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Accurate estimations of water balance are needed in semi-arid and sub-humid tropical 

regions, where water resources are scarce compared to water demand. Evapotranspiration 

plays a major role in this context, and the difficulty to quantify it precisely leads to major 

uncertainties in the groundwater recharge assessment, especially in forested catchments. In 

this paper, we propose a lumped conceptual model (COMFORT), which accounts for the 

water uptake by deep roots in the unsaturated regolith zone. The model is calibrated using a 

five year hydrological monitoring of an experimental watershed under dry deciduous forest in 

South India (Mule Hole watershed).  

 

The model was able to simulate the stream discharge as well as the contrasted behaviour of 

groundwater table along the hillslope. Water balance simulated for a 32 year climatic time 

series displayed a large year-to-year variability, with alternance of dry and wet phases with a 

time period of approximately 14 years. On an average, input by the rainfall was 1090 

mm.year-1 and the evapotranspiration was about 900 mm.year-1 out of which 100 mm.year-1 

was uptake from the deep saprolite horizons. The stream flow was 100 mm.year-1 while the 

groundwater underflow was 80 mm.year-1.  

 

The simulation results suggest that i) deciduous trees can uptake a significant amount of water 

from the deep regolith, ii) this uptake, combined with the spatial variability of regolith depth, 

can account for the variable lag time between drainage events and groundwater rise observed 

for the different piezometers, iii) water table response to recharge is buffered due to the long 

vertical travel time through the deep vadose zone, which constitutes a major water reservoir. 



This study stresses the importance of long term observatories for the understanding of 

hydrological processes in tropical forested ecosystems. 
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evapotranspiration, vadose zone, forested watershed hydrology. 

 

Introduction 

 

Accurate assessment of water balance at the watershed scale is of major importance in a 

context of a global dramatic increase of human demand for water, either for urban or 

agricultural requirements. This assessment is complex, since water balance results from the 

interaction of climate, geology, morphology, soil and vegetation (De Vries and Simmers, 

2002).  

A large suit of rainfall-runoff models are available that are either fully empirical or 

mechanistic, which make it possible to predict with reasonable accuracy water balance from 

watersheds in temperate climates (Beven, 2001 ; Wagener et al., 2004). These models are 

usually evaluated according to their ability to simulate stream discharge. In semi-arid or arid 

climates, calibration of watershed models is difficult because streams are often ephemeral. 

Moreover, as potential evapotranspiration equals or surpasses average precipitation, a correct 

evaluation of actual evapotranspiration becomes crucial (Scanlon et al., 2002, 2006 ; Sekhar 

et al., 2004 ; Anuraga et al., 2006). Despite the large amount of work dedicated to assess 

evapotranspiration at the watershed scale, this flux remains the largest source of uncertainity 

in water budgeting, especially in the case of forested watersheds (Zhang et al., 2001; 2004). 

 



The objective of this paper is to propose a methodology for water balance estimation in a 

tropical forested watershed, based on the calibration of a conceptual model against stream 

discharge and groundwater level data. The experimental watershed used in this study was 

developed as part of the project “Observatoire de Recherche en Environnement – Bassin 

Versant Expérimentaux Tropicaux” (
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http://www.ore.fr/) (Braun et al., 2005). Our results 

show that the deep vadose zone plays a major role in buffering the groundwater response to 

the water percolation. 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

 

Site description  

 

The study site is situated in South India (Figure 1), at 11° 44' N and 76° 27' E (Karnataka 

state, Chamrajnagar district).  

 

Figure 1: Location map of the experimental site 

 

It is located in the transition zone of a steep climatic and geomorphologic gradient at the edge 

of the rifted continental passive margin of the Karnataka Plateau, which was the focus of 

extensive geomorphologic studies (Gunnell and Bourgeon, 1997). This plateau, developed on 

the high-grade metamorphic silicate rocks of the West Dharwar craton (Moyen et al., 2001), 

is limited westward by the Western Ghâts, a first order mountain range. This mountain forms 

an orographic barrier, inducing an steep climatic gradient, with annual rainfall decreasing 

from west to east from about 6000 mm to 500 mm within a distance of about 80 km (Pascal, 

1982). These Ghâts are of critical ecological and economical importance and also an 

important source of all major South Indian rivers, flowing eastward towards the Gulf of 

Bengal. The climatic transition zone is mainly covered by dry deciduous forests, belonging to 

http://www.ore.fr/


the wildlife sanctuaries of Mudumalai, Waynad, Bandipur and Nagarahole (Prasad and 

Hedge, 1986). Such a tropical climosequence is comparable, although much steeper (Gunnell, 

2000), to the well documented monsoonal West African and the Northeast Brazilian 

climosequences (Gunnell, 1998). 
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The Mule Hole experimental watershed (4.1 km2) is located in the climatic semi-humid 

transition area and the mean annual rainfall (n = 25 years) is 1120 mm. The mean yearly 

temperature is 27 °C. On the basis of the aridity index defined as the ratio of mean annual 

precipitation to potential evapotranspiration, the climate regime can be classified as humid 

(UNESCO, 1979). Nevertheless, the climate is characterized by the occurrence of a marked 

dry season (around 5 months from December to April) and by recurrent droughts, depending 

on the monsoon rainfalls. The rainfall pattern is bimodal, as it is affected by both the South 

West Monsoon (June to September) and the North East Monsoon (October - December) 

(Gunnell and Bourgeon, 1997). Streams are ephemeral, and their flow duration ranges from a 

few hours to a few days after the storm events.  

