.6) give inf

t∈[0,1] inf x∈R N w λ (x, t) = inf t∈[k,k+1] inf x∈R N w λ (x, t) ≥ inf t∈[k,k+1] inf x∈R N z(x, t) -C 0 λ(t * + 2) ≥ θ -C 0 λ(t * + 2). (2.8) It follows that, if θ ∈ R is such that |{x ∈ Q 1 : w λ (x, 0) < θ}| < 1/2, (2.9) then inf t∈[0,1] inf x∈R N w λ (x, t) ≥ θ -Cλ (2.10)
where

C = C 0 (t * + 2).
Now we derive an upper bound. To this end suppose that θ ∈ R with

inf w λ (•, 0) < θ < sup w λ (•, 0) , such that {w λ (•, 0) = θ} = ∂{w λ (•, 0) > θ} = ∂{w λ (•, 0) < θ} and |{w λ (•, 0) = θ}| = 0 , and such that |{x ∈ Q 1 : w λ (x, 0) > θ}| < 1/2. (2.11)
The claim is that max

x,t w λ (x, t) ≤ θ + Cλ , (2.12) 
where

C = 2|P |(1+ V ∞ )(2+N 2 -1/N (α * ) -1
). Indeed, arguing by contradiction, we assume that max

x,t w λ (x, t) > θ + Cλ .
Then, by continuity and periodicity of w λ , there is some τ

∈ [0, 1] such that |{x ∈ Q 1 : w λ (x, τ ) > θ + Cλ}| > 0 .
Let z satisfy (2.5-(i)) with initial condition z = w λ on R N × {τ }. As before, we have, for all (x, t) ∈ R N × [τ, +∞),

w λ (x, t) ≥ z(x, t) -C 0 λ(t -τ ). Set ρ(t) = |{x ∈ Q 1 : z(x, t) > θ + Cλ}| t ≥ τ , (2.13 
) and observe that ρ is continuous with ρ(τ ) > 0. Then, arguing as before, we find that, for all τ ≤ t 1 ≤ t 2 ,

ρ(t 2 ) -ρ(t 1 ) ≥ t 2 t 1 α(s) (min{ρ(s), 1 -ρ(s)}) (N -1)/N ds .
(2.14)

Since α(t) ≥ 0 for all t ≥ 0, it follows that ρ is nondecreasing on [τ, +∞). We claim that there is some

T ≤ t * = τ + 1 + N/(2 1/N α * ) such that ρ ≥ 1/2 for t ≥ T . Indeed, otherwise, ρ < 1/2 on [τ, t * ] and integrating (2.14) over [τ, t * ] gives ρ(t * ) ≥ ( 1 N t * τ α(s) ds) N > 1 2 ,
which contradicts our assumption. Let now k be an integer in [T, T + 1]. The time-periodicity of w λ yields

1/2 ≤ ρ(k) = |{x ∈ Q 1 : z(x, k) > θ + Cλ}| ≤ |{x ∈ Q 1 : w λ (x, k) + C 0 λ(k -τ ) > θ + Cλ}| = |{x ∈ Q 1 : w λ (x, 0) + C 0 λ(k -τ ) > θ + Cλ}|. It follows from k ≤ (t * + 1) that C 0 (k -τ ) ≤ C and |{x ∈ Q 1 : w λ (x, 0) > θ}| ≥ 1/2,
which contradicts the definition of θ, and, hence, (2.12) holds.

Finally set

θ = sup θ ∈ R : |{x ∈ Q 1 : w λ (x, 0) < θ}| < 1 2 . (2.15)
In view of the above, using (2.10) and (2.12), we get min

t∈[0,1] min x∈R N w λ (x, t) ≥ θ -Cλ (2.16)
and max

t∈[0,1] max x∈R N w λ (x, t) ≤ θ + Cλ , (2.17) 
where

C = 2|P |(1 + V ∞ )(3 + N 2 -1/N /α * ).
It follows that osc(w λ ) ≤ 2Cλ, and, therefore, (2.3).

2 We proceed with the Proof of Theorem 1.1 : Let H(P ) be defined by Corollary 2.2. The fact that the map P → H(P ) is positively homogeneous, convex and Lipschitz continuous follows easily from the properties of (2.1) and the comparison principle of viscosity solutions.

To prove (1.6), first we perturb (2.1) by a vanishing viscosity, i.e., for η > 0 we consider

v η λ,t + λv η λ -η∆v η λ = |Dv η λ + P | + V, Dv η λ + P in R N +1 , (2.18) 
which has a unique

Z N +1 -periodic solution v η λ ∈ BU C(R N +1
) which is at least in C 1 (R N +1 ) and converges uniformly, as η → 0, to v λ .

Integrating (2.18) over Q + 1 and using the periodicity, we find

Q + 1 λv η λ dx dt = Q + 1 |Dv η λ + P |dx dt + Q + 1 V, Dv η λ dx dt + V , P . Set ξ(x) = P, x , v η λ (t) = Q 1 v η λ (x, t)dx and ξ = Q 1 ξ(x)dx.
Since both V and v λ are Z N +1 -periodic, for each t ∈ [0, 1], we have

Q 1 V (x, t), Dv η λ (x, t) dx = - Q 1 (v η λ (x, t) -v η λ (t) ) divV (x, t) dx = - Q 1 (v η λ (x, t) -v η λ (t) + ξ(x) -ξ )divV (x, t) dx+ Q 1 (ξ(x) -ξ )divV (x, t)dx.
Applying, for each t ∈ [0, 1], Hölder's and Poincaré's inequalities yields

Q 1 (v η λ (x, t) -v η λ t + ξ(x) -ξ )divV (x, t) dx ≤ ( Q 1 |v η λ (x, t) -v η λ t + ξ(x) -ξ | N/(N -1) dx) (N -1)/N ( Q 1 |divV (x, t)| N dx ) 1/N ≤ c I ( Q 1 |Dv η λ (x, t) + P |dx) divV (•, t) L N (Q I ) ,
and, since

Q + 1 (ξ(x) -ξ )divV (x, t)dxdt = xdivV , P , Q + 1 λv η λ (x, t)dx dt ≥ 1 0 (1 -c I divV (•, t) L N (Q I ) ) Q 1 |Dv η λ (x, t) + P |dx dt + V + xdivV , P . (2.19)
Finally, in view of (1.5), we have, for all t ≥ 0,

1 -c I divV (•, t) L N (Q I ) ≥ 0,
while the periodicity of v λ implies, again for all t ≥ 0, that

|P | = Q 1 (Dv η λ (x, t) + P )dx ≤ Q 1 |Dv η λ (x, t) + P |dx .
Letting η → 0 and then λ → 0 in (2.19) we obtain (1.6). 2 Error estimates for the periodic homogenization of coercive Hamilton-Jacobi equations were obtained earlier in [START_REF] Capuzzo-Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF]. Although the proof of Theorem 1.2 is almost the same as the one of the analogous result in [START_REF] Capuzzo-Dolcetta | On the rate of convergence in homogenization of Hamilton-Jacobi equations[END_REF], we present it here for the sake of completeness. To simplify the presentation below we denote by C constants that may change from line to line but depend only on u 0 , Du 0 ∞ and V .

