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Abstract

This research concerns the problem of the evaluation of the railway infrastructure ca-

pacity. It is an important question when railway authorities have to choose between

di�erent infrastructure investment projects. We developped independently two heuristic

approaches to solve the infrastructure saturation problem. The �rst is based on a con-

straint programming model which is solved using a greedy heuristic. The second approach

identi�es the saturation problem as a unicost set packing problem and its resolution is

ensured by an adaption of GRASP metaheuristic. Currently, both resolution techniques

are not in competition. The goal is to grasp the resolution ability of the heuristics and to

analyse the kind of solutions produced. The Pierre�tte-Gonesse junction has been used

as experimental support. A software environment allows to simulate several timetables

involving TGV, Inter City and Freight trains.

1 Introduction to the railway saturation problem

Basically, the capacity of a component of a rail system is de�ned as the maximum

number of trains that can be operated on it within a certain unit of time u (e.g.

an hour or a day). The theoretical expression of the capacity of a railway line in a

given direction, noted C, can be de�ned as :

C =
u

h
(1)
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where h is the minimum headway time between two successive trains. The mini-

mum headway time depends on the signaling system installed on the line consid-

ered. Expressions which are more accurate can be used to include more features of

the rail system (see [15]).

For a junction of lines, the previous analytical de�nition of the capacity does not

apply. The capacity of a junction is not the sum of the capacity of the converging

lines, therefore it is necessary to build models which are more complex [7]. The

capacity of a junction can be de�ned as the solution for an optimization problem.

The problem is to �nd the maximum number of trains among a prede�ned train

set that can be operated on the junction, i.e. to �nd a saturation timetable. In

this problem, it is assumed that trains do not stop during the run in the junction.

To de�ne more formally the railway saturation problem, we need to introduce the

following notations.

Let T be the set of trains considered.

Let R be the set of routes used by trains running on the junction considered.

The function fr : T ! P(R) gives for each train the feasible routes.

The function fst : T ! P(N) gives for each train the feasible start time values.

The function ra : T ! R de�nes the route assigned to a train.

The function sta : T ! N de�nes the start time assigned to the train run on the

junction.

Let Inc � T �R� N � T �R� N be the relation denoting which timetable

assignements are con
icting.

De�nition 1.1 An instance of a railway saturation problem is a six-tuple (T ;R;

fr; fst; Inc; u), the problem is to �nd a couple (ra; sta) so that:

- 8t 2 T ; ra(t) 2 fr(t),

- 8t 2 T ; sta(t) 2 fst(t),

- 8(t; t0) 2 T � T ; (t; ra(t); sta(t); t0; ra(t0); sta(t0)) =2 Inc ,

and the objective function is to maximize the size of the set ft 2 T ; sta(t) � ug.

Given a railway junction and the time interval u, an instance of the saturation

problem is characterized by the T ; fr and fst considered. Let us consider an

example of the generation process of an instance problem, the instance I will be

noted (TI ;R; frI ; fstI ; IncI; u).

Firstly, the set TI can be constructed by using the equation 1 of the line capacity.

Let LI be a set of converging lines considered and the fonction trl : LI ! P(T )

which provides the set of saturation trains running on each line. For each line, the

saturation set must satisfy the following property :

jtrl(i)j = Ci; 8i 2 LI where Ci is calculated by the equation 1.

The set TI is then constructed from the sets trl(i) by :

TI = [i2LI
trl(i).
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Secondly, the function frI has to be de�ned. For example, frI can give for

each train t 2 trl(i) the set of all routes from the entry point to the exit point of

the line i.

Finally, for the function fstI the set of trains of a line is considered as a train

sequence. Let ti;j be the j th train of the line i. The expression of the feasible start

times is :

8i 2 LI; j = 1; : : : ; jtrl(i)j; fstI(ti;j) = [(j � 1) � hi; H]:(2)

where H is an arbitrarily large horizon value, hi is the minimum headway time

between two successive trains on a line i. The equation 3 of the section 2.1 gives an

expression of this term depending on the speci�c features of the signaling system

installed on the given line.

Any real case study of the railway saturation problem represents a large scale

numerical instance. General optimization techniques may encounter diÆculties to

compute the optimal solution. The use of heuristics, aiming to �nd a suitable

solution within a limited computing time, is pertinent in this context.