 

The watershed is mostly undulating with gentle slopes and the elevation of the watershed 

ranges from 820 to 910 m above sea level (Figure 1). The morphology of the watershed is 

convexo-concave highly incised by the temporary stream network. The lithology, 

representative of the West Dharwar craton (Naqvi and Rogers, 1987), is dominated by 

complexly folded, heterogeneous Precambrian peninsular gneiss intermingled with mafic and 

ultramafic rocks of the volcano-sedimentary Sargur series (Shadakshara Swamy et al., 1995). 

The Peninsular gneiss represents at least 85% of the watershed basement and the average 

strike value is N80°, with a dip angle ranging from 75° to the vertical (Descloitres et al., 

2008). In such hard-rock context, the aquifer can generally be divided into two parts: one 



upper part is the porous clayey to loamy regolith with an apparent density lower than the rock 

bulk density, the other is in the fractured-fissured protolith with an apparent density close to 

the bulk density of the rock and a network of fractures of a density decreasing with depth 

(Sekhar et al., 1994, Maréchal et al., 2004 ; Wyns et al., 2004 ; Dewandel et al., 2006). In the 

Mule Hole watershed, the average depth of the regolith is 17 m, as estimated through an 

extensive geophysical and geochemical survey (Braun et al., 2006 ; Braun et al., 2008). The 

distribution of the regolith depth (Figure 2) shows that the range of variation is 5 to 27 m. No 

correlation with the position on the hillslope was found. Average total porosity of the regolith 

is around 12%. Magnetic Resonance Sounding (MRS) performed on the watershed 

(Legchenko et al., 2006) showed that drainage porosity is around 1% in the regolith and 

below the detection level (<0.5%) in the fractured rock. Finally, timelapse geophysical 

measurements of both ERT and MRS conducted at the outlet of the watershed indicated a 

seasonal infiltration of water under the stream (Descloitres et al., 2008). A hydrological 

investigations allowed estimating the indirect recharge from the stream at around 30 mm.year-

1 at the watershed scale (Maréchal et al., 2009). 
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Figure 2 : distribution of regolith depth across the Mule Hole watershed (from a 

geophysical and geochemical survey by Braun et al., 2008) 

 

The soil distribution in the watershed was determined by Barbiéro et al. (2007). The gneissic 

saprolite, cohesive to loose sandy, crops out both in the streambed and at the mid-slope in 

approximately 22% of the watershed area. The lower part of the slope and the flat valley 

bottoms (12% of the area) are covered by black soils (Vertisols and Vertic intergrades), which 

are 2 m deep on an average. Shallow red soils (Ferralsols and Chromic Luvisols), which are 

of 1 to 2 m deep, cover 66% of the entire watershed area. The watershed is covered by a dry 



deciduous forest with different facies linked to the soil distribution (Barbiéro et al., 2007). 

Minimal human activity is present as it belongs to the Bandipur National Park, dedicated to 

wildlife and biodiversity preservation. The predominent tree component of the vegetation 

consists of Anogeissus-Terminalia-Tectona association (ATT facies) forming a relatively 

open canopy not exceeding 20 m (Prasad and Hedge, 1986 ; Pascal, 1986). Phenology is 

marked by a strong seasonality, with leaf senescence starting in December and leaf flushing 

occurring in early April, one or two month before the first significant monsoon rains. This 

surprising behaviour, leading to a deciduous period of only 2-3 months, much shorter than the 

dry season, is a general feature of the Asian forests (Singh and Kushawaha, 2005), and was 

quoted as the “paradox of Asian monsoon forest” by Elliot et al. (2006).  
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Model description 

 

The model COMFORT (COnceptual Model for hydrological balance in FOResTed 

catchments) proposed in this article allows simulating the daily water budget of a forested 

watershed, through a simple and widely accepted conceptual description of the hydrological 

processes. It includes a lumped model for the soil moisture and the evapotranspiration in the 

forest (Granier et al., 1999), a surface runoff model based on the variable source area theory 

(Moore et al., 1983 ; Beven, 2001) and linear reservoirs for the recharge and groundwater 

discharge (Beven, 2001 ; Putty and Prasad, 2000). Its originality relies on the introduction of 

an additional water reservoir located in the weathered vadose zone (saprolite) below the soil, 

accessible to tree roots but not to understorey vegetation roots.  