We have: Proof of Theorem 1.2 : For all (x, t, P

) ∈ R N × R × R N , set H(x, t, P ) = |P | + V (x, t), P .
To avoid any technical difficulties due to the unboundedness of the domain, first we assume that u 0 is (M ǫ)Z N -periodic for some positive integer M , which implies that u ǫ and ū are also (M ǫ)Z N -periodic, and we obtain the estimate with constant independent of M . Then we use the finite speed of propagation property of the averaged initial value problem, to remove the restriction on u 0 .

Let

v λ = v λ (•, •; P ) ∈ BU C(R N +1
) be the Z N +1 -periodic solution to (2.1) and recall that the map

P → λv λ (•, •; P ) is (1 + V ∞ )-Lipschitz continuous;
(2.20)

to simplify statements heretofore we say the f is L-Lipschitz continuous if it is Lipschitz continuous with constant at most L.

Fix T > 0 and consider Φ :

R N × [0, T ] × R N × [0, T ] → R given by Φ(x, t, y, s) = u ε (x, t) -u(y, s) -εv λ x ε , t ε , x -y ε β - |x -y| 2 2ε β - (t -s) 2 2ε -δs,
where β ∈ (0, 1), λ ∈ (0, 1) and δ > 0 are to be chosen later. Since Φ is periodic in the space variables, it has a maximum at some point (x, t, ŷ, ŝ). The main part of the proof consists in showing that either t = 0 or ŝ = 0 for a suitable choice of λ and δ.

We argue by contradiction and assume that t > 0 and ŝ > 0. Since ū is Lipschitz continuous and (2.20) holds, by standard arguments from the theory of viscosity solutions, we have

|x -ŷ| ε β ≤ C 1 + ε 1-β λ and | t -ŝ| ε ≤ C . (2.21) We claim that t - ŝ ε ≤ H x - ŷ ε β + C ε 1-β λ + λ . (2.22)
Indeed for α, β > 0 small, let (x α , t α , y α , r α , z α ) be a maximum point of Ψ 1 given by

Ψ 1 (x, t, y, r, z) = u ε (x, t) -εv λ y, r, z - ŷ ε β - |x -ŷ| 2 2ε β - (t -ŝ) 2 2ε - 1 2α |εy -x| 2 + |z -x| 2 + |εr -t| 2 - β 2 (|x -x| 2 + (t -t) 2 ).
Since (x, t) is the unique maximum point of Ψ 1 (x, t, x/ε, t/ε, x), we have that (x α , t α , y α , r α , z α ) converges to (x, t, x/ε, t/ε, x) as α → 0, with lim

α→0 + 1 2α |εy α -x α | 2 + |z α -x α | 2 + |εr α -t α | 2 = 0 , (2.23) 
while (2.20) implies that

|z α -x α | α ≤ C ε 1-β λ . ( 2 

.24)

From the equation satisfied by u ε we have

t α - ŝ ε + t α -εr α α + β(t α -t) ≤ H x α ε , t α ε , x α - ŷ ε β + x α -εy α α + x α -z α α + β(x α -x) , (2.25) 
while from the equation satisfied by v λ we also have

t α -εr α α + λv λ y α , r α , z α - ŷ ε β ≥ H y α , r α , x α -εy α α + z α - ŷ ε β .
Using the bound on the oscillation of the λv λ 's in Lemma 2.1, we get

H z α - ŷ ε β + Cλ |z α -ŷ| ε β ≥ H y α , r α , x α -εy α α + z α - ŷ ε β - t α -εr α α .
Combining the above inequality with (2.25) and using the regularity of H gives

H( z α - ŷ ε β ) + Cλ |z α -ŷ| ε β ≥ t α - ŝ ε + β(t α -t) -C( |z α -x α | ε β + |z α -x α | α + β|x α -x|) -C( x α ε -y α + t α ε -r α )( |x α -εy α | α + |z α -ŷ| ε β ).
Using (2.23) and (2.24) we now let α → 0 to get

H x - ŷ ε β + Cλ |x -ŷ| ε β ≥ t - ŝ ε -C ε 1-β λ .
Recalling (2.21) we obtain

H x - ŷ ε β + C λ + ε 1-β + ε 1-β λ ≥ t - ŝ ε ,
and, since λ ∈ (0, 1), we finally get (2.22).

We now show that t -

ŝ ε -δ ≥ H x - ŷ ε β -C ε 1-β λ . ( 2 

.26)

To this end, for α, β > 0, we consider

Ψ 2 (y, s, z) = ū(y, s) + εv λ x ε , t ε , x -z ε β + |x -y| 2 2ε β + ( t -s) 2 2ε + δs + |z -y| 2 2α + β 2 (|y -ŷ| 2 + |s -ŝ| 2 ),
which has a minimum at some point (y α , s α , z α ). Using (2.20) and the fact that (ŷ, ŝ) is the unique minimum of the map (y, s) → Ψ 2 (y, s, y), we find that (y α , s α , z α ) converges to (ŷ, ŝ, ŷ) as α → 0, with

|z α -y α | α ≤ C ε 1-β λ and lim α→0 |z α -y α | 2 α = 0 . Since ū solves (1.3) we have t -s α ε -δ ≥ H( x -y α ε β - y α -z α α -β(y α -ŷ)) ,
and, in view of the Lipschitz continuity of H, letting α → 0 + gives (2.26).

Combining (2.22) and (2.26) we obtain

δ -C ε 1-β λ + λ ≤ 0 ,
which for λ = ε (1-β)/2 and δ = 3Cε (1-β)/2 gives a contradiction. So either t = 0 or ŝ = 0.

Next we estimate max x,y,s Φ(x, 0, y, s) and max x,t,y Φ(x, t, y, 0). We have: max

x,y,s Φ(x, 0, y, s)

≤ max

x,y,s

u 0 (x) -u 0 (y) + Cs + C ε 1-β λ |x -y| - |x -y| 2 2ε β - s 2 2ε -δs ≤ max x,y C|y -x| + Cε - |x -y| 2 2ε β ≤ C ε β + ε ≤ Cǫ β ,
and, similarly, max

x,y,s

Φ(x, t, y, 0) ≤ C ε β .
Therefore, for any (x, t) ∈ R N × [0, T ], we have

u ε (x, t) -ū(x, t) ≤ δt + Cǫ β ≤ CT ε (1-β)/2 + Cε β .
Choosing β = 1/3 finally gives

u ε (x, t) -u(x, t) ≤ Cε 1/3 .
This reverse inequality can be obtained in the same way.

