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ABSTRACT. The classical convergence result for the additive Schwarzpreconditioner
with coarse grid is based on a stable decomposition. The result holds for discrete versions
of the Schwarz preconditioner, and states that the preconditioned operator has a uniformly
bounded condition number that depends only on the number of colors of the domain de-
composition, the ratio between the average diameter of the subdomains and the overlap
width, and on the shape regularity of the domain decomposition.

The classical Schwarz method was however defined at the continuous level, and simi-
larly, the additive Schwarz preconditioner can also be defined at the continuous level. We
present in this paper a continuous analysis of the additive Schwarz preconditioned operator
with coarse grid in two dimensions. We show that the classicalcondition number estimate
also holds for the continuous formulation, and as in the discrete case, the result is based on
a stable decomposition, but now of the Sobolev spaceH1. The advantage of such a contin-
uous result is that it is independent of the type of fine grid discretization, and thus does the
more natural continuous formulation of the Schwarz method justice. The upper bound we
provide for the classical condition number is also explicit,which gives us the quantitative
dependance of the upper bound on the shape regularity of the domain decomposition.

1. INTRODUCTION

With the generalization of parallelism in today’s computers, parallelizable mathematical
algorithms are of increasing importance. Domain decomposition methods make it possible
to perform numerical simulations in parallel, see for example the books [32, 30, 34], or the
monographs [36, 8], and references therein. Consider a partial differential equation to be
solved on a big domainΩ. In domain decomposition methods, an iterative approach intro-
duced by Schwarz [31] is to decompose the big domainΩ into several smaller overlapping
subdomainsΩi , Ω =

⋃n
i=1 Ωi , and then to compute approximationsuk

i defined by

(1)
L uk

i = f in Ωi ,

uk
i = uk−1

j on Γi j ,

whereΓi j denote the interfaces. In practice, it is more efficient to use the general algorithm
(1) as a preconditioner for a Krylov subspace method, like GMRES or conjugate gradients,
see for example [18, 19] for a more detailed explanation. TheAdditive Schwarz operator
defines one such preconditioned operator, related to (1). For a domain decomposition with
both an overlap and a coarse mesh, Dryja and Widlund [13] proved that the condition
number of the discrete Additive Schwarz operator is uniformly bounded,i.e. it does not
depend on the number of subdomains. However, it depends on the number of colors of
the domain decomposition, on the ratio between the diameterof the subdomain and the
thickness of the overlaps, and on the shape regularity of thedomain decomposition, see
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also Toselli and Widlund [34, Chap. 2]. Schwarz preconditioners have then mostly been
analyzed at the discrete level, see for example [7, 28, 29, 22] for spectral discretizations, [3]
for the non-selfadjoint case, [4] for parabolic problems, [6] for some non-symmetric and
indefinite problems, [5] for multiplicative versions of thealgorithm, [10] for discretizations
on unstructured meshes, [9] when also the coarse grid is non-matching, [15, 11, 26, 27]
for mixed finite element discretizations, [12] for mortar finite element problems, [16] for
discontinuous Galerkin discretizations, and [17] for numerical linear algebra techniques.
For lower bounds on the convergence of Schwarz methods, see [2].

Schwarz domain decomposition methods are however naturally defined and analyzed at
the continuous level, like in (1), see for example [23, 24, 25]. Schwarz methods were also
invented by Schwarz at the continuous level [31], and the more recent class of optimized
Schwarz methods was formulated and analyzed at the continuous level, for an introduction
see [18] and references therein. It is however much less clear how to analyze a two level
method at the continous level. In a recent review on coarse space components [35], we find
the comment:

Early on, coarse spaces were not used and only continuous problems
were considered; in fact it is unclear what a coarse problem then might
be.

The purpose of our paper is to present an analysis of the two level Additive Schwarz opera-
tor in a continuous setting, and to prove that its condition number is bounded independently
of the number of subdomains. The proof succeeds by establishing the existence of a stable
decomposition of every function inH1

0(Ω) as a sum of functions belonging to theH1
0(Ωi)

plus a coarse function belonging to the space of continuous piecewise linear functions
P1(T ) whereT is our coarse triangular mesh.

Our goal in this paper is to obtain at each step explicit upperbounds, including for the
constants. To do so requires an explicit and quantitative definition of the notion of shape
regularity. This opens the way for upper bounds of the condition of the Additive Schwarz
operator when the underlying domain decomposition is not shape regular.