 

Figure 3 : A schematic representation of the model COMFORT 
 



The model includes two modules, calibrated and run successively (Figure 3): the first one is a 

slightly modified and simplified version of the lumped water balance model  presented by 

Granier et al (1999), which simulates the daily water balance for the forested soil and the 

surface runoff Qs, while the second one simulates the flow of water through the deep vadose 

zone and the groundwater flow. Forcing variables are the daily rainfall (Rf), the Penman 

potential evapotranspiration (PET), and the forest leaf area index (LAI). The details of each of 

these modules is given below.  
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Module 1:  Soil moisture  

 

This module computes the daily variations in the soil moisture deficit (SMD, in mm) as: 

 

SMD = EIn + T + Eu + PR + Qs- Rf 

 

and 

 

0 < SMD < SMDmax 

 

with EIn (mm.day-1) being the evaporation of rainfall intercepted by the forest canopy, T 

(mm.day-1) the tree transpiration, Eu (mm.day-1) the evapotranspiration of the understorey 

layer, PR (mm.day-1) is the percolation below the soil layer, also called “potential recharge” 

by De Vries and Simmers  (2002), Qs (mm.day-1) the surface runoff, Rf (mm.day-1) the 

rainfall and SMDmax (mm) the maximum soil water deficit, equivalent to the soil water 

holding capacity. 

 



The throughfall (Rf - EIn) on the saturated area of the watershed (SA in %) reaches the stream 

as surface runoff (Qs in mm.day-1) : 
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Qs = ( Rf - EIn )  SA / 100 

 

Saturated area is usually computed as a function of water storage in the soil and the 

groundwater (see for example Putty and Prasad, 2000). In our context, groundwater level is 

far below the ground level, thus SA is modelled as an exponential function of the soil 

moisture deficit: 

 

SA = SAmax   exp ( - a  SMD ) 

 

with SAmax the maximal extension of the saturated area (%), and a being the exponent 

constant. The proportion (%) of the soil surface covered by tree leaves (ε) is calculated from 

the forest LAI with the Beer-Lambert function assuming a light coefficient of extinction of 

0.5 (Granier et al. 1999).  

 

ε = 1- e- 0,5  LAI 

 

The evaporation of rainfall intercepted by the forest canopy, or interception losses, EIn 

(mm.day-1) is computed as: 

 

EIn = minimum (ε  Rf ; ε  PET ; ε  In)  

 



with In (mm) the canopy storage capacity. This equation implies that canopy cannot store 

water for more than one day, and thus interception losses are nil during non rainy days. This 

simplification is justified by the fact that In is generally smaller than PET at a daily time step. 
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As proposed by Granier et al. (1999), to account for the fact that the rate of evaporation of 

intercepted water is approximately four time greater than transpiration rate (Rutter, 1967), 

PET is reduced by 20 % of the amount of intercepted water and the total actual 

evapotranspiration (AET) is limited to 1.2  PET. The tree transpiration from the soil layer 

(Ts in mm.day-1) is then calculated as: 

 

Ts = minimum (SMDmax – SMD ; (ε  PET) – (0,2  EIn ) ; 1.2  PET - EIn) 

 

with SMDmax the maximum soil water deficit (mm), equivalent to the soil water holding 

capacity. In their model, Granier et al. (1999) propose that T/PET ratio decreases linearly 

when soil moisture reaches a critical level of 40% of the water holding capacity of the soil. In 

our model, for the sake of simplicity, transpiration is only limited by the amount of water 

present in the soil reservoir.  

 

Evapotranspiration from understorey vegetation is calculated as:  

 

Eu = minimum (SMDmax – SMD – Ts ; (1-ε)  PET ; 1.2  PET - Ts - EIn)  

 

Actual evapotranspiration from the soil layer (AETs in mm.day-1) is then: 

 

AETs = EIn + Ts + Eu 
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Eventually, the water in excess in the soil reservoir (when SMD<0) percolates below the soil 

layer, as “potential recharge” (PR in mm.day-1). This flow is an input to the weathered zone 

reservoir (module 2). 

 

Module 2: Weathered zone and groundwater 

 

This module simulates the daily variations of the moisture deficit in the weathered zone 

(WZMD in mm) as : 

 

WZMD = TWZ + R - PR 

 

where TWZ is the tree transpiration from the weathered zone below the soil (mm.day-1), PR the 

potential recharge calculated in the module 1 (mm.day-1) and R (mm.day-1) the recharge. The 

potential evapotranspiration from the weathered zone (mm.day-1) is the residual of the 

potential transpiration of trees minus the actual tree transpiration in the soil zone: 

 

PETWZ = ε  PET – (0,2  EIn ) - Ts 

 

The actual transpiration from the weathered zone TWZ (mm.day-1) is then:  

 

TWZ = minimum (WZMDmax – WZMD ; PETWZ ) 

 

with WZMDmax (mm) the maximum water deficit of the weathered zone.  



Recharge (RWZ in mm.day-1) is the water in excess in the weathered zone (when WZMD<0). 

To account for the observed smoothness of the recharge process, RWZ is directed to a recharge 

reservoir R (mm), and the effective recharge (RGW in mm.day-1) reaching the groundwater 

reservoir (GW in mm) is calculated as : 
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RGW = 1  R 

 

with 1 (day-1) the recession coefficient of the recharge reservoir R. 