2

Enhancement of speed

To prove Theorem 1.3 and Theorem 1.4 we need three results which we formulate as Lemmas next but present their proof at the end of the section.

We begin with Lemma 3.1. Let V and H be as in Theorem 1.1. Then, for any Z-periodic c ∈ C 1 (R; R N ), the averaged Hamiltonian associated to Vc is H -

1 0 c(s)ds, • . The second is Lemma 3.2.
The divergence zero condition (1.9) is equivalent to the fact that, for any fixed time t, the map x → z(x, t) + P, x is constant along the flow of the ode X ′ (s) = V (X(s), t).

To state the final result we recall the notion of an ε-mollifier. To this end, let φ ∈ C ∞ c (R N +1 ; [0, 1]) be such that φ(0) = 1 and R N+1 φ = 1 and define the ε-mollifier φ ε by φ ε = ε -(N +1) φ(x/ε, t/ε). Then R N+1 φ ε = 1 and, for any f ∈ L 1 loc (R N +1 ), f ε = f * φ ε is a smooth approximation of f . For the rest of the section we assume that, for each t ∈ R,

div x V (•, t) = 0 and Q 1 V (x, t)dx = 0; (3.1)
recall that the average zero condition is actually not a restriction, since we can always replace V by V -Q 1 V (x, t)dx a fact, which, in view of Lemma 3.1, simply adds a translation to the effective Hamiltonian. The final preliminary result is Lemma 3.3. Assume (3.1) and fix P ∈ R N . There exits a bounded,

Z N +1 - periodic z ∈ BV loc (R N × R) such that, for all ε > 0 the smooth functions z ε = z * φ ε 's satisfy in R N +1 z ε,t + H(P ) ≥ |Dz ε + P | + R N+1 (z(y, s) + P, y ) Dφ ε (• -y, • -s), V (y, s) dyds . (3.2)
We proceed with Theorem 1.3, which is a straightforward consequence of Theorem 1.4. We have: Proof of Theorem 1. where ẑ is given by Theorem 1.4.

Since V is independent of x, z 1 also satisfies (1.9) in the sense of distributions, and, since z is periodic z 1 is actually a constant. In this case (1.9) reduced to V (x), P = 0 for all x ∈ R N .

When N = 2 and V = 0 there exists a Z 2 -periodic stream function E : R 2 → R such that V = (-∂E ∂x 2 , ∂E ∂x 1 ). In this case, if P = (P 1 , P 2 ) and q = (-P 1 , P 2 ), V, P = 0 in R 2 becomes 0 = DE(x), q .

If q is an irrational direction, then the map t → x + tq is dense in R 2 /Z 2 . Since E is constant along this trajectory, E is constant and therefore V is identically equal to 0. Otherwise, t → x + tq is periodic and E has to be constant along this trajectory. This means that E = Ẽ( •, P ) for some smooth periodic map Ẽ : R → R, and, hence, V is a shear advection.

Conversely, if V, P = 0 in R N , then v λ = |P |/λ is the unique solution to (2.1), and λv λ = |P | clearly converges uniformly to H(P ) = |P |.

2

We turn now to the Proof of Theorem 1.4: Assume that, for some P ∈ R N \{0}, H(P ) = P and let z be given by Lemma 3.3. We first prove that z is a function of only P, x and t. More precisely, we claim that there exits z ∈ BV loc (R 2 ) such that z = z( P, x , t) and zs (s, t) ≥ -1 in the sense of distributions.

(

To this end, let φ ε and z ε = z * φ ε be as in Lemma 3.3; note that z ε is Z N +1periodic. Then, for all (x, t) ∈ R N × R,

Q 1 R N+1
(z(y, s) + P, y ) Dφ ε (xy, ts), V (y, s) dyds dx = 0 .

(3.4)

Indeed the periodicity of z and V gives,

Q 1 R N+1
(z(y, s) + P, y ) Dφ ε (xy, ts), V (y, s) dyds dx

= ∂Q 1 R N+1 (z(y, s) + P, y )φ ε (x -y, t -s) V (y, s), ν x dyds dH N -1 (x) = R N+1 ∂Q 1 (z(x -y, t -s) + P, x -y )φ ε (y, s) V (x -y, t -s), ν x dH N -1 (x) dyds = R N+1 ∂Q 1 P, x -y φ ε (y, s) V (x -y, t -s), ν x dH N -1 (x) dyds. while (3.1) yields R N+1 ∂Q 1 P, x -y φ ε (y, s) V (x -y, t -s), ν x dH N -1 (x) dyds = R N+1 Q 1 div x ( P, x -y φ ε (y, s)V (x -y, t -s)) dx dyds = R N+1 Q 1 P, V (x -y, t -s) φ ε (y, s)dx dyds = 0 ,
and, hence, (3.4) holds.

Next we integrate (3.2) over Q 1 × (0, 1). Using (3.4) and the periodicity of z ε (•, t) we get

|P | = H(P ) ≥ 1 0 Q 1 |Dz ε (y, t) + P |dydt ≥ 1 0 Q 1 (Dz ε (y, t) + P )dy dt = |P | .
It follows that, for all (x, t) ∈ R N +1 , there exists θ(x, t) ≥ -1 such that Dz ε (x) = θ(x, t)P . Thus z ε is of the form z ε (x, t) = zε ( x, P , t), with zε : R 2 → R satisfying zε,s (s, t) ≥ -1.

Passing to the limit ε → 0, we also find that z = z( x, P , t) for some map z ∈ BV loc (R 2 , R) satisfying zs (s, t) ≥ -1 in the sense of distributions. Whence (3.3) holds.

Next we claim that z satisfies, in the sense of distributions,

zt (s, t) = zs (s, t)|P | in R 2 , (3.5) 
and that (1.9) holds. Note that this proves the "if" part, since (3.5) implies the existence of a map ẑ

∈ BV loc (R, R) such that z(s, t) = ẑ(|P | -1 s + t) .
Moreover we have ẑ′ (s) ≥ -|P | in the sense of distributions because zs (s, t) ≥ -1 in the same sense. Finally, z(x, t) = ẑ P,z |P | + t is periodic in space and time.

We continue with the proofs of (3.5) and (1.9). If z is constant, then (3.5) is obvious and (1.9) just follows from (3.2) when ε → 0.

Next we assume that z is not constant. In this case z = z( •, P , t) is Z N +1periodic and not constant. Therefore P has to be a rational direction. So, up to a rational change of coordinates, we may assume without loss of generality that P = θe 1 for some θ > 0, while V is still Z N +1 -periodic.

