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We study the BGK approximation to first-order scalar conservation laws with a flux which is discontinuous in the space variable. We show that the Cauchy Problem for the BGK approximation is well-posed and that, as the relaxation parameter tends to 0, it converges to the (entropy) solution of the limit problem.

Introduction

In this paper we consider the equation

∂ t f ε + ∂ x (k(x)a(ξ)f ε ) = χ u ε -f ε ε , t > 0, x ∈ R, ξ ∈ R, (1) 
with the initial condition

f ε | t=0 = f 0 , in R x × R ξ . (2) 
Here k is given by k

= k L 1 I (-∞,0) + k R 1 I (0,+∞) ,
where 1 I B is the characteristic function of a set B, ξ → a(ξ) is a continuous function on R such that

∀u ∈ [0, 1], u 0 a(ξ)dξ ≥ 0, 1 0 a(ξ)dξ = 0, (3) 
and, in (1), χ u ε , the so-called equilibrium function associated to f ε is defined by

u ε (t, x) = R f ε (t, x, ξ)dξ, χ α (ξ) = 1 I ]0,α[ (ξ) -1 I ]α,0[ (ξ), 1 for t > 0, x ∈ R, ξ ∈ R, α ∈ R.
Eq. ( 1) is the so-called BGK approximation to the scalar conservation law

∂ t u + ∂ x (k(x)A(u)) = 0, A(u) = u 0 a(ξ)dξ. (4) 
The flux (x, u) → k(x)A(u) is discontinuous with respect to x ∈ R, actually (4) is a prototype of scalar (first-order) conservation law with discontinuous flux function. In the last ten years, scalar conservation laws with discontinuous flux function have been extensively studied. We refer to the paper [START_REF] Bürger | Conservation laws with discontinuous flux: a short introduction[END_REF] for a comprehensive introduction to the subject and a complete list of references. Let us simply mention that the discontinuous character of the flux function gives rise to a multiplicity of weak solutions, even if traditional entropy conditions are imposed in the spatial domain apart from the discontinuity. An additional criterion has therefore to be given in order to select solutions in a unique way. For scalar conservation law under the general form ∂ t u + ∂ x (B(x, u)) = 0, where the function B is discontinuous with respect to x, several criteria are possible [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous fluxfunctions[END_REF]. For B(x, u) = k(x)A(u) as above, the choice of entropy solution is unambiguous (see [START_REF] Adimurthi | Optimal entropy solutions for conservation laws with discontinuous fluxfunctions[END_REF], Remark 4.4) and we consider here the criterion of selection first given in [START_REF] Towers | A difference scheme for conservation laws with a discontinuous flux: the nonconvex case[END_REF]. A kinetic formulation (in the spirit of [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]) equivalent to the entropy formulation in [START_REF] Towers | A difference scheme for conservation laws with a discontinuous flux: the nonconvex case[END_REF] has been given in [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF]. In particular, solutions given by this criterion are limits (a.e. and in L 1 ) of the solutions obtained by monotone regularization of the coefficient k in (4), e.g.

k ε (x) = k L 1 I x<-ε (x) + k R -k L 2ε x + k R + k L 2 1 I -ε≤x≤ε + k R 1 I ε<x , ε > 0.
The kinetic formulation of scalar conservation laws is well adapted to the analysis of the (Perthame-Tadmor) BGK approximation of scalar conservation laws.

Developed in [START_REF] Perthame | A kinetic equation with kinetic entropy functions for scalar conservation laws[END_REF], this equation is a continuous version of the Transport-Collapse method of Brenier [START_REF] Brenier | Une application de la symétrisation de Steiner aux équations hyperboliques: la méthode de transport et écroulement[END_REF][START_REF]Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF]. BGK models have also been used for gas dynamics and the construction of numerical schemes. See for example the book of Perthame [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] for a survey of this field.

Our purpose here is to apply the kinetic formulation of [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF] to show the convergence of the BGK approximation. To this aim, we first study the BGK equation in itself in Section 2. In Section 3, we introduce the kinetic formulation for the limit problem. We also introduce a notion of generalized (kinetic) solution, Definition 6. We show that any generalized solution reduces to a mere solution, i.e. a solution in the sense of Def. 4. This theorem of "reduction" is Theorem 7. Then in Section 4, we show that the BGK model converges to a generalized solution of (4) and, using Theorem 7, deduce the strong convergence of the BGK model to a solution of (4), Theorem 11.

A key step of the whole proof of convergence is the result of reduction of Theorem 7. Its proof, given in Section 3.2, is close to the proof of uniqueness of solutions given in [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF]. A minor difference is that we deal here with generalized solutions instead of "kinetic process solutions". There is also a minor error in the proof given in [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF] (specifically, the remainder terms R α,ε,δ and Q β,ν,σ in Eq. ( 31) and (32) of the present paper are missing in [START_REF] Bachmann | Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients[END_REF]). We have therefore given a complete proof of Theorem 7.

We end this introduction with two remarks:

• the BGK model provides an approximation of the entropy solutions to (4) by relaxation of the kinetic equation corresponding to (4). A relaxation scheme of the Jin and Xin type applied directly to the original equation (4) has been developed in [START_REF] Karlsen | A relaxation scheme for conservation laws with a discontinuous coefficient[END_REF].

• in the last chapter of [START_REF] Bachmann | Equations hyperboliques scalaires à flux discontinu[END_REF], is derived the kinetic formulation of scalar conservation laws with discontinuous spatial dependence of the form ∂ t u+ ∂ x (B(x, u)) = 0 (which are more general than (4)). We indicate (this would have to be proved rigorously), that in case where our approach via the BGK approximation was applied to this problem, the solutions obtained would be the type of entropy solutions considered in [START_REF] Karlsen | L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients[END_REF].

Notation For p, q ∈ [1, +∞], we denote by L p x L q ξ the space L p (R x ; L q (R ξ )) and by L q ξ L p x the space L q (R ξ ; L p (R x )). We also set sgn

+ (s) = 1 I {s>0} , sgn -(s) = -1 I {s≤0} , sgn = sgn + + sgn -, s ∈ R.