 

Eventually, the daily variation of water content in the groundwater reservoir (GW in mm) is 

calculated as: 

 

GW = RGW -  QGW 

 

with the QGW the groundwater flow (mm.day-1) calculated as : 

 

QGW = 2  GW 

 

with 2 (day-1) the recession coefficient of the groundwater reservoir GW. As the groundwater 

level is always deeper than the stream bed at the outlet, this flow is considered as an 

underflow. 

 

The groundwater table level (LGW in meters above sea level) is then calculated as: 

 

LGW = L0 + GW/(Sy  1000) 
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with L0 (masl) the altitude of the base of the aquifer and Sy its specific yield. 

 

Data acquisition and model calibration procedure 

 

The climatic data (daily rainfall and PET) necessary to run the model were available for the 

period 2003-2007 from the automatic weather station (CIMEL, type ENERCO 407 AVKP) 

installed at the Mulehole forest check post, which is 1.5 km West to the watershed outlet 

(Figure 1). Daily rainfall data were available at the same location from 1976 to 1995 from 

Indian Meteorological Department. Daily rainfall data were also available from the 

Ambalavayal weather station, located 20 km west of the study site, for the years 1979 to 

2004. As statistical analysis showed a strong correlation between the two stations, the seven 

missing years (1996-2002) in the Mule Hole were inferred from the Ambalavayal data.  

Granier at al. (1999) have shown that soil water content can be equally simulated in forest 

stands under different climates either with models based on Penmann potential 

evapotranspiration or with mechanistic approaches tacking into account the canopy structure. 

Although many studies have shown that evapotranspiration is greater from forest than for the 

short size vegetation (Zhang et al., 2001) this difference is mainly attributed to better access 

to soil water at depth. Thus Penmann potential evapotranspiration was used as a forcing 

variable to the model. 

 

As year to year variations in PET were little during the years 2003 to 2007, an average daily 

PET series was calculated and applied to the period 1976-2002. Using an average annual 

curve of PET does not affect much the rainfall-runoff models (Burnash, 1995 ; Oudin et al., 

2005). The simulations were run on the reconstructed time series 1976-2007. Stream 



discharge (Qs) is measured since August 2003 at a 6 minutes time step using a flume built at 

the outlet of the watershed. Due to technical problems, level recording was not available from 

15th  April 2007 to 7th August 2007. A set of 13 observation wells were drilled in the area in 

2003 (P1-P6) and 2004 (P7-P13) (Figure 1). Most of these wells are dedicated to the 

monitoring of the effects of water seepage from the stream. Wells P2, P3, P5, P6, P9 and P10 

are not influenced by the indirect recharge from the stream (Maréchal et al., 2009), and can be 

used to assess the direct recharge. The water levels are monitored in all the wells either 

manually at a monthly time step or automatically at an hourly time-step. Due to technical 

problems (among which elephant attacks), P2 and P9 didn’t give reliable records and were not 

included in the analysis. Additional data from an observation well (OW9) monitored by the 

Department of Mines and Geology (Karnataka State) since 1975, and located 20 km east of 

the watershed, which is close to the forest border, was used in the analysis. 
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As no measurement of forest leaf surface were carried out in the watershed, the evolution of 

LAI was hypothesised from qualitative observations from the site and references from 

literature concerning local tree phenology (Prasad and Hedge, 1986 ; Sundarapandian et al., 

2005) and NDVI records for Indian forests (Prasad et al., 2005). Seasonality of leaf flushing 

and senescence is mostly driven by photoperiod, and therefore can be taken as a constant from 

one year to the other (Elliot et al., 2006 ; Singh and Kushwaha,  2005). The proposed LAI 

pattern is presented in the Figure 4a along with ε variations. The comparison with the average 

monthly rainfall and PET over 32 years period (Figure 4b) shows that maximum PET is 

reached during the deciduous period and that on average, rainfall exceeds PET during five 

months.  

 



Figure 4: a) daily forest LAI and coefficient of extinction ε, b) average monthly rainfall 

(Rf) (1976-2007) and PET (2003-2007). Vertical bars indicate standard deviation of Rf. 
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The two modules were run and calibrated successively, and the model performance was 

assessed using the Nash & Sutcliffe (1970) efficiency criterion. The module 1 is calibrated 

against the observed stream discharge values. This module has three forcing variables (Rf, 

PET and LAI) and four parameters (In, a, SAmax and SMDmax). As the sensitivity analysis 

showed that the model was little sensitive to In value, it was set at 1 mm and calibration was 

performed on the three remaining parameters. The time series obtained for the potential 

evapotranspiration from the weathered zone (PETWZ) and the potential recharge (PR) are then 

used as forcing variables for the module 2, which includes five parameters (WZMDmax, 1, 2, 

Sy and L0). The module 2 is calibrated for each piezometer against observed water table 

levels. To minimize equivalence possibilities, the following procedure was adopted: because 

WZMDmax determines the date of initial water table rise, it is first adjusted by trial and error; 

then the four remaining parameters are automatically calibrated, with Sy values constrained 

smaller than 0.01, according to the conclusions of MRS survey (Legchenko et al., 2006). For 

each calibration, the solver was run with contrasting sets of initial parameter values, which  

later converged towards the same solution. 