Next section presents the two models developed for railway junction saturation

studies. The Pierre�tte-Gonesse junction and traÆc scenarios elaborated are de-

scribed in section 3. In accordance with the hypothesis of both models presented,

numerical data are generated. Section 4 gives the main steps for the generation

process. The resolution is heuristic. For the Constraint Programming model, a

greedy algorithm using the ILOG libraries for the propagation mechanism has

been elaborated. For the unicost set packing model, an adaptation of the GRASP

metaheuristic has been designed. All details about the resolution methods are men-

tioned in section 5. The last section reports numerical experiments. A solution

analysis is discussed and forthcoming investigations are underlined.

2 The formulation of models

2.1 Constraint Programming model

The aims of the Constraint Programming (CP) models were originally to solve

feasibility problems : given a set X1; : : : ; Xn of variables, each associated with a

domain D1; : : : ; Dn respectively, and a set of constraints C1,. . . ,Cn, i.e. a subsets

of D1� : : :�Dn, �nd an assignment of values to the variables while simultaneously

satisfying the constraints. The CP models were extended to solve optimization

problems : when a feasible solution is obtained, the value of the objective function is

a new upper (resp. lower) bound of a variable, representing the objective function to

minimize (resp. to maximize). This restriction is made by posting a new constraint

on this variable.

In [14], we have presented a CP model of a real-time train scheduling problem.

This formulation has been applied to the case study of the Pierre�tte-Gonesse

junction. First, we will recall the main components of a signalling system, then

the formulation of the CP model. Finally, we will present how this CP model has

been transformed to tackle the train saturation problem de�ned in section 1.
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2.1.1 Components of a signalling system

The main components of a signalling system are the track circuits, the signals and

the blocks. A track circuit is an electrical circuit of which the rails of the track form

a part. It detects without fail the presence of trains on a particular track section.

To avoid train collision between following trains, the signals placed along the tracks

provide the drivers with information about maximum authorized speed thanks to

colored lights. The information of a signal applies on a line section named a block.

A block may consist of one or more track circuits. For an automatic block signaling

system featuring na colours used for light signals (also named na-aspect signals),

the headway can be de�ned by :

h =
(nalb + lt)

v
(3)

where lb is the length of a block, lt is the train length and v is the average speed.

2.1.2 Real-time train scheduling problem

The CP model presented in [14] focuses on expressing with explicit terms the

in
uence of the signalling system on the run of the trains. This feature is important

for coping correctly with problems within heavy traÆc conditions. The run of a

train through a junction is a sequence of elementary runs. Each elementary run is

the run through a track circuit. An elementary run is considered as an activity and

each track circuit as the unary resource required to process it. Using the notation

of section 1, a run of a train t 2 T is a sequence of nt activities. In the CP model,

ra(t) is the variable of the route assignement of a train and fr(t) is the domain

associated with it. Each variable ra(t) is linked to a set of track circuit assignement

variables noted tcat(i), i being the index in the sequence of activities. The domains

associated to tcat(i) are noted ftct(i). These domains are deduced from fr(t). A

resource constraint links each activity i with all the alternative resources ftct(i).

As not all alternative routes can have the same number of track circuits, we have

created a fake track circuit to ensure that our model is declarative. The fake track

circuit is added to the track circuit sequence to obtain sequences of the same size

for all alternative routes. Let jrj be the notation which gives the number of track

circuits for a route r 2 R. The value of nt is de�ned by:

nt = max
r2fr(t)

jrj:

After the de�nition of the number of activities nt, let us consider the de�nition of

the capacity constraints of the resources. Let stt(i); ctt(i); ptt(i) be respectively the

start time, completion time, and processing time variables of the activity associated

to the elementary run of index i. The capacity constraint that restricts the use of

each track circuit to only one activity at a time is :

8t; t0 2 T ; 8i 2 [1; nt]; 8j 2 [1; nat0 ]

tcat(i) 6= tcat0(j)) (ctt(i) � (stt0(j)) _ ((ctt0(j) � stt(i))(4)

i.e. unless two activities use di�erent ressources, they cannot overlap.
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We consider now the de�nition of the temporal constraints. Due to a clearing

phase, the time windows of successive activities overlap each other, i.e. during that

time the train occupies two contiguous track circuits (e.g. see the black rectangles

of the Gantt chart in Figure 1). If we consider a block signalling system with

2 aspects, the start of each activity has to be synchronised with the start of the

activity corresponding to the �rst track circuit of the current block. For the general

case of a block system with n aspects, the synchronisation is established with the

entrance in the �rst track circuit of the n � 2 previous block (e.g. see dashed

rectangles for n = 3 in Figure 1). Let runt(i); clrt(i) be the variables for the

minimum duration for these two phases, let ftbt(i) be the variable for the index

of the �rst track circuit of the block. The start time of the running phase of an

activity of index i is equal to ctt(i� 1)� clrt(i� 1).