The BGK equation

The balance equation

By the change of variables f ε (t, x, ξ) = e t ε f ε (t, x, ξ), Eq. (1) rewrites as the balance equation

∂ t f ε + ∂ x (k(x)a(ξ) f ε ) = e t ε ε χ u ε
with (unknown dependent) source term e t ε ε χ u ε . Hence, we first consider the following Cauchy Problem for the balance equation:

∂ t f + ∂ x (k(x)a(ξ)f ) =g, t > 0, x ∈ R, ξ ∈ R, (5) 
f | t=0 =f 0 in R x × R ξ . (6) Proposition 1 Suppose that k R • k L > 0. Then Problem (5)-(6) is well posed in L 1 ξ L p x , 1 ≤ p < +∞: for all f 0 ∈ L 1 ξ L p x , T > 0 and g ∈ L 1 (]0, T [; L 1 ξ L p x ), there exists a unique f ∈ C([0, T ]; L 1 ξ L p x ) solving (5) in D ′ (]0, T [×R x × R ξ ) such that f (0) = f 0 . Besides, we have f (t) L 1 ξ L p x ≤ M k f 0 L 1 ξ L p x + t 0 g(s) L 1 ξ L p x ds , (7) 
where M k = max kL kR , kR kL .

Proof: Since (5) is linear, it is sufficient to solve the case g = 0. The general case will follow from Duhamel's Formula. Assume without loss of generality k R , k L > 0. Let A + := {ξ ∈ R; a(ξ) > 0}. Then, for fixed ξ ∈ A + , and although k is a discontinuous function, the O.D.E.

Ẋ(t, s, x, ξ) = k(X(t, s, x, ξ))a(ξ), t ∈ R, (8) 
with datum X(s, s, x, ξ) = x has an obvious solution for x = 0, given by X(t, s, x, ξ) = x + (ts)k R a(ξ), t > s, when x > 0, and by

X(t, s, x, ξ) = x + (t -s)k L a(ξ) if t < s + |x| kLa(ξ) , kR kL x + (t -s)k R a(ξ) if t > s + |x| kLa(ξ) ,
when x < 0. Denoting by s + = max(s, 0), s -= s +s the positive and negative parts of s ∈ R, and introducing

α k (x) = 1 I {x>0} + k R k L 1 I {x<0} ,
this can be summed up as

X(t, s, x, ξ) = {α k (x)x + (t -s)k R a(ξ)} + -{x + (t -s)k L a(ξ)} -, t > s. (9)
Similarly, we have, for the resolution of (8) backward in time,

X(t, s, x, ξ) = {x + (t -s)k R a(ξ)} + -{β k (x)x + (t -s)k L a(ξ)} -, t < s, (10) 
where

β k (x) = k L k R 1 I {x>0} + 1 I {x<0} .
A similar computation in the case a(ξ) ≤ 0 gives the solution to (8) by ( 9) for (ts)a(ξ) ≥ 0, (10) for (ts)a(ξ) ≤ 0. For the transport equation

(∂ t + k(x)a(ξ)∂ x )ϕ * = 0, interpreted as d dt ϕ * (t, X(t, s, x, ξ), ξ) = 0,
this yields the solution ϕ * (t, x, ξ) = ψ(X(T, t, x, ξ), ξ), which satisfies the terminal condition ϕ * (T ) = ψ. We suppose in what follows that ψ is independent on ξ, compactly supported and Lipschitz continuous. Then, a simple change of variable shows that, for every t ∈ [0, T ], for a.e. ξ ∈ R, 5)-(6), then, by duality (note that ϕ * is Lipschitz continuous and compactly supported in

ϕ * (t, •, ξ) L q x ≤ M k ψ L q x , M k = max k L k R , k R k L , 1 ≤ q ≤ +∞. ( 11 
) If f ∈ C([0, T ]; L 1 ξ L p x ) solves (
x if ψ is) we have, for t ∈ [0, T ], for a.e. ξ ∈ R, R f (T, x, ξ)ψ(x, ξ)dx = R f 0 (x, ξ)ϕ * (0, x, ξ)dx. ( 12 
)
In particular, the estimate (11) where q = conjugate exponent of p gives, for a.e. ξ ∈ R,

f (T, •, ξ) L p x ≤ M k f 0 (•, ξ) L p
x , and then by Duhamel's principle, for g = 0,

f (T, •, ξ) L p x ≤ M k f 0 (•, ξ) L p x + T 0 g(t, •, ξ) L p x dt . (13) 
The estimate (7) and uniqueness of the solution to (5)-(6) readily follows. Existence follows from (9)-( 10)-( 12), from which one derives the explicit formula f (t, x, ξ) = J(t, x, ξ)f 0 (X(0, t, x, ξ), ξ), the coefficient J(t, x, ξ) being given by

J(t, x, ξ) = 1 I {x<0}∪{x>tkRa(ξ)} + k L k R 1 I {0<x<tkRa(ξ)}
if a(ξ) > 0 and

J(t, x, ξ) = 1 I {x<tkLa(ξ)}∪{x>0} + k R k L 1 I {tkLa(ξ)<x<0} if a(ξ) ≤ 0.

The BGK equation

Denote by T (t)f 0 the solution to ( 5)-( 6) with g = 0, i.e.

T (t)f 0 (x, ξ) = J(t, x, ξ)f 0 (X(0, t, x, ξ), ξ),
X given by ( 9)-(10).