 

Results 

 

Figure 5: observed (black line) and simulated (grey line) daily surface runoff (Qs in 

mm.day-1) at the Mule Hole watershed outlet for the 5 years of monitoring. Secondary axis 

is daily rainfall (Rf) in mm. 

 



The Figure 5 compares the observed and the simulated surface runoff (Qs) at the Mule Hole 

watershed outlet for the 5 years of monitoring. The Nash-Sutcliffe parameter calculated using 

the monthly values is 74. Despite this relatively low value, the model was able to reproduce 

the general trend of observed runoff, in particular the delay between the first monsoon rains 

and the first observed stream runoff. On the other hand, it was unable to reproduce the runoff 

observed after summer storm events in 2005, because they are due to Hortonian flow, a 

mechanism that was not accounted for in the model. However, this kind of event is of 

marginal importance in this pedoclimatic context. Considering that rainfall is measured in 

only one weather station located outside the watershed and the high spatial variability of 

rainfall, especially during strong individual storms, a perfect fit was not expected. In 

particular in 2005, two events, on 22nd of October and 4th of November, produced 34 mm.day-

1 and 20 mm.day-1 of runoff for rains of 52 mm.day-1 and 28 mm.day-1 respectively. For these 

events, the actual rainfall in the watershed was probably much higher than the measured one. 

This is likely to have affected the assessment of water balance for the year 2005, as these two 

storms represent about one quarter of the total yearly runoff. However, this kind of event 

remains very rare: during the five monitoring years, only these two events produced more 

than 20mm of runoff, and only five other individual events produced more than 10 mm of 

runoff. 
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The calibrated parameter values are: a = 0.1, SAmax = 33.3% and SMDmax = 173 mm. The 

value of maximal saturated area is probably overestimated, considering that the flat valley 

bottom overlaid by black soil occupies about 12% of the watershed area. The two exceptional 

storm events mentioned above played an important role in this overestimation. The calibrated 

value of SMDmax is consistent with the soil moisture monitoring carried out in 2004 and 2005 



in the site, showing a maximum variation of volumetric water content of 7% in red and black 

soils (Barbiéro et al., 2007) and an average 2 m depth (Braun et al., 2006).  
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Table 1 : Soil water balance (mm.year-1) for the monitored year and yearly average for the 

monitored period and the whole 32 year simulated period. Signification of terms is in the 

text. *2003-2006 average 

 

Annual soil water balances as well as averages for the monitoring period and the 32 years 

simulation period are presented in the Table 1. Evapotranspiration is the most important sink 

for water, accounting for about 70% of rainfall. Interception is about 10% of rainfall, which is 

in the range of references values given in the literature for broad leaved forests (Ward and 

Robinson, 2000). Potential recharge is large (197 mm.year-1 on the whole period), and 

displays an important year to year variability. It is larger than the estimate based on the 

regression equation proposed by Rangarajan and Athavale (2000) from tritium injection 

experiments in granitic areas in India, which gives a value of about 150 mm.year-1 for the 

conditions of Mule Hole. This difference might be due to specificities of the study site, in 

particular the relatively low PET, mainly due to low temperatures linked with the altitude and 

to the forested environment which contributes to decrease soil compaction and increase 

infiltration potential (Bruijnzeel, 2004; Ilstedt et al., 2007). Results also show that the 

monitoring period is quite representative of the whole 32 years period with respect to the soil 

water balance. 

 

Figure 6 : relative variation of water table level in hillslope piezometer, compared to 

simulated potential recharge. Reference values for water table depth are 16.8 m, 27.8 m, 

39.1 m and 37.4 m for P10, P3, P5 and P6 respectively. 
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The Figure 6 compares the simulated daily potential recharge with observed relative 

variations in the water table level in hillslope piezometers. Although all piezometers showed a 

consistent global tendency to water level rise, they displayed significant contrasted behaviour. 

The relatively shallow piezometer (P10) responded each year to recharge, and the water level 

rise was almost simultaneous with the first occurrence of the potential recharge. Then the 

water level variation pattern was smooth, and the yearly maximum level was reached each 

year about two months after the end of the potential recharge period. For P3, the water table 

level did not increase in 2004, however showed a steep increase at the end of the 2005 rainy 

season, followed by a gentle continuous increase. In this well, ephemeral water table 

variations suggest the occurrence of some preferential flow (from August to October in 2006 

and 2007). Finally, the deep piezometers P5 and P6 displayed a declining tendency in 2004 

and 2005, a stabilisation or a very gentle rise in 2006, and a marked rise at the end of the rainy 

season 2007. These contrasted patterns of water table variation among the different hillslope 

piezometers suggest that they are linked with local processes and not by a regional aquifer 

dynamics. 

 

Figure 7: Observed (dots) and simulated (lines) water level (in meter above sea level) in 

piezometer P3, P5 and P10 for the monitoring period. 

 

Table 2 : Model parameters for the 3 simulated piezometers. 