r un c lear i ng

:  trac k  c i rc u i t   de tec t i on

:  b l oc k  s i gn al  syn c hr on i zat i on  :  b l oc k  s i gn a l

zi   :  trac k  c i rc u i t  o f  i nd ex i  

S4

S1

S3

S2

act i v i t y  du ra t i on

z1
z2

z4
z5

z7

z3

z6

Fig. 1. Gantt chart of activities modelling a 3 aspect block signalling system

The temporal constraints are :

ptt(i) � runt(i) + clrt(i)(5)

ctt(i� 1)� stt(i) � clrt(i� 1)(6)

ctt(i)� ctt(i� 1) � runt(i) + clrt(i)� clrt(i� 1)(7)

max
j2ftbt(i)

(ctt(j � 1)� clrt(j � 1)) � stt(i) � min
j2ftbt(i)

(ctt(j � 1)� clrt(j � 1))(8)

2.1.3 Saturation problem

The previous model was designed to solve real time train management problems.

We will now present how this model has been transformed for the saturation prob-

lem. From the de�nition of section 1, the decision variable sta(t) is replaced by

variables stt(i = 1). In real time problems, trains can be delayed during the run.

Conversaly, in a saturation problem, an extra constraint is added which ensures no

delay to the movement of the trains through the junction :

ctt(i)� ctt(i� 1) = runt(i) + clrt(i)� clrt(i� 1)(9)

This constraint subsumes the previous constraint (7). The constraints 4 to 9 of the

CP model enable to avoid a complete enumeration of the relation Inc.

2.2 Unicost Set Packing Problem model

This model is inspired by [16,17] which propose a Node Packing Problem formu-

lation for the feasibility problem. The formulation we considered is a well-known
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problem of combinatorial optimization, the Unicost Set Packing Problem (USPP)

[11] and permits also to solve the feasibility problem.

2.2.1 Basic model

For this model, we need a function at : T ! N that gives for each train its theo-

retical arrival time. Given a six-tuple (T ;R; fr; fst; Inc; u) and considering only

one start time value for each train which is its theoretical arrival time in the node

(fst(t) = fat(t)g), we de�ne a binary variable xt;r. This variable is equal to 1 if the

train t uses the route r (i.e. r = ra(t)) and equal to 0 otherwise. These variable

values are limited by two sets of constraints :

� a train can only use one route :P
r2fr(t) xt;r � 1; 8t 2 T

� the assignements of variable values that correspond to a con
icting timetable are

impossible :

xt;r +
P

r02fr(t0);((t;r);(t0 ;r0))2Inc xt0;r0 � 1; 8(t; t0) 2 T 2
; r 2 fr(t)

The objective of this problem is to maximize the number of variables xt;r set to

1. As mentionned, this model can also be used for the feasibility problem : a

problem is feasible if this number is equal to the number of trains considered

(
P

t2T

P
r2fr(t) xt;r = jT j).

2.2.2 Completed model

This model can be completed if we need some start time values for at least one

train. In this case, we consider a function � : T ! P(Z) which gives for each train

the set of possible time-deviations Æ. These time-deviations enable to move forward

or delay from the theoretical arrival time of the train. So they de�ne the set of

feasible start time values (fst(t) = fat(t) + Æ; 8Æ 2 �(t)g). So, binary variables

are xt;r;Æ (xt;r;Æ = 1 if r = ra(t) and at(t) + Æ = sta(t)) and we obtain the following

formulation (10) :
2
66666666666666666666664

Max z =
X
t2T

X
r2fr(t)

X
Æ2�(t)

xt;r;Æ

X
r2fr(t)

X
Æ2�(t)

xt;r;Æ � 1 ; 8t 2 T

xt;r;Æ +
X

r0 2 fr(t0); Æ0 2 �(t0);

((t; r; Æ); (t0; r0; Æ0)) 2 Inc

xt0;r0;Æ0 � 1; 8(t; t0) 2 T 2
;

r 2 fr(t); Æ 2 �(t)

xt;r;Æ 2 f0; 1g ; 8t 2 T ; r 2 fr(t); Æ 2 �(t)

3
77777777777777777777775

(10)
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This formulation is more suitable to express our saturation problem. The in-

stance S noted (TS;R; frS; fstS; IncS; u) in which TS and frS are constructed

respectively as TI and frI de�ned in section 1 and fstS is de�ned as follows :

8i 2 LS; j = 1; : : : ; jtrl(i)j; fstS(ti;j) = fat(ti;j)+Æ; 8Æ 2 �(ti;j)g = [(j�1)�hi; j�hi[

However, this instance is characterized by a huge number of variables and con-

straints. So, in practice we will not consider all the time-deviations in order to

keep the problem within a reasonable size.