Definition 2 Let f 0 ∈ L 1 (R x × R ξ ), T > 0. A function f ε ∈ C([0, T ]; L 1 (R x × R ξ )) is said to be a solution to (1)-(2) if f ε (t) = e -t ε T (t)f 0 + 1 ε t 0 e -s ε T (s)χ u ε (t-s) ds, u ε = R f ε (ξ)dξ, ( 14 
)
for all t ∈ [0, T ]. Theorem 3 Assume k R • k L > 0. Let f 0 ∈ L 1 (R x × R ξ ), T > 0. There exists a unique solution f ε ∈ C([0, T ]; L 1 (R x × R ξ )) to (1)-(2).
Denoting by S ε (t)f 0 this solution, we have:

1. (S ε (t)f ♮ 0 -S ε (t)f ♭ 0 ) + L 1 (Rx×R ξ ) ≤ M k (f ♮ 0 -f ♭ 0 ) + L 1 (Rx×R ξ ) 2. 0 ≤ sgn(ξ)f 0 (x, ξ) ≤ 1 a.e. ⇒ 0 ≤ sgn(ξ)S ε (t)f 0 (x, ξ) ≤ 1 a.e. 3. if f 0 = χ u0 , u 0 ∈ L ∞ (R), 0 ≤ u 0 ≤ 1 a.e. then 0 ≤ S ε (t)f 0 ≤ χ 1 .
Proof: the change of variable (t ′ , x ′ ) = ε(t, x) reduces (1) to the same equation with ε = 1. We then have to solve f = F (f ) for

F (f )(t) := e -t T (t)f 0 + t 0 e -s T (s)χ u(t-s) ds, u = R f (ξ)dξ.
By (7) and the identity

R |χ u -χ v |(ξ)dξ = |u -v|, u, v ∈ R, we have F : C([0, T ]; L 1 x,ξ ) → C([0, T ]; L 1 x,ξ ) and F is a (1 -e -T ) contraction for the norm f = sup t∈[0,T ] f (t) L 1 (Rx×R ξ ) .
Indeed, we compute,

F (f ♮ )(t) -F (f ♭ )(t) L 1 x,ξ ≤ t 0 e -s T (s)(χ u ♮ (t-s) -χ u ♭ (t-s) ) L 1 x,ξ ds = t 0 e -s χ u ♮ (t-s) -χ u ♭ (t-s) L 1 x,ξ ds = t 0 e -s u ♮ (t -s) -u ♭ (t -s) L 1 x ds ≤ t 0 e -s f ♮ (t -s) -f ♭ (t -s) L 1 x,ξ ds ≤ t 0 e -s ds f ♮ -f ♭ .
By the Banach fixed point theorem, we obtain existence and uniqueness of the solution to (1)-(2). Since 0 ≤ sgn(ξ)χ u (ξ) ≤ 1 a.e. we have

0 ≤ sgn(ξ)F (f )(t, x, ξ) ≤ 1 a.e. if 0 ≤ sgn(ξ)f 0 (x, ξ) ≤ 1 a.e.
This proves the point 2. of the Theorem. The point 1. follows from the inequality

R sgn + (f -g)(Q(f ) -Q(g))dξ ≤ 0, f, g ∈ L 1 (R ξ ), Q(f ) := χ f dξ -f,
that is easy to check, and from the identity

f (t) = T (t)f 0 + t 0 T (s)Q(f )(t -s)ds for the solution to (1)-(2). If f 0 = χ u0 , 0 ≤ u 0 ≤ 1 a.e. then 0 = χ 0 ≤ f 0 ≤ χ 1 .
Hence the item 3. follows from 1. and the fact that any constant equilibrium function χ α , α ∈ R is solution to (1).

The limit problem

Assume

f 0 = χ u0 with u 0 ∈ L ∞ (R), 0 ≤ u 0 ≤ 1 a.e. Set A(u) = u 0 a(ξ)1 I [0,1] (ξ)dξ. ( 15 
)
Note that by (3), we have A ≥ 0 and A vanishes outside the interval [0, 1]. We expect the solution f ε to (1)-(2) to converge to the solution u of the first-order scalar conservation law

∂ t u + ∂ x (k(x)A(u)) = 0, t > 0, x ∈ R, (16) 
with initial datum

u(0, x) = u 0 (x), x ∈ R. ( 17 
)
For a fixed T > 0, set

Q =]0, T [×R x . Definition 4 (Solution) Let u 0 ∈ L ∞ (R), 0 ≤ u 0 ≤ 1 a.e. A function u ∈ L ∞ (Q) is said to be a (kinetic) solution to (16)-(17) if there exists non-negative measures m ± on [0, T ] × R × R such that • m + is supported in [0, T ] × R×] -∞, 1], m -is supported in [0, T ] × R × [0, +∞[, • for all ψ ∈ C ∞ c ([0, T [×R × R), Q R h ± (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R h 0,± ψ(0, x, ξ)dξdx -(k L -k R ) ± T 0 R a(ξ)ψ(t, 0, ξ)dξdt = Q R ∂ ξ ψdm ± (t, x, ξ) (18)
where 16)-( 17), then 0 ≤ u ≤ 1 a.e.

h ± (t, x, ξ) = sgn ± (u(t, x) -ξ), h 0,± (x, ξ) = sgn ± (u 0 (x) -ξ). Proposition 5 (Bound in L ∞ ) Let u 0 ∈ L ∞ (R), 0 ≤ u 0 ≤ 1 a.e. If u ∈ L ∞ (Q) is a kinetic solution to (
Proof: Consider the kinetic formulation (18) for h + with a test function

ψ(t, x, ξ) = ϕ(t, x)µ(ξ). If µ is supported in ]1, +∞[, two terms cancel: R R h 0,+ ψ(0, x, ξ)dξdx = R R 1 I 1≥u0(x)>ξ ϕ(0, x)1 I ξ>1 µ(ξ)dξdx = 0 and Q R ∂ ξ ψdm + (t, x, ξ) = 0
by the hypothesis on the support of m + . Hence we have

Q R h + (∂ t ϕ + k(x)a(ξ)∂ x ϕ)µ(ξ)dξdtdx -(k L -k R ) + T 0 R a(ξ)ϕ(t, 0)µ(ξ)dξdt = 0.
A step of approximation and regularization shows that we can take µ(ξ) = 1 I ξ>1 in this equation. Since

+∞ 1 a(ξ)dξ = A(+∞) -A(1) = 0 -0 = 0,
and

+∞ 1 h + (t, x, ξ)dξ = +∞ 1 1 I ξ<u(t,x) dξ = (u(t, x) -1) + , +∞ 1 h + (t, x, ξ)a(ξ)dξ = +∞ 1 1 I ξ<u(t,x) a(ξ)dξ = sgn + (u(t, x) -1) u(t,x) 1 a(ξ)dξ = sgn + (u(t, x) -1)(A(u(t, x) -A(1)),
we obtain

Q (u -1) + ∂ t ϕ + k(x)sgn + (u -1)(A(u) -A(1))∂ x ϕdtdx = 0.
It is then classical to deduce that (u -1) + = 0 a.e. (see the end of the proof of Proposition 10, after (39)), i.e. u ≤ 1 a.e. Similarly, we show u ≥ 0 a.e.