 

Comparison of the observed and the simulated water level variations in piezometers for the 

monitoring period show a very good agreement (Figure 7), with Nash criteria values of 96.7, 

94.1 and 95.0 for P10, P3 and P5 respectively. Calibrated parameters (Table 2) are relatively 



similar for the three piezometers. The most contrasted parameter is WZMDmax, the maximum 

water deficit of the weathered zone, because it accounts for the observed very long lag-time  

between water table rise observed in P10 in comparison with P3 (more than one year) and 

with P5 (more than 3 years). The calibrated value of the specific yield is consistent with the 

values obtained in similar fractured rock context in the region (Sekhar et al. 2004 ; Sekhar and 

Ruiz, 2006 ; Maréchal et al., 2006).  
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The most surprising result is the small value of the recession coefficient of the recharge 

reservoir (1). The recharge flow reaching the groundwater table is then very smooth, and it is 

mostly compensated by the groundwater discharge.  The consequence is that the variations in 

the water content of the deep vadose zone (regolith and recharge reservoirs) are very large, 

with a maximum range of variation for the entire 32 year period of 650 mm, 745 mm and 851 

mm for P10, P3 and P5 respectively. Although very large, these variations are compatible 

with the material porosity, considering the depth of this vadose zone (from 15 m to 40 m). 

 

Figure 8 : Simulated variations of water table level (in masl) in piezometer P3, P5 and P10 

for the 32 year simulation period (lines). Dots represent observed values. 

 

Table 3: Watershed balance components (in mm.year-1) for the piezometers P10, P3 and 

P5, for the monitoring period and the 32 year simulation and average watershed balance 

components calculated by weighted average (see text) . 

 

Average water balances components for each piezometer during the monitoring period and 

the 32 years simulation period are presented in the Table 3. Unlike the observations for the 

soil water balance, the monitored period appears dryer than the entire period. This is due to 



the fact that the effects of the drought period from 2001 to 2003 persist longer at depth, which 

is apparent from the late rising of the deepest piezometers. The simulated long term variations 

of piezometers (Figure 8) reveals an alternance of wet and dry phases, of 12-15 years duration 

period. Maximum level in P5 is reached 2 to 3 years later than in P10. This simulated pattern 

was compared to the data recorded by the Department of Mines and Geology (Karnataka 

State) from 1974 to 2007 in a shallow observation well located outside the forest zone 20 km 

east of the study site. Although at the annual scale the observation well is much more reactive 

than P10, they display a very similar long-term trend. This observation suggests that the 

model was able to describe reasonably the global long-term behaviour of the groundwater. 
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Figure 9 : Simulated variations of water table level (in masl) in piezometer P10 (black line, 

left Y-axis) and water level (depth to ground level in meters) recorded by Department of 

Mines and Geology from 1974 to 2007 in a shallow observation well located outside the 

forest zone 20 km east of the study site (grey line with dots, right Y-axis) 

 

Figure 10 illustrates the simulated variations of evaporation and transpiration during two 

years. It shows that transpiration by trees from the soil layer is the dominant flux during most 

of the year, especially during rainy season. Soil evapotranspiration by the understorey 

vegetation can be significant during dry season, depending on the occurrence of isolated rainy 

events. Transpiration of water from the deep weathered zone occurs mainly during dry 

season, and during dry periods on the course of the monsoon season. Because the model 

computes transpiration successively from soil and then from the weathered zone, the latter can 

occur only when soil water is completely depleted, leading to abrupt alternances between the 

two fluxes (figure 10c), which are probably much smoother in reality.  

 



Figure 10: Example of simulated daily evapotranspiration fluxes (in mm.day-1) compared 

to PET during two years a) variations of LAI b) Ein and Eu c) Ts and Twz (see text for 

signification of abbreviations) 
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With an objective to obtain an assessment of the water balance at the watershed scale, we 

need to assess the representativity of the monitored piezometers with respect to the entire 

area. The parameter WZMDmax, which is driving the most important part of the observed 

piezometer variability, is probably linked with the regolith depth in the vicinity of the 

piezometer. P10 is located in an area where the regolith depth is around 8m, P3 around 15 m 

and P6 more than 20m. A resistivity logging performed on P5 suggested a regolith depth of 

22m (Braun et al., 2008). As a first approach, we can consider that P10, P3 and P5 are 

representative of area with regolith depth of 0-12m, 12-18m and more than 18m respectively. 

According to the regolith depth distribution in the watershed (Figure 2), the proportion is 

30%, 27% and 43% for P10, P3 and P5 respectively. With this hypothesis, the watershed 

balance (Table 3) appears roughly equilibrated during the 32 years simulation period, while 

the water gain was 125 mm.year-1 during the monitoring period. The average water uptake by 

trees from the deep weathered zone is 104 mm, and average groundwater underflow is 78 

mm.year-1. Groundwater recharge is equivalent to underflow on the long term. This value is 

close to the recharge that was assessed in this area with Chloride mass balance method (45 

mm.year-1, Maréchal et al., 2009). 