3 Junction and traÆc analyse

3.1 Infrastructure considered

In this paper, we have considered the Pierre�tte-Gonesse node (Figure 2) which is

located north of Paris. We noticed three main kinds of trains which travel through

this node in both directions :

� TGV between Paris and the High Speed Line (HSL)

� Inter City trains between Paris and Chantilly

� Freight trains between Chantilly and the Grande Ceinture which cut-across the

TGV routes

Paris Chantilly

HSL

Grande Ceinture

Fig. 2. Railway track map of Pierre�tte-Gonesse node

3.2 Tested scenario

Four relevant scenarios have been tested on this node :

� all kinds of train

� TGV and Inter City trains

� TGV and Freight trains

� Inter City and Freight trains

For the CP model, we have generated four instances, one for each scenario.

As mentioned in section 1, an instance of a saturation problem is generated by

specifying the three parameters T ; fr; fst. This generation is summerized in 3

steps :

7
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� Step 1 : the capacity of each line of each scenario has been evaluated using the

expression 1. The table 1 gives the result of this expression and the number of

variables and constraints of the CP model instances.

� Step 2 : we have to de�ne the function fr of the feasible routes. In previous

experiments [13] of the CP model, we show that a complete search for solving

instances with more than 12 trains, can not be carried out within reasonable

time (i.e. less than one hour). We gave up the idea of carrying out a complete

search therefore, we have restricted the set of feasible routes to one route, i.e. by

setting the route variable to the \usual" route for each train category.

� Step 3 consists in de�ning the feasible start time values. To do this we used

equation 2 of section 1.

For the USPP instances, the sets T are the same as those of the CP instances.

The function fr considers all the routes from the entry point to the exit of the

trains.

We used two de�nitions of the feasible start time function. Each de�nition

depends on the expression of the parameter hi i.e. the minimum headway time

between two successive trains on a line i. The �rst value of hi came from equation 3

of section 2.1. The second one noted h
0

i considers values rounded to multiple values

of a time-deviation granularity. For a time-deviation granularity of 30 seconds, the

expression of h0i is:

h
0

i = b
hi

30
c � 30

The expressions of the theoretical arrival time introduced in section 2.2 are :

at(t) = (j � 1) � hi (resp: (j � 1) � h0i)

and the expressions of the time-deviations of a train j of a line i are :

�(ti;j) = f30 � kg; k 2 [0; : : : ;
hi

30
] \ N (resp:

h
0

i

30
)

Due to the two de�nitions of the minimal headway time, we generated 8 problem

instances (Table 2). The instances NÆ 1-3-5-7 correspond to h
0

i and the instances

NÆ 2-4-6-8 correspond to hi.

4 Numerical data generation

4.1 CP model

Figure 3 shows the process for generating data for the model. The model presented

on section 2.1 takes input data from the SNCF railway simulator SYSIFE [10]. The

simulator gives accurate data for the duration of run and clearing phases through

track circuits. The simulation is done for each train category separatly through

each possible route. A second input data set is the description of the infrastructure

and the signaling system, this data set is shared by the simulation model and the

CP model. Finally, a third input data set is the ordered set of trains considered

8
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NÆ T Numerical instances

TGV IC Freight Variables Constraints

1 81 76 49 75,307 77,142

2 81 76 0 64,422 66,117

3 81 0 49 44,185 45,543

4 0 76 49 42,099 43,524

Table 1

Instance characteristics for the CP model

NÆ T Numerical instances

TGV IC Freight Variables Constraints Density

1 100 100 50 3,720 53,489 0.26%

2 81 76 49 4,198 54,651 0.28%

3 100 100 0 2,880 33,767 0.36%

4 81 76 0 3,210 31,692 0.41%

5 100 0 50 2,160 17,354 0.43%

6 81 0 49 2,503 19,460 0.43%

7 0 100 50 2,400 21,794 0.40%

8 0 76 49 2,683 22,441 0.42%

Table 2

Instance characteristics for the USPP model

for the saturation problem instance whose generation has been described in section

3.2.