Our aim is to prove the uniqueness of the solution to ( 16)-( 17). Actually, more than mere uniqueness of the solution to ( 16)-( 17), we will show a result of reduction/uniqueness (see Theorem 7) of generalized kinetic solution. To this purpose, let us recall that a Young measure Q → R is a measurable mapping (t, x) → ν t,x from Q into the space of probability (Borel) measures on R. The mapping is measurable in the sense that for each Borel subset

A of R, (t, x) → ν t,x (A) is measurable Q → R. Let us also introduce the following notation: if f ∈ L 1 (Q × R), we set f ± (y, ξ) = f (y, ξ) -sgn ∓ (ξ), y ∈ Q, ξ ∈ R.
This is consistent with the notations used in Def. 4 in the case f = χ u .

Definition 6 (Generalized solution) Let u 0 ∈ L ∞ (R), 0 ≤ u 0 ≤ 1 a.e. A function f ∈ L 1 (Q×R ξ ) is said to be a generalized (kinetic) solution to (16)-(17) if 0 ≤ f ≤ χ 1 a.e., -∂ ξ f + is a Young measure Q → R,
and if there exists non-negative measures m ± on [0, T ] × R × R such that

• m + is supported in [0, T ] × R×] -∞, 1], m -is supported in [0, T ] × R × [0, +∞[, • for all ψ ∈ C ∞ c ([0, T [×R × R), Q R f ± (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R f 0,± ψ(0, x, ξ)dξdx -(k L -k R ) ± T 0 R a(ξ)ψ(t, 0, ξ)dξdt = Q R ∂ ξ ψdm ± (t, x, ξ) (19)
where f 0,± (x, ξ) = sgn ± (u 0 (x)ξ).

Theorem 7 (Reduction, Uniqueness) 16)-( 17) admits at most one solution. Besides, any generalized solution is actually a solution:

Let u 0 ∈ L ∞ (R), 0 ≤ u 0 ≤ 1 a.e. Problem (
if f ∈ L 1 (Q × R ξ ) is a generalized solution to (16)-(17), then there exists u ∈ L ∞ (Q) such that f = χ u .
To prepare the proof of Theorem 7, we first have to analyze the formulation (19) and the behavior of f at t = 0 and x = 0.

Weak traces

Introduce the cut-off function

ω ε (s) = |s| 0 ρ ε (r)dr, ρ ε (s) = ε -1 ρ(ε -1 s), s ∈ R, (20) 
where ρ ∈ C ∞ c (R) is a non-negative function with total mass 1 compactly supported in ]0, 1[. We have the following proposition. 16)-( 17). There exists

Proposition 8 (Weak traces) Let f ∈ L ∞ (Q × R ξ ) be a generalized solution to (
f τ0 ± ∈ L 2 (R × R), F ± ∈ L 2 (]0, T [×R) and a sequence (η n ) ↓ 0 such that, for all ϕ ∈ L 2 c (R × R), for all θ ∈ L 2 c (]0, T [×R) (the subscript c denotes compact support), Q R f ± (t, x, ξ)ω ′ ηn (t)ϕ(x, ξ)dξdtdx → R R f τ0 ± (x, ξ)ϕ(x, ξ)dξdx, (21) 
Q R f ± (t, x, ξ)k(x)a(ξ)ω ′ ηn (x)θ(t, ξ)dξdtdx → T 0 R F ± (t, ξ)θ(t, ξ)dξdt (22)
as n → +∞. Besides, there exists non-negative measures m τ0 ± , m± on R 2 and [0, T ] × R respectively such that:

• m τ0 + (resp. m+ ) is supported in R×] -∞, 1] (resp. [0, T ]×] -∞, 1]), m τ0 - (resp. m-) is supported in R × [0, +∞[ (resp. [0, T ] × [0, +∞[), • for all ϕ ∈ C ∞ c (R 2 ), θ ∈ C ∞ c ([0, T [×R), R 2 f τ0 ± ϕdxdξ = R 2 f 0,± ϕdxdξ - R 2 ∂ ξ ϕdm τ0 ± (x, ξ), (23) 
T 0 R F ± θdξdt = -(k L -k R ) ± T 0 R a(ξ)θdξdt - T 0 R ∂ ξ θd m± (t, ξ). (24) 
Proof: The first part of the proposition does not use the fact that f is solution. Indeed, since |f ± | ≤ 2, we have

T 0 f ± (t, x, ξ)ω ′ η (t)dt ≤ 2 T 0 |ω ′ η (t)|dt = 2 T 0 ρ η (t)dt ≤ 2, for all (x, ξ) ∈ R 2 . This gives in particular a bound in L 2 (K), K compact of R 2 on T 0 f ± (t, •)ω ′ η (t)
dt, hence existence of a subsequence that converges weakly in L 2 (K). Writing R 2 as an increasing countable union of compact sets and using a diagonal process, we obtain (21). The proof of ( 22) is similar. To obtain (23), apply the formulation (19) to ψ(t, x, ξ) = ϕ(x, ξ)(1ω ηn (t)). We obtain (23) by using (21) and setting

R 2 ϕdm τ0 ± (x, ξ) = lim n→+∞ Q R ϕ(x, ξ)(1 -ω ηn (t))dm ± (t, x, ξ)
for all non-negative ϕ ∈ C c (R 2 ): the limit is well defined since the argument is monotone in n and it defines a non-negative functional on C c (R 2 ) which is represented by a non-negative Radon measure. Similarly, applying the formulation (19) to ψ(t, x, ξ) = θ(t, ξ)(1ω ηn (x)), we obtain (24) with

T 0 R θd m± (t, ξ) = lim n→+∞ Q R θ(t, ξ)(1 -ω ηn (x))dm ± (t, x, ξ) for all non-negative θ ∈ C c ([0, T ] × R). Remark: Since 0 ≤ f ≤ χ 1 , (21) shows that f τ0 + , resp. f τ0 -, is supported in R×] -∞, 1], resp. R × [0, +∞[. Similarly, F + , resp. F -, is supported in [0, T ]×] -∞, 1], resp. [0, T ] × [0, +∞[.