Using the notation x = (x 1 , x ′ ) for each vector of R N with x 1 ∈ R and

x ′ ∈ R N -1 , for a fixed (x 1 , t) ∈ R 2 we integrate (3.2) over the cube {x 1 } × Q ′ 1 × {t}, where Q ′ 1 = (-1/2, 1/2) N -1
, and obtain zε,t ( P, x , t)

+ |P | ≥ (z ε,s ( P, x , t) + 1)|P |+ Q ′ 1 R N+1 (z(θ(x 1 -y 1 ), t -s) + θ(x 1 -y 1 )) Dφ ε (y, s), V (x -y, t -s) dyds dx ′ .
(3.6) It turns out that the last integral in the right-hand side of the above inequality vanishes. Indeed

Q ′ 1 R N-1 Dφ ε (y, s), V (x -y, t -s) dy ′ dx ′ = R N-1 ∂φ ε ∂x 1 (y, s) Q ′ 1 V 1 (x -y, t -s)dx ′ dy ′ + N j=2 Q ′ 1 R N-1 φ ε (y, s) ∂V j ∂x j (x -y, t -s)dy ′ dx ′ .
The periodicity of V yields, for any j = 2, . . . , N ,

R N-1 φ ε (y, s) Q ′ 1 ∂V j ∂x j (x -y, t -s)dx ′ dy ′ = 0 ,
while the divergence free condition and, again, the periodicity give

∂ ∂x 1 Q ′ 1 V 1 (x-y, t-s)dx ′ = Q ′ 1 ∂V 1 ∂x 1 (x-y, t-s)dx ′ = - N j=2 Q ′ 1 ∂V 1 ∂x j (x-y, t-s)dx ′ = 0 .
On the other hand,

1/2 -1/2 Q ′ 1 V 1 (x -y, t -s)dx ′ dx 1 = Q 1 V 1 (x, t -s)dx = 0,
and, hence, for all x 1 ∈ R,

Q ′ 1 V 1 (x -y, t -s)dx ′ = 0 . Therefore Q ′ 1 R N-1
Dφ ε (y, s), V (xy, ts) dy ′ dx ′ = 0 , which, going back to (3.6), proves that zε,t ( P, x , t) ≥ zε,s ( P, x , t

)|P | in R N +1 .
Since zε is periodic, integrating the above inequality over (-1/2, 1/2) × (0, 1) shows that in fact it must be an equality. Letting ε → 0 then gives (3.5).

To prove (1.9), we first combine (3.2), (3.3) and (3.5) to get, for all (x, t) ∈ R N +1 , 0 ≥ R N+1 (z(y, s) + P, y ) Dφ ε (xy, ts), V (y, s) dyds .

Averaging over the cube Q 1 we see that, as a matter of fact, equality must hold for all (x, t) ∈ R N +1 .

Integrating the resulting equality against any compactly supported smooth function ψ : R N → R we get

R N R N+1
ψ(x)(z(y, s) + P, y ) Dφ ε (xy, ts), V (y, s) dyds dx = 0 , and after integrating again by parts and letting ε → 0, we obtain, for all t ∈ R, R N Dψ(x), (z(x, t) + P, x )V (x, t) dx = 0 , which is exactly (1.9).

To prove the "only if" part let ẑ be as claimed. Since ẑ ∈ BV loc (R, R), we may assume without loss of generality that ẑ, and, hence, z(x, t) = ẑ( P,x |P | + t) are lower semi-continuous.

We show next that z satisfies, in the viscosity sense,

∂ t z + |P | ≥ |Dz + P | + V, Dz + P in R N +1 . (3.7)
To this end, let φ be a smooth test function such that z ≥ φ with equality at (x, t). It follows from equality z(x, t) = ẑ( P,x |P | + t) that Dφ(x, t) = θP/|P | where θ = φ t (x, t).

Since ẑ′ ≥ -|P | in the sense of distribution, it follows that θ ≥ -|P |. Moreover recalling (1.9) and Lemma 3.2, we have, for a fixed t, that the function x → V (x, t) + P, x is constant under the flow of the ode X ′ (s) = V (X(s), t).

Let now X be a solution with X(0) = x and t = t. Then, for any s ∈ R, φ(x, t)+ P, x = z(x, t)+ P, x = z(X(s), t)+ P, X(s) ≥ φ(X(s), t)+ P, X(s) , and, therefore,

0 = d ds | s=0
[φ(X(s), t) + X(s), P ] = Dφ(x, t) + P, V (x, t) .

Combining the above relations gives

φ t (x, t) + |P | = |Dφ(x, t) + P | + V (x, t), Dφ(x, t) + P ,
i.e., z is a super-solution of (3.7).

Then it is easy to check that z(x, t) = z(x, t)

+ |P | λ + z ∞ is a super-solution of (2.

1). It then follows from the comparison principle that

v λ ≤ z + λ -1 |P | + z ∞ .
Recalling that λv λ converges uniformly, as λ → 0, to H(P ), we obtain H(P ) ≤ |P |. Since the reverse inequality always holds, the proof of the implication is complete.

2

We continue with the proofs of the lemmas. We begin with the Proof of Lemma 3.1: Fix λ > 0 and P ∈ R N , let v λ be the solution of (2.1) and us recall that λv λ converges uniformly, as λ → 0, to H(P ).

Set c = 1 0 c(s)ds and consider w λ ∈ BU C(R N +1 ) given by

w λ (x, t) = v λ (x - t 0 c(s)ds, t) - t 0 (c(s) -c)ds + c λ , P + 2 c ∞ |P | .
It follows that w λ is a super-solution of

z λ,t + λz λ = |Dz λ + P | + V -c, Dz λ + P in R N +1 . (3.8)
We only present a formal proof, which can be easily justified using viscosity solution arguments. To this end observe that it is immediate from the definition of w λ that w λ,t + λw λ ≥ -Dv λ , c(t) + v λ,tcc, P + λv λc, P , while

|Dw λ + P | + V -c, Dw λ + P = |Dv λ + P | + V -c, Dv λ + P ;
the comparison principle now gives w λ ≥ z λ where z λ is the solution of (3.8).

Since the λz λ 's and the λw λ 's converge uniformly, as λ → 0, to the averaged Hamiltonian Hc (P ) associated to Vc and to H(P )c, P respectively, we get Hc (P ) ≤ H(P )-c, P . The opposite inequality is proved similarly by considering -c instead of c.