 

Discussion  

 

The 5 years monitoring allowed us to give a tentative assessment of the water balance of a 

small experimental watershed using a simple conceptual lumped model. However, the 



exercise has proven to be difficult, due to the climatic context and the presence of forest. The 

plausibility of the model results and the future work needed to validate them are discussed in 

this section. 
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One uncertainty is linked to the assessment of evapotranspiration in forest stands. This issue 

continues to generate a great deal of controversy in the litterature (Andreassian, 2004 ; 

Bruijnzeel, 2004 ; Robinson et al., 2003). The difficulty is also greater for regions with the 

index of dryness (PET/Rf) close to 1.0 (Zhang et al., 2004), which is the case in our study 

site. However, despite its limitations, the Penman-Montieth PET approach has proven its 

ability to simulate soil water moisture in a broad range of climatic conditions and tree species 

(Granier et al., 1999). The average total evapotranspiration found in our long term simulations 

(around 900 mm.year-1, out of which about 100 mm are linked to extra transpiration by deep 

tree roots, see Table 3) is in very good agreement with the worldwide evapotranspiration 

curve proposed for forests and grasslands by Zhang et al. (2001). In our climatic context, 

water percolation towards the deep vadose zone is mainly concentrated during short rainy 

periods of the monsoon season, usually few days to two weeks, followed by drier periods. In 

this configuration, soil water budget is less sensitive to evapotranspiration assessment. 

However, direct measurements of forest evapotranspiration would allow a better calibration of 

the model.  

 

According to our model, the spatial variability of the water reservoir located at depth in the 

weathered zone and accessible to deep roots of trees is a key parameter for water budgeting in 

semi-arid forested watersheds. Our calibration gave values ranging from 50 to 470 mm (Table 

2). Few studies have been dedicated to measure the hydraulic properties of weathered granitic 

rocks (Jones and Graham, 1993; Katsura et al., 2006). They suggest that weathered rocks have 



the capacity to hold appreciable amount of water that is available to plants (Jones and 

Graham, 1993 ; Williamson et al., 2004). The fact that tree roots are able to uptake water at 

considerable depth, especially in water limited ecosystems is widely accepted (Nepstad et al., 

1994 ; Canadell et al., 1996 ; Collins and Bras, 2007). Importance of water storage in deep 

weathered rock in forested ecosystems has recently gained recognition, and large scale 

surveys to quantify deep water reservoirs have been attempted, for example in Cambodia 

(Ohnuki et al., 2008), leading to estimates as high as 1350 mm. The average total porosity of 

the saprolite in the Mule Hole watershed was estimated at 12% from geophysical and 

geochemical studies (Braun et al., 2008). Even assuming that the proportion of the porosity 

available to plants is only 5%, considering a 16 m deep saprolite would lead to an average 

water storage capacity of 800 mm, which is compatible with our findings. Considerable 

spatial variability of water stress and tree mortality during drought period is commonly 

reported in dry deciduous forests (Nath et al., 2006). A survey dedicated to check whether 

part of this variability can be explained by the regolith depth would constitute a validation of 

our hypothesis. 
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The most surprising consequence of the model calibration is the great importance of the 

recharge reservoir, and its low recession coefficient. In temperate regions, recharge process is 

usually considered to be very quick, and in most models water percolated below the soil zone 

is immediately transferred to the groundwater. This is acceptable because groundwater table is 

generally shallow, and the regolith matric porosity is filled every year by recharge. However, 

the fact that matric water can drain for a long time is well documented (Healy and Cook, 

2002). In a chalk aquifer, Price et al. (2000) demonstrated that the delay between recharge 

period and the smooth water table rise can be explained by matric water storage in the vadose 

zone, which is slowly released to groundwater during dry periods. By monitoring water 



content variations in a 21m deep sandstone vadose zone, Rimon et al. (2007) found a 

variation of 660 mm of water content during a rainy season, and a slow decrease in water 

content during the dry season. In a hydrogologic survey in Australia, in a granitic 

environment, Ghauri (2004) observes a long delay between rainfall and groundwater 

response, attributed to matric storage in the deep vadose zone. If this hypothesis is confirmed, 

it could be of considerable importance for water resource evaluation in hard rock aquifers, 

because in most cases recharge is assessed through water table level methods (Healy and 

Cook, 2002). Monitoring of water content variations in the deep vadose zone of our 

experimental watershed would allow validating this hypothesis. 
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The modelled watershed balance leads to an average water flow of about 180 mm.year-1, out 

of which 80 mm is groundwater underflow. This underflow might reach the streams of higher 

order rivers, like Nugu Hole or Kabini (Figure 1). Indeed, it is very small compared to the 

estimates of the flows produced in the humid zone of the climatic gradient that range from 

900 to 4700 mm.year-1 (Putty and Prasad, 2000). However, these high flows are produced 

during the rainy season, and during the dry season rivers virtually dry up (Putty and Prasad, 

2000). Because groundwater underflow from transition area produces a fairly constant load,  

it might be of significant importance in sustaining the baseflow in large rivers during the dry 

season. This will be assessed through a regional modelling in a future work. 