We use this remark to show the following

Corollary 9 For all ϕ -∈ L ∞ (R 2 ) supported in [-R, R] × [-R, +∞[ (R > 0) such that ∂ ξ ϕ -≤ 0 (in the sense of distributions), we have lim n→+∞ Q R f + ω ′ ηn (t)ϕ -(x, ξ)dξdtdx ≥ R 2 f 0,+ ϕ -dxdξ. ( 25 
)
For all θ -∈ L ∞ (]0, T [×R) supported in [0, T ] × [-R, +∞[ (R > 0) such that ∂ ξ θ -≤ 0 (in the sense of distributions), we have lim n→+∞ Q R f + k(x)a(ξ)ω ′ ηn (x)θ -(t, ξ)dξdtdx ≥ -(k L -k R ) + T 0 R a(ξ)θ -dξdt. (26) 
Proof: Note first that each term in ( 25) is well defined by the remark above and that, by (21),

lim n→+∞ Q R f + (t, x, ξ)ω ′ ηn (t)ϕ -(x, ξ)dξdtdx = R R f τ0 + ϕ -dξdx.
By regularization (parameter ε) and truncation (parameter M ), we have

R 2 (f τ0 + -f 0,+ )ϕ -dxdξ = R 2 (f τ0 + -f 0,+ )ϕ ε,M -dxdξ + η(ε, M ),
where lim ε→0,M→+∞ η(ε, M ) = 0. More precisely, we set

ϕ ε,M - = (ϕ - * ψ ε ) × χ M ,
where ψ ε is a (smooth, compactly supported) approximation of the unit on R 2 and χ M is a smooth, non-increasing function such that χ

M ≡ 1 on ] -∞, M ], χ M ≡ 0 on [M + 1, +∞[. Apply (23) to ϕ ε,M - to obtain R 2 (f τ0 + -f 0,+ )ϕ -dxdξ = - R 2 ∂ ξ ϕ ε,M -dm τ0 + (x, ξ) + η(ε, M ). For M > R + 1 and ε < 1, we have ϕ ε,M - = ϕ - * ψ ε , hence ∂ ξ ϕ ε,M - ≤ 0. It follows that R 2 (f τ0 + -f 0,+ )ϕ -dxdξ ≥ η(ε, M ),
for M > R + 1, ε < 1. At the limit M → +∞, ε → 0, we obtain (25). The proof of (26) is similar.

Proof of Theorem 7

Our aim is to show the following Proposition 10 Let u 0 , v 0 ∈ L ∞ (R), 0 ≤ u 0 , v 0 ≤ 1 a.e. and let f , resp g, be a generalized solution to ( 16)-( 17) with datum u 0 , resp.

v 0 . Let M = sup x∈R,ξ∈[0,1] |k(x)a(ξ)|. Then we have, for R > 0, 1 T T 0 {|x|<R} R -f + g -dξdxdt ≤ {|x|<R+MT } (u 0 -v 0 ) + dx. (27) 
Remark: 

In case f = χ u , g = χ v , we have R -f + g -dξ = (u -v) + , hence ( 
T 0 {|x|<R} R -f + f -dξdxdt ≤ 0. ( 28 
)
Since 0 ≤ f ≤ χ 1 , we have f + ≥ 0 a.e. and f -≤ 0 a.e. We deduce from (28) that f + f -= 0 a.e. Let ν t,x denote the Young measure -∂ ξ f + : we have

∂ ξ f -= ∂ ξ f -δ 0 = ∂ ξ f + and, by examination of the values at ξ = ±∞ of f ± , for a.e. (t, x) ∈ Q, f + (t, x, ξ) = ν t,x (ξ, +∞), f -(t, x, ξ) = -ν t,x (-∞, ξ).
But then, the relation f + f -= 0 implies that ν t,x is a Dirac mass at, say, u(t, x). By measurability of ν, u is measurable and f = χ u .

Proof of Proposition 10: Since f + and g -satisfy

Q R f + (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R f 0,+ ψ(0, x, ξ)dξdx -(k L -k R ) + T 0 R a(ξ)ψ(t, 0, ξ)dξdt = Q R ∂ ξ ψdm + (t, x, ξ) (29) and Q R g -(∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R g 0,-ψ(0, x, ξ)dξdx -(k L -k R ) - T 0 R a(ξ)ψ(t, 0, ξ)dξdt = Q R ∂ ξ ψdp -(t, x, ξ) (30) for all ψ ∈ C ∞ c ([0, T [×R×R) (here g 0,-= sgn -(v 0 -ξ) and p -is a non-negative measure on [0, T ] × R × R supported in [0, T ] × R × [0, +∞[),
it is possible to obtain an estimate for -f + g -by setting ψ = -g -ϕ in (29) and ψ = f + ϕ in (30) (ϕ being a given test function) and adding the result. This requires first, however, a step of regularization.

Step 1. Regularization. Let ρ α,ε,δ denote the approximation of the unit on R 3 given by

ρ α,ε,δ (t, x, ξ) = ρ α (t)ρ ε (x)ρ δ (ξ), (t, x, ξ) ∈ R 3 , where ρ ε is defined in (20). Let ψ ∈ C ∞ c ([0, T [×R × R) be compactly supported in ]0, T [×R \ {0} × R. Use ψ * ρ α,ε,δ as a test function in (29) and Fubini's theorem to obtain Q R f α,ε,δ + (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R f 0,+ ψ * ρ α,ε,δ (0, x, ξ)dξdx -(k L -k R ) + T 0 R a(ξ)ψ * ρ α,ε,δ (t, 0, ξ)dξdt = Q R ∂ ξ ψdm α,ε,δ + (t, x, ξ) + R α,ε,δ (ψ),
where f α,ε,δ

+ := f + * ρα,ε,δ , m α,ε,δ + := m + * ρα,ε,δ and R α,ε,δ (ψ) = Q R f + [k(x)a(ξ)(∂ x ψ) * ρ α,ε,δ -(k(x)a(ξ)∂ x ψ) * ρ α,ε,δ ]dξdtdx.
Here we have denoted ρ(t, x, ξ) = ρ(-t, -x, -ξ). Also observe that, implicitly, we have extended f + by 0 outside [0, T ] since, e.g.