2

We continue with the Proof of Lemma 3.2 : Let X x (•) be the solution of X ′ (s) = V (X(s), t) with initial condition x at time s = 0. Then, for any h ∈ R and ψ :

C ∞ c (R N ) the divergence zero property of V yields R N ψ(x)(z(X x (h), t) + P, X x (h) )dx = R N ψ(X x (-h))(z(x, t) + P, x )dx .
Therefore, in view of (1.9),

d dh | h=0 R N ψ(x)(z(X x (h), t) + P, X x (h) )dx = R N Dψ(x), V (x, t) (z(x, t) + P, x )dx = 0 ,
Applying this last equality to the test function ψ • X x (-s) we get

d dh | h=0 R N ψ(x)(z(X x (s + h), t) + P, X x (s + h) )dx = d dh | h=0 R N ψ(X x (-s))(z(X x (h), t) + P, X x (h) )dx = 0 . Hence R N ψ(x)(z(X x (s), t) + P, X x (s) )dx is constant in time, which means that z(•, t) is constant along the flow. 2 
We conclude with the Proof of Lemma 3.3 : For λ > 0, let v λ be the solution of of (2.1) and set

z λ (x, t) = v λ (x, t) -v λ (0, 0).
It follows from Lemma 2.1 and Corollary 2.2 that, for some C > 0 independent of λ,

z λ ∞ ≤ C|P |.
Next we show that the z λ 's are also bounded in BV loc (R N +1 ). Indeed, for α > 0, consider the Z N +1 -periodic solution v λ,α to

v λ,α,t + λv λ,α = α∆v λ,α + |Dv λ,α + P | + V, Dv λ,α + P in R N +1 , (3.9) 
which is at least in C 1,1 and, moreover, converges uniformly, as α → 0, to v λ . Integrating (3.9) over a cylinder of the form Q R × (-R, R) for some positive integer R, we obtain, using the periodicity, that

Q R ×(-R,R) λv λ,α ≥ Q R ×(-R,R) |Dv λ,α + P | + Q R ×(-R,R) V (x, t), Dv λ,α (x, t) + P dxdt .
Since, in view of (3.1),

Q R V (x, t), Dv λ,α (x, t) + P dx = 0, it follows that Q R ×(-R,R) |Dv λ,α + P | ≤ 2R N +1 λv λ,α ∞ . (3.10) Let Φ ∈ C ∞ c (Q R × (-R, R); R N +1
) be such that |Φ(x, t)| ≤ 1 for all (x, t) ∈ R N +1 . From (3.9) and (3.10) we get

Q R ×(-R,R) v λ,α div x,t Φdxdt = - Q R ×(-R,R) [v λ,α,t Φ + Dv λ,α , Φ ]dxdt = - Q R ×(-R,R) [(λv λ,α -α∆v λ,α -|Dv λ,α + P | -V, Dv λ,α + P )Φ + Dv λ,α , Φ ]dxdt ≤ C R (P ) λv λ,α ∞ + α Q R ×(-R,R) v λ,α ∆Φdxdt,
where C R (P ) depends only on N , R, V ∞ and P .

Letting α → 0 yields

Q R ×(-R,R) v λ div x,t Φdxdt ≤ C R (P ) λv λ ∞ ≤ C R (P )( H(P ) + Cλ) , (3.11) 
which in turn implies, in view of the assumptions on Φ, that the z λ 's are bounded in L ∞ and in BV loc uniformly with respect to λ. Hence the z λ 's converge, up to a subsequence and in L 1 loc , to some Z N +1 -periodic z ∈ BV loc (R N +1 ). Let ε > 0, φ ε and z ε as in statement of the lemma, set z λ,ε = φ ε * z λ , and

z λ,α,ε = φ ε * z λ,α and fix (x, t) ∈ R N +1 .
It follows from (3.9) that

z λ,α,ε,t + λz λ,α,ε + λv λ,α (0, 0) ≥ α∆z λ,α,ε + |Dz λ,α,ε + P | + R N+1 φ ε (x -y, t -s) V (y, s), Dz λ,α (y, s) + P dyds .
Integrating by parts and using (3.1) we find

z λ,α,ε,t + λz λ,α,ε + λv λ,α (0, 0) ≥ α∆z λ,α,ε + |Dz λ,α,ε + P | + R N+1
(z λ,α (y, s) + P, y ) Dφ ε (xy, ts), V (y, s) dyds .

Letting first α → 0 and then λ → 0 gives (3.2). 

Convergence to the Wulff shape

We begin recalling some important facts from the theory of front propagation. The first is (see, for instance, [START_REF] Barles | Front propagation and phase field theory[END_REF]), that the family of sets (K(t)) t≥0 is independent of the choice of u 0 as long as K 0 = {x ∈ R n : u 0 (x) ≥ 0}. The second (again see [START_REF] Barles | Front propagation and phase field theory[END_REF] and the references therein), which we will use repetitively in the sequel, is the following superposition principle of the geometric flow. If (K θ 0 ) θ∈Θ is an arbitrary family of non-empty closed subsets of R N , with corresponding solution (K θ (t)) t≥0 , then the solution starting from θ∈Θ K θ 0 is given by ( θ∈Θ K θ (t)) t≥0 . This can be seen either by using the control representation of the geometric flow or the stability and comparison properties of viscosity solutions. A consequence is the well known inclusion principle. If K 0 ⊂ K ′ 0 are two non-empty closed subsets of R N , then the corresponding solutions (K(t)) t≥0 and (K ′ (t)) t≥0 satisfy K(t) ⊂ K ′ (t) for all t ≥ 0.

We also remark that the convergence, as t → ∞, of the level sets of geometric equations without spatio-temporal inhomogeneities was considered in [START_REF] Ishii | Threshold dynamics type approximation schemes for propagating fronts[END_REF]. The results of [START_REF] Ishii | Threshold dynamics type approximation schemes for propagating fronts[END_REF] do not, however, apply to the problem at hand. The proof of Theorem 1.5 is long. We formulate two important steps as separate lemmas which we prove at the end of the section.

The first is about some "controllability" estimates. We have:

Lemma 4.1. Assume (3.1). There exist a positive integer n 0 and T > 0 such that, for all x ∈ R N , the solution ( K(t)) t≥0 of the front propagation problem starting from the set

x + {k ∈ Z N : |k| ≤ n 0 } contains Q 1 (x) at time T .
The second is about some growth property for fronts.

Lemma 4.2. There exits a positive integer R and positive constants r and T 1 such that, if the initial compact set

K 0 ⊂ R N contains a set of the form Q R(k)
for some k ∈ Z N , then the solution (K(t)) t≥0 of the front propagation problem starting from K 0 satisfies, for all t ≥ 0,

Q rt (k) ⊂ K(t + T 1 ) ∀t ≥ 0 .
We continue with the Proof of Theorem 1.5 : We first show (1.12). It is well known (see [START_REF] Barles | Front propagation and phase field theory[END_REF]) that the characteristic function 1 K(t) of K(t) is a solution to the geometric equation

∂ t u = |Du| + V, Du in R N × (0, +∞) . (4.1)
Fix next a direction ν ∈ R N with |ν| = 1. For λ > 0, let v λ be the solution of

v λ,t + λv λ = |Dv λ + ν| + V, Dv λ + ν in R N +1 ,
and recall that there is some constant C independent of ν and λ such that

osc(v λ ) ≤ C and λv λ -H(ν) ∞ ≤ Cλ .
It is immediate that

z(x, t) = v λ (x, t) -v λ (0) + ν, x + ( H(ν) + Cλ)t + C , with C = C -min y∈K 0 ν, x + 1 ,
is a super-solution of (4.1). Since (4.1) geometric, it is immediate that max(z, 0) is also a super-solution. Moreover, we clearly have max(z(•, 0), 0) ≥ 1 K 0 . The standard comparison gives, for all (x, t) ∈ R N × [0, +∞), max(z(x, t), 0) ≥ 1 K(t) (x) , which, in turn, implies that, for all t ≥ 0,