First, we recall in section 2 the definition of the preconditioned additive Schwarz op-
erator, and the abstract results giving an estimate of the condition number of the Additive
Schwarz operator as soon as three assumptions hold. The restof the paper is then devoted
to showing that these assumptions hold for a decomposition at the continuous level, the key
assumption being the existence of a stable decomposition. After specifying in section 3 the
geometric parameters of the domain decomposition, we provein section 4 the existence of
a stable decomposition in the continuous case in the absenceof a coarse mesh albeit with
a constant that depends on the number of subdomains. Section5 is dedicated to proving
our main theorem, Theorem 5.12, which establishes that, in the presence of a coarse mesh,
there exists a uniformly stable decomposition with an explicit upper bound that does not
depend on the number of subdomains. Using this result, we prove in section 6 that the con-
dition number of the additive Schwarz operator has a uniformly bounded condition number
in the continuous case when there is a coarseP1 mesh.

2. THE ADDITIVE SCHWARZ OPERATOR

In this section, we recall the abstract results in Toselli and Widlund [34, chap. 2]. Let
(Vi)0≤i≤N be Hilbert spaces, withV0 being a coarse space. LetV = ∑n

i=0RT
i Vi , where the

RT
i are linear extension operators. Leta(·, ·) be a symmetric, positive definite bilinear form
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onV. We wish to find the uniqueu in V satisfying

a(u,v) = ( f ,v) for all v in V.

Let ãi(·, ·) be symmetric positive definite bilinear forms on theVi . We defineP̃i : V →Vi by

ãi(P̃iu,v) = a(u,RT
i v) for all v in Vi .

Let Pi = RT
i P̃i . The additive Schwarz operator is defined by

(2) Pad :=
N

∑
i=0

Pi .

This is ana-symmetrica-positive operator. We are interested in bounding the condition
number (with respect to the bilinear forma) of the preconditioned operatorPad.

Definition 2.1. Let a be a symmetric, positive bilinear form on a vector spaceV. Let P be
a continuous linear application fromV to V. We call

κ(P) =
max uuu∈V

a(uuu,uuu)=1
a(Pu,u)

min uuu∈V
a(uuu,uuu)=1

a(Pu,u)

thea-condition number ofP.

Assumption 2.2(Stable decomposition). There exists a constantC0 such that allu in V
admit the decomposition

u=
N

∑
i=0

RT
i ui , with {ui ∈Vi}, and

N

∑
i=0

ãi(ui ,ui)≤C2
0a(u,u).(3)

Assumption 2.3(Strengthened Cauchy Schwarz inequality). For all i, j ≥ 1, there exist
constants 0≤ εi j ≤ 1 such that for allui ∈Vi andu j ∈Vj we have

(4) |a(RT
i ui ,R

T
j u j)| ≤ εi j a(R

T
i ui ,R

T
i ui)

1
2 a(RT

j u j ,R
T
j u j)

1
2 .

We denote byρ(E ) the spectral radius of the matrixE = {εi j }.

Assumption 2.4(Local stability). There existsω > 0 such that∀i ≥ 0 and∀ui ∈ range(P̃i)
we have

(5) a(RT
i ui ,R

T
i ui)≤ ωãi(ui ,ui).

The following fundamental result can be found in Toselli andWidlund [34], see Theo-
rem 2.7.

Theorem 2.5. Let Assumptions 2.2, 2.3 and 2.4, be satisfied. Then the a-condition number
κ(Pad) satisfies

(6) κ(Pad)≤C2
0ω(ρ(E )+1).

Proof. The proof of Theorem 2.7 in Toselli and Widlund [34] also holds if theVi have
infinite dimension. �

In order to get a more concrete estimate, the strenghtened Cauchy-Schwarz Assump-
tion 2.3 is often replaced in the literature by an assumptionon the number of colors of the
decomposition. The number of colors is defined as follows:
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Definition 2.6 (Number of colors). In an abstract domain decomposition into the fine
spaces(Vi)1≤i≤N, the number of colors is the smallest integerNc such that there exists
a partition of{1, . . . ,N} into Nc sets(Ik)1≤k≤Nc such thatRT

i Vi is a-orthogonal withRT
j Vj

wheneveri and j are distinct indices that belong to the sameIk. The fine spacesVi andVj

are said to have the same color wheni and j belong to the sameIk.

Then we can use the number of colors in estimate (6) instead ofrelying on the spectral
radius of the strengthened Cauchy-Schwarz matrix.

Theorem 2.7. Let Assumptions 2.2, and 2.4, be satisfied. Suppose that the fine decompo-
sition Vi has Nc colors. Then the a-condition numberκ(Pad) satisfies

(7) κ(Pad)≤C2
0ω(Nc+1).