T 0 f + (t)ψ * ρ α (t)dt = T 0 R f + (t)ψ(s)ρ α (t -s)dsdt = R ψ(s) T 0 f + (t)ρ α (s -t)dtds. Since ψ is supported in ]0, T [×R \ {0} × R, we have, for α, ε small enough, R R f 0,+ ψ * ρ α,ε,δ (0, x, ξ)dξdx =0, T 0 R a(ξ)ψ * ρ α,ε,δ (t, 0, ξ)dξdt =0,
and

R α,ε,δ (ψ) = Q R f + k(x)[a(ξ)(∂ x ψ) * ρ α,ε,δ -(a(ξ)∂ x ψ) * ρ α,ε,δ ]dξdtdx. We deduce Q R f α,ε,δ + (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx = Q R ∂ ξ ψdm α,ε,δ + (t, x, ξ) + R α,ε,δ (ψ). (31) 
A similar work on g -gives

Q R g β,ν,σ - (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx = Q R ∂ ξ ψdp β,ν,σ - (t, x, ξ) + Q β,ν,σ (ψ), (32) 
where

Q β,ν,σ (ψ) = Q R g -k(x)[a(ξ)(∂ x ψ) * ρ β,ν,σ -(a(ξ)∂ x ψ) * ρ β,ν,σ ]dξdtdx.
Step 2. Equation for -f α,ε,δ

+ g β,ν,σ - . Let ϕ ∈ C ∞ c ([0, T [×R) be non-negative and compactly supported in ]0, T [×R \ {0}. Notice that ϕ does not depend on ξ. Set ψ = -ϕg β,ν,σ - in (31), ψ = -ϕf α,ε,δ + in (32). Since f ∂ t (ϕg) + g∂ t (ϕf ) = f g∂ t ϕ + ∂ t (ϕf g),
we obtain by addition of the resulting equations

Q R -f α,ε,δ + g β,ν,σ - (∂ t ϕ + k(x)a(ξ)∂ x ϕ)dξdtdx = - Q ϕ R ∂ ξ f α,ε,δ + dp β,ν,σ - (t, x, ξ) + ∂ ξ g β,ν,σ - dm α,ε,δ + (t, x, ξ) + R α,ε,δ (-ϕg β,ν,σ - ) + Q β,ν,σ (-ϕf α,ε,δ + ).
Notice that the term

- Q ϕ R ∂ ξ f α,ε,δ + dp β,ν,σ - (t, x, ξ) + ∂ ξ g β,ν,σ - dm α,ε,δ + (t, x, ξ)
is well defined since the intersection of the supports of the functions f α,ε,δ

+ and p β,ν,σ - (resp. f β,ν,σ - and m α,ε,δ + ) is compact. Actually, this term is non-negative since p β,ν,σ - , m α,ε,δ + ≥ 0 and ∂ ξ f α,ε,δ + , ∂ ξ g β,ν,σ - ≤ 0. We thus have Q R -f α,ε,δ + g β,ν,σ - (∂ t ϕ + k(x)a(ξ)∂ x ϕ)dξdtdx ≥ R α,ε,δ (-ϕg β,ν,σ - ) + Q β,ν,σ (-ϕf α,ε,δ + ). (33) It is easily checked that R α,ε,δ (-ϕj β,ν,σ - ) = O(ν -1 δ), Q β,ν,σ (-ϕh α,ε,δ + ) = O(ε -1 σ), hence lim δ,σ→0 R α,ε,δ (-ϕg β,ν,σ - ) + Q β,ν,σ (-ϕf α,ε,δ + ) = 0.
At the limit δ, σ → 0 in (33), we conclude that

Q R -f α,ε + g β,ν -(∂ t ϕ + k(x)a(ξ)∂ x ϕ)dξdtdx ≥ 0. ( 34 
)
Step 3. Traces. Suppose that k L < k R . We then pass to the limit ε, α → 0 in (34) to obtain

Q R -f + g β,ν -(∂ t ϕ + k(x)a(ξ)∂ x ϕ)dξdtdx ≥ 0. ( 35 
)
Note that in the opposite case k L > k R , and with our method of proof, we would first pass to the limit on β, ν. Let us now remove the hypothesis that ϕ vanishes at t = 0: suppose that ψ ∈ C ∞ c ([0, T [×R) is non-negative and supported in [0, T [×R \ {0} and apply (35) to ϕ(t, x) = ψ(t, x)ω ηn (t). We have

Q R -f + g β,ν -ω ηn (t)(∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + Q R -f + g β,ν -ψ(t, x)ω ′ ηn (t)dξdtdx ≥ 0. (36) By (25) applied with ϕ -(x, ξ) = g β,ν -(0, x, ξ)ψ(0, x), we obtain lim n→+∞ Q R f + g β,ν -(0, x, ξ)ψ(0, x)ω ′ ηn (t)dξdtdx ≥ R R f 0,+ g β,ν - (0, x, ξ)ψ(0, x)dξdx. 
Now f + (t, x, ξ)g β,ν -(t, x, ξ)ψ(t, x) has a compact support, say in [0, T ]×[-R, R]× [-R, R], thus ϕ -(t, x, ξ) = g β,ν
-(t, x, ξ)ψ(t, x) is uniformly continuous on this compact support. Therefore for µ > 0, there exists γ > 0 such that |ϕ -(t, x, ξ)ϕ -(0, x, ξ)| ≤ µ 8R 2 for any 0 ≤ t < γ and any x, ξ ∈ [-R, R], and then for large n, we have η n < γ and

Q R f + (t, x, ξ) g β,ν -(t, x, ξ)ψ(t, x) -g β,ν -(0, x, ξ)ψ(0, x) ω ′ ηn (t)dξdtdx ≤ Q R |f + (t, x, ξ)|ρ ηn (t) µ 8R 2 1 I (x,ξ)∈[-R,R] 2 dξdtdx ≤ µ ρ ηn (t) dt = µ. ( 37 
)
Thus we obtain, at the limit n → +∞ in (36),