K(t) ⊂ {x ∈ R N : z(x, t) ≥ 1} .
Recalling that H(ν) ≥ |ν| = 1, we find, for all (x, t

) ∈ R N × [1, ∞), z(x, t) ≤ ν, x + ( H(ν) + Cλ)t + C + C ≤ ν, x + H(ν)((1 + Cλ)t + C + C) ,
and, therefore, for all t ≥ 0,

K(t) ⊂ {x ∈ R N : ν, x + H(ν)((1 + Cλ)t + C + C -1) ≥ 0} ∀t ≥ 1 .
Letting λ → 0, we get, for all t ≥ 0 and a new positive constant C,

K(t) ⊂ {x ∈ R N : ν, x + H(ν)(t + C) ≥ 0} ∀t ≥ 1 .
Taking the intersection of the right-hand side over all ν we obtain, by the definition of W, that, for all t ≥ 0,

K(t) ⊂ (t + C)W .
The proof of (1.13) is more intricate. To this end, let R, r and T 1 be defined by Lemma 4.2 and let (K(t)) t≥0 be the solution of the front propagation problem starting at K 0 ⊂ R N , a compact set which contains Q R(k) for some k ≥ Z N . Then, for all t ≥ 0,

B rt ⊂ K(t + T 1 ). (4.2)
Recall that u ε (x, t) = 1 K(t/ε) (x/ε) is the solution to

u ε t = |Du ε | + V (x/ε, t/ε), Du ε in R N × (0, ∞), u ε (x, 0) = 1 K 0 (x/ε). (4.3)
and, in view of (4.2), for all (x, t) ∈ R N +1 ,

u ε (x, t) ≥ 1 B r(t/ε-T 1 ) (x/ε) = 1 B r(t-εT 1 ) (x) .
Fix next δ ∈ (0, 1) such that T 1 + δ/(rε) is an integer and, for w δ (x) = (δ -|x|) ∨ 0, let w ε δ be the solution of (4.3) with initial datum w δ . Then we know from Theorem 1.2 that there exists a constant C > 0 such that, for all t ∈ (0, 1),

w ε δ -wδ ∞ ≤ Cε 1/3
where wδ is the solution of the homogenized problem wδ,t = H(D wδ ) in R N × (0, 1) , wδ (•, 0) = w δ on R N .

Note that the constant C is independent of δ because the w δ 's have Lipschitz constant which are bounded uniformly in δ.

From the Lax-Oleinik formula, wδ is given, for (x, t) ∈ R N × [0, ∞) by wδ (x, t) = sup y∈W w δ (xty) .

Since w δ ≤ 1 B δ ≤ u ε (•, εT 1 + δ/r), it follows, from the time-periodicity of V and the choice of δ, that, for all (x, t) ∈ R N × [0, 1]),

w ε δ (x, t) ≤ u ε (x, t + εT 1 + δ/r) . Hence, for all t ∈ [0, 1], {w ε δ (•, t) ≥ δ/2} ⊂ {u ε (•, t + εT 1 + δ/r) ≥ δ/2}, while {w ε δ (•, t) ≥ δ/2} ⊃ { wδ (•, t) ≥ δ/2 + Cε 1/3 } ⊃ { sup y∈W w δ (• -ty) ≥ δ/2 + Cε 1/3 } . If we choose δ/2 -Cε 1/3 > 0, then { sup y∈W w δ (• -ty) ≥ δ/2 + Cε 1/3 } ⊃ {x : sup y∈W (δ -|x -ty|) ≥ δ/2 + Cε 1/3 } ⊃ tW .
Therefore, for all t ∈ [0, 1],

εK((t

+ εT 1 + δ/r)/ε) = {u ε (•, t + εT 1 + δ/r) ≥ δ/2} ⊃ tW ,
i.e., for all t ∈ [0, 1/ε],

K(t + T 1 + δ/(rε)) ⊃ tW . (4.4) 
Finally, for t sufficiently large, choose ε = 1/(t -4 Ct 2/3 /r) and δ = (n -T 1 )rε where n is the integer part of 4 Ct 2/3 /r + 1. Then n = T 1 + δ/(rε) is an integer, δ/2 -Cε 1/3 is positive and, applying inclusion (4.4) to tn which belongs to [0, 1/ε], we get K(t) ⊃ (t -Ct 2/3 )W for some new constant C.
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We conclude the section with the proofs of the two lemmas used in the proof. We have: Proof of Lemma 4.1 : Fix x ∈ R N and let (K(t)) t≥0 be the solution of the front propagation V x,t = 1 -V (x, t) starting from K 0 = {x} + Z N , i.e., K(t) = {y ∈ R N : u(y, t) = 0} where u is the solution to

∂ t u = |Du| + V, Du in R N × (0, ∞) u = -d K 0 on R N ,
where d K 0 is the distance function to the set K 0 .

Then, for each t > 0, the set K(t) is Z N -periodic and a non empty interior (because it has an interior ball property, as recalled in Appendix). So ρ(t) = |K(t) ∩ Q 1 (x)| is positive for positive time and, following the computation in the proof of Theorem 1.1, it satisfies for all t 2 > t 1 ≥ 0,

ρ(t 2 ) -ρ(t 1 ) ≥ 1 c I t 2 t 1 (min{ρ(t), 1 -ρ(t)}) (N -1)/N dt .
Hence there exists a time T depending only on N such that |K(T )∩Q 1 (x)| = 1. This means that Q 1 (x) ⊂ K(T ).

It follows from the finite speed of propagation, that there exits a positive integer n 0 such that the solution K(t) starting from {x Since, H(p) ≥ |p|, given 0 < θ 1 < θ 0 < 1 and δ > 0 small, there exists t ∈ (0, 1) such that {ū(•, 0)

+ k ∈ Z N : |k| ≤ n 0 } coincides with K(t) on Q 1 (x) × [0, T ]. Then Q 1 (x) ⊂ K(T ).
≥ -θ 0 } + B(0, δ) ⊂ {ū(•, t) ≥ -θ 1 } .
The fact that the solution u ǫ of

∂ t u ǫ = |Du ǫ | + V ( x ǫ , t ǫ ), Du ǫ in R N × (0, ∞), u ǫ (x, 0) = (-|x|) ∨ (-1) on R N × {0} ,
converges, as ε → 0, locally uniformly to ū, yields an ǫ ∈ (0, δ/4) such that

{u ǫ (•, 0) ≥ -θ 0 } + B(0, δ 2 ) ⊂ {u ǫ (•, t) ≥ -θ 0 } . (4.5)
Next fix n 0 and T as in Lemma 4.1, choose ǫ such that T 0 = t ǫ is an integer and

Q n 0 +1 (0) ⊂ B(0, δ 2ε ) , (4.6) 
and set K0 = {x : u ǫ (εx, 0) ≥ -θ 0 } .