Ti met ab l e  o f  t r ack  c i rc uit  
occ upa t i on

CPTr ai ns  co ns i dere d

I nf r as t r uct ure
and  s i gnal s

SYSI FE 
s i mul at or Const r ai nt s Reso l ut i on

         

Ti met ab l e

Fig. 3. The resolution process for CP
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4.2 USPP model

We have obtained the use of ressources for each possible route for each train type

considered, by using the simulation once only. Also, we determined the set Inc of

incompatibilities for each scenario considered. These con
icts enable us to produce

the constraints of the combinatorial problem to solve (Figure 4). Problem sizes are

reported in Table 2, where column density correspond to the density of non-zero

elements in coupling matrix between variables and constraints.

Tr ai ns  co ns i dere d
Arr i v al  t i mes

Ti me−dev i at i on all owed

USPP

Use of Ressources for 
each route

Infrastructure
and signals

SYSIFE 
simulator

Conflicts Resolution

                   

Timetable

Fig. 4. The resolution process for USPP

5 Resolution methods

5.1 Constraint Programming

A CP formulation of a problem may be addressed by two categories of backtracking

search. The �rst category is named \retrospective algorithms". It includes naive

backtrack, backjumping [6]. The other category named \prospective algorithms"

includes forward checking [8], which looks ahead to compute some form of local

consistency among non instanciated variables. The CP has been extensively stud-

ied to develop various consistency algorithms, also named constraint propagation.

A consistency algorithm makes it possible to reduce the domains of variables by

removing values which are inconsistent with the constraints. For example, the Ilog

Scheduler library [9] provides three mechanisms to propagate the resource utili-

sation constraint to adjust the time bounds of activities : timetable, disjunctive

constraint and \edge �nding".

As mentioned in section 3.2, in previous experiments [13] of the CP model, we

showed that a complete search with a prospective algorithm for solving instances

with more than 12 trains, can not be carried out within reasonable time. We

gave up the idea of carrying out a complete search and we assumed that the route

variables ra(t) are set to the \usual" route (c.f. section 3.2). We developped the

greedy algorithm 1 which uses the constraint propagation algorithms available in

Ilog Solver/Scheduler libraries after each decision step on the sta(t) variables. In

this algorithm, we used the following notations :

� propagate(Trains) : a function which propagates the constraints posted for a

set of trains Trains.

� � : an order relation so that two successive trains of a same converging line are

separated by one train from all other lines .

10
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The algorithm aims at scheduling all trains as early as possible. At each step

of the loop, two criteria are used according a lexicographic order for choosing the

train to schedule. The �rst one uses the earliest start time of the trains. If the �rst

criterion is not suÆcient to get only one train, the second criterion uses the order

relation �.

pendingTrains T

while (pendingTrains 6= ;) loop

candidateTrains ft 2 pendingTrains with minimum earliest sta(t)g

t = min�(candidateTrains)

sta(t) earliest sta(t) value

pendingTrains pendingTrains n ftg

propagate(pendingTrains)

endWhile

Algorithm 1. The greedy saturation-CP algorithm

5.2 Greedy Randomized Adaptative Search Procedure for USPP

Due to the important size of considered instances, we used an adaptation of the

metaheuristic GRASP (Greedy Randomized Adaptative Search Procedure). This

is a multistart two-phase metaheuristic for combinatorial optimization proposed by

Feo and Resende [4]. First, a construction phase builds an initial solution with a

greedy randomized procedure. This random character enables to obtain solutions in

di�erent areas of admissible solution space. Second, a local search phase improves

these solutions. This process is repeated many times in order to compensate the

random character of the greedy phase. Several new components extend the original

GRASP method. They are presented and discussed in [12].

It is easy to customized this metaheuristic on any problems for which con-

struction and local search algorithms are available. GRASP has been applied to a

wide range of optimization problems. These include academic and industrial prob-

lems in scheduling, routing, logic, partitioning, location and layout, graph theory,

assignment, manufacturing, transportation, telecommunications, electrical power

systems, and VLSI design. An extensive anotated bibliography is available (see

[5]).

The method produces good quality solutions for hard combinatorial optimiza-

tion problems, particularly for the set covering and the set packing problems [2,3].