Q R -f + g β,ν -(∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R -f 0,+ g β,ν -(0, x, ξ)ψ(0, x)dξdx ≥ 0.
The next step is then to remove the hypothesis that ψ vanishes at x = 0 by setting ψ(t, x) = θ(t, x)ω ηn (x) where θ ∈ C ∞ c ([0, T [×R) is a non-negative test-function. We have

Q R -f + g β,ν -ω ηn (x)(∂ t θ + k(x)a(ξ)∂ x θ)dξdtdx + Q R -f + g β,ν -θ(t, x)k(x)a(ξ)ω ′ ηn (x)dξdtdx + R R -f 0,+ g β,ν -(0, x, ξ)θ(0, x)ω ηn (x)dξdx ≥ 0. By (26) with θ -(t, ξ) = g β,ν -(t, 0, ξ)θ(t, 0), lim n→+∞ Q R f + k(x)a(ξ)ω ′ ηn (x)g β,ν -(t, 0, ξ)θ(t, 0)dξdtdx ≥ -(k L -k R ) + T 0 R a(ξ)g β,ν -(t, 0, ξ)θ(t, 0)dξdt,
and by an argument similar to (37), the limit as [n → +∞] of the term

Q R f + k(x)a(ξ)ω ′ ηn (x) g β,ν -(t, x, ξ)θ(t, x) -g β,ν -(t, 0, ξ)θ(t, 0) dξdtdx is zero. We have therefore Q R -f + g β,ν -(∂ t θ + k(x)a(ξ)∂ x θ)dξdtdx + (k L -k R ) + T 0 R a(ξ)g β,ν -(t, 0, ξ)θ(t, 0)dξdt + R R
-f 0,+ g β,ν -(0, x, ξ)θ(0, x)dξdx ≥ 0.

Since (k Lk R ) + = 0, we have actually

Q R -f + g β,ν -(∂ t θ + k(x)a(ξ)∂ x θ)dξdtdx + R R -f 0,+ g β,ν -(0, x, ξ)θ(0, x)dξdx ≥ 0.
Take β = η n where (η n ) is given in Prop. 8. At the limit ν → 0 first, then n → +∞, we obtain

Q R -f + g -(∂ t θ + k(x)a(ξ)∂ x θ)dξdtdx + lim sup n→+∞ R R -f 0,+ g ηn -(0, x, ξ)θ(0, x)dξdx ≥ 0. ( 38 
)
Observe that

g ηn -(0, x, ξ) = T 0 g -(t, x, ξ)ρ ηn (t)dt = T 0 g -(t, x, ξ)ω ′ ηn (t)dt.
By (25) (transposed to g -tested against a function ϕ + ), we have

lim n→+∞ R R -f 0,+ g ηn -(0, x, ξ)θ(0, x)dξdx ≤ R R -f 0,+ g 0,-θ(0, x)dξdx. Since R -f 0,+ g 0,-dξ = R -sgn + (u 0 -ξ)sgn -(v 0 -ξ)dξ = (u 0 -v 0 ) + ,
we obtain by (38),

Q R -f + g -(∂ t θ + k(x)a(ξ)∂ x θ)dξdtdx + R (u 0 -v 0 ) + θ(0, x)dx ≥ 0. ( 39 
)
It is then classical to conclude to (27): let M > 0, R > M T , let η > 0 and let r be a non-negative, non-increasing function such that r ≡ 1 on [0, R], r ≡ 0 on

[R + η, +∞[. Set θ(t, x) = T -t T r(|x| + M t) in (39) to obtain 1 T Q R -f + g -r(|x| + M t)dξdtdx ≤ {|x|≤R+η} (u 0 -v 0 ) + dx + J,
where the remainder term is

J = Q R -f + g - T -t T r ′ (|x| + M t)(M + k(x)a(ξ)sgn(x))dξdxdt.
By definition of M , J ≤ 0 and since r(

|x|+M t) = 1 for |x| ≤ R-M T , 0 ≤ t ≤ T , we obtain 1 T T 0 |x|<R-MT R -f + g -dξdxdt ≤ {|x|≤R+η} (u 0 -v 0 ) + dx.
Replacing R by R + M T , and letting η → 0 gives (27).

Convergence of the BGK approximation

Theorem 11 Let u 0 ∈ L 1 ∩ L ∞ (R), 0 ≤ u 0 ≤ 1 a.e. When ε → 0, the solution f ε to the (1) with initial datum f 0 = χ u0 converges in L p (Q × R ξ ), 1 ≤ p < +∞ to χ u ,
where u is the unique solution to ( 16)-( 17).

Proof:

For f ∈ L 1 (R ξ ), set m f (ξ) = ξ -∞ (χ u -f )(ζ)dζ, u = R f (ξ)dξ.
It is easy to check that m f ≥ 0 if 0 ≤ sgn(ξ)f (ξ) ≤ 1 for a.e. ξ (cf. (29) in [START_REF]Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF]). In our context, we have 0

≤ f ε ≤ χ 1 , hence m ε := 1 ε m f ε ≥ 0. Viewed as a measure, m ε is supported in [0, T ] × R x × [0, 1]. Integration with respect to ξ in (1) gives m ε (ξ) = ∂ t ξ 0 f ε (ζ)dζ + ∂ x k(x) ξ 0 a(ζ)f ε (ζ)dζ in D ′ (]0, T [×R x ). Summing over (t, x) ∈ [0, T ] × [x 1 , x 2 ], ξ ∈]0, 1[, we get the estimate m ε ([0, T ] × [x 1 , x 2 ] × [0, 1]) = x2 x1 1 0 (1 -ξ)(f ε (T, x, ξ) -f ε (0, x, ξ))dξdx + T 0 1 0 (1 -ξ)k(x)a(ξ)f ε (t, x, ξ)dξdt x2 x1 . (40) Since f ε (t) ∈ L 1 (R x × R ξ )
, there exists sequences (x n 1 ) ↓ -∞ and (x n 2 ) ↑ +∞ such that the last term of the right hand-side in (40) tends to 0 when n → +∞. Since, besides,

f ε ≥ 0 and R R f ε (T, x, ξ)dξdx ≤ R R χ u0 dξdx = u 0 L 1 (R) ,
we obtain the uniform estimate