The solution of the front propagation problem starting from K0 is given by K(t) = {x : u ǫ (ǫx, ǫt) ≥ -θ 0 }. From (4.5) we have K0 + B(0, δ 2ǫ ) ⊂ K(T 0 ) , while from (4.6), for any k ∈ Z N with |k| ≤ n 0 , we have K0 + k ⊂ K(T 0 ). The periodicity of V also implies that the solution of the front propagation problem starting from K0 + k is just K(t) + k while the solution starting from K(T 0 ) is K(t + T 0 ).

From the inclusion principle we get, for all k ∈ Z N with |k| ≤ n 0 and all t ≥ 0,

K(t) + k ⊂ K(t + T 0 ) . (4.7) 
Then Lemma 4.1 implies that, for all t ≥ 0,

K(t) + Q 1 ⊂ K(t + T 0 + T ) .
In particular, by induction, we get, for all positive integers n and all t ≥ 0,

K(t) + Q n ⊂ K(t + n(T 0 + T )) .
Choose a positive integer M such that, for all t ∈ [0, T 0 + T ], K(t) ⊂ Q M . Then, for all positive integers n such that n ≥ M and all t ∈ [0, T 0 + T ],

Q n-M ⊂ K(t) + Q n ⊂ K(t + n(T 0 + T )) ,
and, hence, there exist r > 0 and T 1 > 0 such that, for all t ≥ 0,

Q rt ⊂ K(t + T 1 ) .
Finally choose a positive integer R such that K0 ⊂ Q R. Then, for any compact initial set K 0 such that Q R(k) ⊂ K 0 for some k ∈ Z N , we have K0 + k ⊂ K 0 . Therefore the solution of the front propagation problem K(t) starting from K 0 satisfies, for all t ≥ 0,

Q rt (k) ⊂ K(t + T 1 ) + k ⊂ K(t + T 1 ) . 2 

Homogenization for x-dependent velocities at scale one

Before we begin the proof, we remark that, since we are only able to prove that H is continuous with respect to the x-variable, uniqueness of the solution to equation (1.18) could be an issue. This is not, however, the case because, in view of (1.17) and (1.19), H is coercive. Note that this is the reason we do not consider V that also depends on a slow time variable, because then the coercivity of the averaged Hamiltonian would no longer ensure a comparison principle for the limit problem.

We continue with the Proof of Theorem 1.6: For any fixed (x, P ) ∈ R N ×R N , let v P,x λ = v P,x λ (y, t) be the solution to v P,x λ,t + λv P,x λ = |Dv P,x λ + P | + V (x, y, t), Dv P,x λ + P in R N × R .

From Lemma 2.1 and Corollary 2.2 we know that there exist H(x, P ) and, for any M > 0, a constant C M > 0 independent of λ and P , such that, for all x ∈ R N such that |x| ≤ M , H(x, P )λv P,x λ ∞ ≤ C|P |λ .

(5.1) Arguing as in the proof of Theorem 1.1 one easily checks that H is positively homogeneous of degree one and convex in P , and that (1.19) holds.

To complete the proof, it only remains to show that H is continuous in (x, P ). To this end, observe that the standard comparison arguments imply H is

(1 + V ∞ )-Lipschitz continuous in P . Fix next M > 0, x 1 , x 2 ∈ R N with |x 1 |, |x 2 | ≤ M .
Once again the standard comparison of viscosity solutions (see [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications[END_REF]) gives

v P,x 1 λ -v P,x 2 λ ∞ ≤ C M |P | |x 1 -x 2 | λ/L λ (5.2)
where L = sup |x|≤M D y,s V (x, •, •) ∞ and C M depends only on M . Combining (5.1) with (5.2), we obtain, for all

x 1 , x 2 ∈ R N such that |x 1 |, |x 2 | ≤ M and |x 1 -x 2 | ≤ 1, | H(x 1 , P ) -H(x 2 , P )| ≤ C M |P |ω(|x 1 -x 2 |)
with (the modulus) ω given, for r ∈ (0, 0], by

ω(r) = inf λ∈(0,1] (λ -1 r λ/L + λ) .
The proof of the continuity of H is now complete. 

Appendix

We present here the Proof of Lemma 2.3: Fix θ ∈ ( inf z(•, 0), sup z(•, 0) ) and let K θ (t) = {z(•, t) ≥ θ}. Since z is a solution to (2.5)-(i), K θ (t) is given by

K θ (t) = x ∈ R N : ∃ξ : [0, t] → R N absolutely continuous such that ξ(t) = x, z(ξ(0), 0) ≥ θ, |ξ ′ (s) + V (ξ(s), s)| ≤ 1 a.e. s ∈ (0, t) ,
i.e., K θ (t) is the reachable set for the controlled system

ξ ′ (s) = f (ξ(s), s, α(s)), |α(s)| ≤ 1 , where f (x, s, α) = α + V (x, s) and α ∈ R N are such that |α| ≤ 1. Since V is of class C 1,1
, it follows from [START_REF] Cannarsa | Interior sphere property of attainable sets and time optimal control problems[END_REF] that, for any 0 < τ < T , there exits a constant r = r(τ, T ) > 0 such that, for all t ∈ [τ, T ], the set K θ (t) has the interior ball property of radius r, i.e., for all x ∈ ∂K θ (t) there exists y ∈ R N such that x ∈ B(y, r) ⊂ K θ (t), where B(y, r) stands for the closed ball of radius r centered at y, and, hence, for all t > 0, K θ (t) is a set of finite perimeter (see, for instance, [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF]). Note that [START_REF] Cannarsa | Interior sphere property of attainable sets and time optimal control problems[END_REF] deals with time independent dynamics, but the proofs can be easily adapted to the time-dependent framework considered here.

Next set d(x, t) = d K θ (t) (x). It follows that d is Lipschitz continuous in (x, t) and, moreover, d t = -1 + V (x -dDd, t) , Dd(x, t) a.e in {d > 0} .

(6.1)

It is, of course, clear that x → d(x, t) is 1-Lipschitz continuous. The V ∞ +1-Lipschitz continuity of the map t → d(x, t) comes from the above representation formula of K θ,t .