 

Conclusions 

 

This study is based on a five years monitoring of an experimental forested watershed in the 

South India, and using a conceptual model of the water balance over a 32 years period 

allowed us to draw the following conclusions :  



i) In tropical forest ecosystems, deciduous trees can uptake a significant amount of water from 

the deep regolith. This mechanism is particularly important at the end of the dry summer 

period, because the leaf flushing can precede monsoon rains by several weeks. More 

investigations are needed to check if variability in regolith depth can be linked to the 

variability of tree mortality during dry periods in monsoon season. 
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ii) This water uptake, combined with the spatial variability of regolith depth, can account for 

the variable lag time between drainage events and groundwater rise observed for the different 

piezometers. 

iii) Water table response to the recharge is buffered due to the long vertical travel time 

through the deep vadose zone, which constitutes a major water reservoir. The five years 

monitoring period reveals that the watershed water balance is not equilibrated, mainly due to 

large variations in water content in the vadose zone. This observation is of great importance 

for water resource assessment, as water level fluctuation method is often used to estimate 

yearly groundwater recharge, especially in India (G.E.C., 1997). Our results show that this 

method can lead to an underestimation of recharge when vadose zone is large. 

 

This study stresses the importance of long term observatories for the understanding of the 

hydrological processes in tropical forested ecosystems. 
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Figure 1: Location map of the experimental site 

 

Figure 2 : distribution of regolith depth across the Mule Hole watershed (from a geophysical 

and geochemical survey by Braun et al., 2008) 

 

Figure 3 : A schematic representation of the model COMFORT 

 

Figure 4: a) daily forest LAI and coefficient of extinction ε, b) average monthly rainfall (Rf) 

(1976-2007) and PET (2003-2007). Vertical bars indicate standard deviation of Rf. 

 

Figure 5: observed (black line) and simulated (grey line) daily surface runoff (Qs in mm.day-

1) at the Mule Hole watershed outlet for the 5 years of monitoring. Secondary axis is daily 

rainfall (Rf) in mm.  

 

Figure 6 : relative variation of water table level in hillslope piezometer, compared to 

simulated potential recharge. Reference values for water table depth are 16.8 m, 27.8 m, 39.1 

m and 37.4 m for P10, P3, P5 and P6 respectively. 

 

Figure 7: observed (dots) and simulated (lines) water level (in meter above sea level) in 

piezometer P3, P5 and P10 for the monitoring period. 

 

Figure 8 : simulated variations of water table level (in masl) in piezometer P3, P5 and P10 for 

the 32 year simulation period (lines). Dots represent observed values. 
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Figure 9 : simulated variations of water table level (in masl) in piezometer P10 (black line, 

left Y-axis) and water level (depth to ground level in meters))recorded by Central 

Groundwater Board from 1974 to 2007 in a shallow observation well located in an 

agricultural zone 20 km east of the study site (grey line with dots, right Y-axis)  

 

Figure 10: example of simulated daily evapotranspiration fluxes (in mm.day-1) compared to 

PET during two years a) variations of LAI ; b) Ein and Eu ; c) Ts and Twz (see text for 

signification of abbreviations) 
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2003 2004 2005 2006 2007 2003-2007 cv % 1976-2007 cv %

Rf 706 1216 1434 1170 1252 1155 (23) 1091 (32)
PET 1101 1074 1017 1012 963 1034 (5) 1067  -

Ein 78 130 133 123 136 120 (20) 98 (23)
Eu 53 79 111 127 72 89 (34) 82 (33)
Ts 555 627 624 649 546 600 (8) 624 (11)
AETs 686 837 868 900 754 809 (11) 803 (14)

PR 6 225 372 183 318 221 (64) 197 (87)
PET WZ 268 144 97 87 118 143 (51) 158 (58)

Obs Qs 1 66 196 52  - 79 * (105)  -  -
sim Qs 5 117 154 92 162 93 * (68) 94 (79)

 
 
Table 1 : Soil water balance (mm/year) for the monitored year and yearly average for the 
monitored period and the whole 32 year simulated period. Signification of terms is in the text.  
*2003-2006 average 
 
 

P10 P3 P5

Ground level (masl) 832.82 844.24 859.14

initial watertable depth 
(m)

16.82 27.75 39.14

parameters:

L0
809.93 814.73 814.85

WZMDmax 
50 250 470

1  6.96 10-4 4.89 10-4  2.32 10-4

Sy 2.10 10-3 6 10-3 5.11 10-3

2 3.03 10-2 1.71 10-2 4.39 10-3

 
 
Table 2 : model parameters for the 3 simulated piezometers.  
 

Tables
Click here to download Table: Mule Hole water balance tables 18_02_2009.pdf
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2003-2007 cv % 1976-2007 cv %

Rf 1155 (23) 1091 (32)
AETs 809 (11) 803 (14)
sim Qs 107 (59) 94 (79)

Local balance

P10 TWZ 31 (83) 43 (52)
P10 QGW 115 (28) 141 (26)

P3 TWZ 62 (89) 114 (53)
P3 QGW 49 (38) 68 (35)

P5 TWZ 62 (89) 141 (47)
P5 QGW 34 (8) 42 (22)

Watershed balance 

TWZ 53 (88) 104 (43)
 QGW 62 (23) 78 (26)

 water balance 125 (103) 12 (1346)

 
 
Table 3: watershed balance components (in mm/year) for the piezometers P10, P3 and P5, for 
the monitoring period and the 31 year simulation and average watershed balance components. 
 
 
 
 
 
 
 
 
 
 
 
 
 