In the following, I denotes the set of variables, J the constraints and ti;j the

coupling matrix between the variables (i 2 I) and the constraints (j 2 J). Our

construction procedure (Algorithm 2) builds a solution from a trivial admissible

solution (xi = 0; 8i 2 I). Some variable values are changed (ie �xed to 1), keeping

an admissible solution. The changes concern only one variable for one iteration. In

order to increase the objective function, the variables which concern a minimum

number of constraints and with a maximum value are prioritized, but the choice is

random among the most interesting variables. Changes stop when we can not �x

11
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a variable to 1 without the solution becoming non-admissible.

xi  0; 8i 2 I

Evali  
P

j2J ti;j; 8i 2 I

CL I

while (CL 6= ;) loop

Limit (2� �) �mini2CL (Evali)

RCL fi 2 CL;Evali � Limitg

i
�  RandomSelect(RCL)

xi�  1

CL CL n fi 2 CL; 9j 2 J; ti;j + ti�;j > 1g

endWhile

Algorithm 2. The construction phase algorithm

The neighbourhood used for our local search procedure is k � p exchanges. A

k� p exchange consists in setting to 0 of k variables and to 1 of p others variables.

Due to the combinatorial explosion of the number of exchange possibilities when

k and p increase, we are obliged to limit them. So we have only tested 1 � 2

exchanges. We have only accepted exchanges increasing the objective function.

When an exchange is accepted, all exchange possibilities are tested again. Local

search stops when there is no more exchange possible.

The parameter tuning is minimal, for our experiments we considered three

di�erent values for alpha (0:85 ; 0:9 ; 0:95) and we generated 60 solutions (20

solutions per alpha value).

6 Computational results

In this section, we present the computational results obtained with our two reso-

lution methods (see Tables 3 and 4) for the four scenarios (see section 3.2). We

remain that both resolution technics are not in competition. Thus there is no sense

to do a comparison of CPU time. These results are obtained on UltraSparc with 143

MHz for CP and on a Pentium with 600 MHz for GRASP within reasonable times

(between 1,000 seconds and 10,000 seconds). For information, results obtained by

Cplex 6:0 [1] (LP and best IP value) on USPP instances are also indicated.

First of all, we can observe that the two algorithms produce \symetrical" quality

solution performances for each scenario tested. The CP model highlights solutions

with better performances on scenarios TGV/IC/FR and IC/FR and the USPP

model shows better performances on scenarios TGV/IC and TGV/FR.

These results raise two preliminary assumptions. Firstly, to save capacity with

the combination of Freight and TGV categories, it is necesary to consider alterna-

tive routes. Secondly, to combine Inter City trains and the other categories, the

main role is given to the start variable in comparison with the route variable.

The scenario TGV/IC/FR supports the �rst assumption. The CP model has

kept a balance between train categories, conversely the USPP model has discarded

the Inter City trains.
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Trains classes TGV IC Freight Total

TGV/IC/FR 35 46 12 93

TGV/IC 49 48 0 97

TGV/FR 81 0 0 81

IC/FR 0 75 19 94

Table 3

Computational results with CP

Train Classes NÆ Cplex GRASP

LP Best IP TGV IC Freight Total

TGV/IC/FR 1 231.9097 43 72 2 7 81

2 199.9987 52 75 0 22 97

TGV/IC 3 184.6924 51 69 11 0 80

4 151.6229 54 68 16 0 84

TGV/FR 5 145.9178 54 64 0 20 84

6 130.0000 - 69 0 26 95

IC/FR 7 142.4778 46 0 58 14 72

8 123.3292 48 0 65 17 82

Table 4

Computational results with GRASP

The scenarios TGV/IC and IC/FR support the second assumption. The best

results have been obtained with the CP model. It could be explained by suitable

choices on start time for Inter City and TGV trains. With these train category

combinations, the search on route alternatives has a low impact on the number of

trains. This can provide an explanation for the weak results of the USPP model.

The �rst assumption is also supported by the results of the scenario TGV/FR.

The USPP model has the best number of trains with an important e�ort on the

choice of routes. As the CP model does not provide the choice of routes, all

the Freight trains are discarded. The set routes are incompatible, therefore the

scheduling of the TGV postpones the earliest start time of the Freight trains to

after the next possible scheduling of the TGV.

To summerize these experiments, the CP model is more eÆcient in �nding good

scheduling. On the other hand the USPP model is successful when the scenario

needs to search good routes. The results obtained encourage us to take advantage

of the complementary strengths of the two models into a hybrid method. The �rst

13



ATMOS 2001 { X. Delorme, J. Rodriguez, and X. Gandibleux

track is that the USPP model provides a ratio of good routes for initializing T , the
set of trains. The second track is that the CP model provides the good start time

succession to the USPP model.
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