To check (6.1), recall that, since the map P → |P | + V, P is convex, z is a sub-solution of (2.5)(i) with an equality (see [START_REF] Barron | Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians[END_REF] and [START_REF] Frankowska | Hamilton-Jacobi equations: viscosity solutions and generalized gradients[END_REF]), i.e., for any test function ϕ and any local maximum point (x, t) of zϕ, we have

ϕ t = |Dϕ| + V, Dϕ .
The invariance property of the geometric equation (2.5)-(i) (see [START_REF] Barles | Front propagation and phase field theory[END_REF]) then implies that the map (x, t) → 1 K θ (t) (x) is also a sub-solution of (2.5)(i) with equality.

Assume now that d is differentiable at some point (x, t) and let ȳ be the unique projection of x onto K θ ( t) and note that w(y, t) := 1 K θ (t) (y) + d(y + xȳ, t) has a local maximum at (ȳ, t). Indeed, if y / ∈ K θ (t), then, for all (y, t) sufficiently close to (ȳ, t), w(y, t) = d(y + xȳ, t) ≤ 1 + d(x, t) = w(ȳ, t), and, if y ∈ K θ,t , then w(y, t) = 1 + d(y + xȳ, t) ≤ 1 + |y + xȳ -y| = 1 + |x -ȳ| = w(ȳ, t) .

Since (x, t) → 1 K θ (t) (x) is a sub-solution of (2.5)(i) with equality and |Dd(x, t)| = 1 we obtain -d t (x, t) = 1 + V (ȳ, t) , -Dd(x, t) , and (6.1) holds because ȳ = xd(x, t)Dd(x, t).

Next we assume that θ is such that ∂{z(•, 0) ≥ θ} = {z(•, 0) = θ}, which is true for almost all θ ∈ (inf z(•, 0), sup z(•, 0)). It then follows from [START_REF] Barles | Front propagation and phase field theory[END_REF] that, for all t ≥ 0, ∂{z(•, t) ≥ θ} = {z(•, t) = θ} for any t ≥ 0.

We now prove that, for all ϕ ∈ C ∞ c (R N ) and all t ∈ (0, T ), We now concentrate on the right hand side of (6.3). Since |Dd| = 1 a.e. in {d > 0}, the co-area formula implies where ν σ (x, s) is the measure theoretic outward unit normal to the set {d(•, s) < σ}, which has finite perimeter since it satisfies the interior ball property with radius r + σ.

In order to complete the proof of (6.2) we just need to use the following The first claim is that μσ is absolutely continuous with respect to μ0 . For this let us first recall that, since E has the interior ball property of radius r, the map Π -1 σ is well-defined on F σ := {x ∈ ∂E ; ∃y ∈ ∂E σ with |x -y| = σ} and that Π -1 σ is Lipschitz continuous, with constant at most (r + σ)/r, on F σ (see [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF]). So, if Z is a Borel subset of ∂E, then μσ (Z) = H N -1 (Π -1 σ (Z)) ≤ Lip(Π -1 σ )H N -1 (Z) = r + σ r μ0 (Z) .

In particular, μσ is absolutely continuous with respect to μ0 and, if f σ = dμ σ dμ 0 , then f σ is bounded by r+σ r H N -1 -a.e. in ∂E.

Next we note that, for any Φ ∈ C(R N × S N -1 ), In view of (6.4), to complete the proof, it only remains to show that the (f σ )'s converge, as σ → 0, to 1 in L 1 (∂E, H N -1 ).
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 3 If H(P ) = |P |, then let z(x, t) = ẑ( P, x |P | + t) and z 1 (x) = 1 0 z(x, s)ds,
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  Proof of Lemma 4.2 : Consider the solution ū toūt = H(Dū) in R N × (0, ∞), ū(x, 0) = (-|x|) ∨ (-1) on R N × {0} .
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K 0 - 1 h

 01 θ (t) ϕ(x)dx-K θ (0) ϕ(x)dx = t 0 ∂K θ (s) ϕ(x)(1-V (x, s), ν(x, s) )dH N -1 (x)ds . (6.2) To this end, for h > 0 small, let ζ h : R → [0, 1] be such that ζ h (ρ) = 1 if ρ ≤ 0, ζ h (ρ) = 1ρ/h if ρ ∈ [0, h] and ζ h (ρ) = 0 if ρ ≥ h.Multiplying (6.1) by ϕζ ′ h (d) (which makes sense because the sets {d(•, s) = 0} = ∂K θ (t) and {d(•, s) = h} have a zero measure since K θ (t) and {d(•, s) ≤ h} have the interior ball property) and integrating over R N × (0, t) givesR N ϕ(x)ζ h (d(x, t))dx -R N ϕ(x)ζ h (d(x, 0))dx = t {0<d(•,s)<h}ϕ(x)(-1 + V (xd(x, s)Dd(x, s), s), Dd(x, s) ) dx ds .

  )ζ h (d(x, t))dx-R N ϕ(x)ζ h (d(x, 0))dx] = K θ (t) ϕ(x)dx-K θ (0) ϕ(x)dx.
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 1 •,s)<h} ϕ(x)(-1 + V (xd(x, s)Dd(x, s), s), Dd(x, s) ) dx ds = V (xσν σ (x, s), s), ν σ (x, s) ) dH N -1 (x) dσ, ds
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 61 Let E be a closed subset of R N with the interior ball property of radius r > 0. Then, for all compactly supported in x Φ ∈ C(R N × S N -1 ), limσ→0 {d E (•)=σ} Φ(x, ν σ (x))dH N -1 (x) = ∂E Φ(x, ν(x))dH N -1 (x) ,where d E (x) stands for the distance of x to E and ν σ (x) (resp. ν(x)) is the measure theoretic outward unit normal to {d E (•) < σ} (resp. to E) at x ∈ ∂E.Proof: Set E σ = {d E (•) ≤ σ} and denote by Π σ the projection of ∂E σ onto ∂E. It is known that Π σ is uniquely defined for H N -1 -a.e. point x ∈ ∂E σ . Let µ σ = H N -1 ⌊∂E σ and μσ = Π σ ♯µ σ , µ 0 = μ0 = H N -1 ⌊∂E.

∂EσΦ

  (x, ν σ (x))dH N -1 (x) = ∂E Φ(y + σν(y), ν(y))f σ (y)dH N -1 (y) . (6.4)Indeed, the definitions of μσ and f σ , give∂E Φ(y + σν(y), ν(y))f σ (y)dH N -1 (y) = ∂E Φ(y + σν(y), ν(y))d(Π σ ♯µ σ )(y) = ∂Eσ Φ(Π σ (x) + σν(Π σ (x)), ν(Π σ (x)))dµ σ (x),which implies (6.4) because ν(Π σ (x)) = ν σ (x) and Π σ (x) + σν(Π σ (x)) = x.

Applying (6.4) with Φ = 1 gives

in ∂E, the lower-continuity of the perimeter implies that lim σ→0 Per(E σ ) = Per(E). Using again the inequality f σ ≤ r -1 r + σ which holds H N -1 -a.e. in ∂E, we obtain, in the limit σ → 0,