m ε ([0, T ] × R × [0, 1]) ≤ u 0 L 1 (R) . (41) 
We also have

0 ≤ f ε ≤ χ 1 , -∂ ξ f ε + (t, x, ξ) = ν ε t,x (ξ) + O(ε) (42) 
where ν ε t,x (ξ) := δ u ε (t,x) (ξ) and the identity is satisfied in D ′ (]0, T [×R x × R ξ ). Indeed, by (1),

f ε = χ u ε + ε(∂ t f ε + ∂ x (k(x)a(ξ)f ε )) = χ u ε + O(ε), hence -∂ ξ f ε + = -∂ ξ f ε + δ 0 (ξ) = -∂ ξ χ u ε + δ 0 (ξ) + O(ε) = δ u ε (ξ) + O(ε).
Notice that, for a.e. (t, x), ν ε t,x is supported in the fixed compact subset [0, 1] of R ξ . We deduce from (41)-(42) that, up to a subsequence, there exists a non-negative measure

m on R 3 supported in [0, T ] × R x × [0, 1], a function f ∈ L ∞ (]0, T [; L 1 (R x × R ξ )) such that 0 ≤ f ≤ χ 1 , -∂ ξ f + (t, x, ξ) = ν t,x (ξ)
where ν is a Young measure Q → R ξ and such that m ε ⇀ m weakly in the sense of measures (i.e. m εm, ϕ → 0 for every continuous compactly supported ϕ on R 3 ) and

f ε ⇀ f in L ∞ (Q × R ξ ) weak-star. Besides, since f ε ∈ C([0, T ]; L 1 x,ξ ) satisfies f ε (0) = f 0 and the BGK equation ∂ t f ε + ∂ x (k(x)a(ξ)f ε ) = ∂ ξ m ε , it satisfies the weak formulation: for all ψ ∈ C ∞ c ([0, T [×R × R), Q R f ε (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R f 0 ψ(0, x, ξ)dξdx = Q R ∂ ξ ψdm ε (t, x, ξ).
In particular, we have

Q R f ε ± (∂ t ψ + k(x)a(ξ)∂ x ψ)dξdtdx + R R
f 0,± ψ(0, x, ξ)dξdx

= - Q R sgn ∓ (ξ)k(x)a(ξ)∂ x ψdξdtdx + Q R ∂ ξ ψdm ε (t, x, ξ) =(k R -k L ) T 0 R
sgn ∓ (ξ)a(ξ)ψ(t, 0, ξ)dξdt

+ Q R ∂ ξ ψdm ε (t, x, ξ) =(k L -k R ) ± T 0 R a(ξ)ψ(t, 0, ξ)dξdt + Q R ∂ ξ ψdm ε ± (t, x, ξ), (43) 
where Notice that in both cases, and since A(ξ) ≥ 0 for any ξ, we have added a nonnegative quantity to m ε . At the limit ε → 0 we thus obtain m ε ± ⇀ m ± where m ± is a non-negative measure. Examination of the support of m ε ± shows that m + , resp. m -is supported in [0, T ] × R x ×] -∞, 1], resp. [0, T ] × R x × [0, +∞[. At the limit ε → 0, we thus obtain the kinetic formulation (19). We conclude that f is a generalized solution to (16)-(17). By Theorem 7, f = χ u where u ∈ L ∞ (Q) is solution to (16)-(17). By uniqueness, the whole sequence (f ε ) converges (in L ∞ weak-star) to χ u . Actually the convergence is strong since

m ε ± , ∂ ξ ψ := m ε , ∂ ξ ψ - T 0 R a(ξ)[(k L -k R )sgn ∓ (ξ) + (k L -k R ) ± ]ψ(t,
Q R |f ε -χ u | 2 dξdtdx = Q R |f ε | 2 -2f ε χ u + χ u dξdtdx ≤ Q R f ε -2f ε χ u + χ u dξdtdx. ( 45 
)
We have used the fact that 0 ≤ f ε ≤ 1. The right-hand side of (45) tends to 0 when ε → 0 since 1, χ u ∈ L ∞ can be taken as test functions. Hence f ε → χ u in L 2 (Q × R). The convergence in L p (Q × R), 1 ≤ p < +∞ follows from the uniform bound on

f ε in L 1 ∩ L ∞ (Q × R).
Remark: it is possible to relax the assumption that the initial datum for (1) is at equilibrium and independent on ε in Theorem 11. Indeed, the conclusion of Theorem 11 remains valid under the hypothesis that the initial datum f ε 0 for (1) satisfies

0 ≤ f ε 0 ≤ χ 1 , f ε 0 ⇀ f 0 , u 0 (x) := R f 0 (x, ξ)dξ, (46) 
where f ε 0 ⇀ f 0 in (46) denotes weak convergence in L 1 (R x × R ξ ). Indeed, the proof of Theorem 11 remains unchanged under the following modification: passing to the limit in (43), we obtain that f is a generalized solution to (16) with an initial datum f 0 that is not necessary at equilibrium. However, we have (cf. (29) in [START_REF]Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF])

f 0 -sgn ∓ (ξ) = sgn ± (u 0 -ξ) -∂ ξ m 0 ± ,
where m 0 + (resp. m 0 -) is a non-negative measure supported in [0, T ]×R×]-∞, 1] (resp. [0, T ] × R × [0, +∞[). Consequently, up to a modification of the kinetic measure m ± , we obtain that f is indeed a generalized solution to ( 16)-( 17). The rest of the proof is similar.

  0, ξ)dξdt. (44) More precisely, we setm ε + = m ε + +∞ ξ a(ζ)[(k Lk R ) + sgn + (ζ) -(k Lk R ) -sgn -(ζ)]dζδ(x = 0),andm ε -= m ε + ξ -∞ a(ζ)[(k Lk R ) + sgn + (ζ) -(k Lk R ) -sgn -(ζ)]dζδ(x = 0).

  27) gives uniqueness of the solution to (16)-(17) (more precisely, it gives the L 1 -contraction with averaging in time and the comparison result u 0 ≤ v 0 a.e.

⇒ u ≤ v a.e.). Remark: To obtain the second part of Theorem 7, we apply (27) with g = f to obtain