Before proving the result we make the following remark:

Remark2.8. In the literature, three distinct integers are used in estimate (7), and these
constants can be defined both in the concrete geometric setting of domain decomposition,
and in the abstract setting:

• In the concrete setting of domain decomposition, one can defineNk as the maxi-
mum numberNk of neighbors, including itself, a subdomain can have. This integer
is the connectivity of the domain decomposition. This number can replaceρ(E )
in Theorem 2.5, since we always haveρ(E ) ≤ Nk, see [34, Lemma 2.10] (where
Nc is used as the name for this constant). In the abstract setting, one could define
Nk as the maximum overi in {1, . . . ,N} of the number ofRT

j Vj , j in {1, . . . ,N},
which are nota-orthogonal toRT

i Vi .
• The number of colorsNc we defined in the abstract setting, see Definition 2.6, can

also be defined in a transparent way in the concrete geometricsetting of domain
decomposition, see Definition 3.6. We always haveNc ≤ Nk in both the concrete
and abstract setting, and thus proving a result with the constant Nc implies the
result with the constantNk.

• In the concrete setting of domain decomposition, one can define N̂ as the max-
imum number of subdomains a point can belong to. In the abstract setting, one
can defineN̂ as the largest integer for which there existN̂ distinct RT

i Vi whose
intersection is not{0}. We always havêN ≤ Nc in both the abstract setting and
the concrete setting, so a result with the constantN̂ is the most accurate. In the
concrete case, when thẽai are defined as integrals over a subdomain, it is possible
to replaceNc with N̂ in (7), see the original proof of [14, Th. 4.1]. It is unknown
to the authors if the result witĥN can be generalized to an abstract domain decom-
position.

In the remainder of this paper, we always work with the numberof colorsNc.

We now proceed with the proof of Theorem 2.7

Proof. We only need to change part of the proof of Theorem 2.7 in Toselli and Widlund
[34]. We already know that a lower bound for the smallest eigenvalue is 1/C2

0, see [34,
Lemma 2.5]. To get the estimate on the largest eigenvalue, wefollow the ideas of [34,
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Lemma 2.6] but additionally group theVi by color. For each colork in {1, . . . ,Nc}, we get:

a(∑
i∈Ik

Piu, ∑
j∈Ik

Pju) = ∑
i∈Ik

∑
j∈Ik

a(Piu,Pju) = ∑
i∈Ik

a(Piu,Piu)≤ ω ∑
i∈Ik

ãi(P̃iu, P̃iu)

≤ ω ∑
i∈Ik

a(Piu,u)≤ ωa(∑
i∈Ik

Piu,u)≤ ωa(∑
i∈Ik

Piu, ∑
j∈Ik

Pju)
1
2 a(u,u)

1
2 .

Dividing by a(∑i∈Ik Piu,∑ j∈Ik Pju)
1
2 , we therefore get

a(∑
i∈Ik

Piu, ∑
j∈Ik

Pju)
1
2 ≤ ωa(u,u)

1
2 ,

and thus can estimate using again the Cauchy-Schwarz inequality

a(∑
i∈Ik

Piu,u)≤ a(∑
i∈Ik

Piu, ∑
j∈Ik

Pju)
1
2 a(u,u)

1
2 ≤ ωa(u,u).

We also know thata(P0u,u) ≤ ωa(u,u), see [34, Lemma 2.6]. Therefore, summing over
all colors andP0, we geta(Padu,u)≤ (Nc+1)ωa(u,u) for all u in V. �

While the local stability and the strengthened Cauchy-Schwarz inequality can naturally
be extended to the continuous case, the stable decomposition result is traditionaly shown
using properties of the fine discretization of the problem, see for example Toselli and Wid-
lund [34]. For a continuous formulation, we need to use othertechniques, which is the
purpose of this paper.

3. GEOMETRY AND DECOMPOSITION INTO SUBDOMAINS

FIGURE 1. Domain decomposition with a coarse mesh

First, we recall the defintion of a domain:

Definition 3.1. A domain ofR2 is an open connected set ofR
2 whose boundary∂Ω is of

null Lebesgue measure1. We denote by|Ω| the Lebesgue measure of the domainΩ.

We recall the definition of a non overlapping and an overlapping domain decomposition:

1It is possible for a pathological open connected set ofR
2 to have a boundary with strictly positive measure.

For example(0,1)× (1/4,3/4)∪⋃∞
j=1
⋃2 j−1−1

k=0 ( 2k+1
2 j −2−4 j , 2k+1

2 j +2−4 j )× (0,1) is open, connected and dense

in (0,1)× (0,1) but has a measure smaller than 9/14.
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Definition 3.2 (Non Overlapping Decomposition). Let Ω be a bounded domain ofR2. A
collection of domains(Ui)1≤i≤N, is a non overlapping domain decomposition ofΩ if

(8) Ω =
N⋃

i=1

U i , Ui ∩U j = /0 for all i 6= j.

Definition 3.3 (Overlapping Decomposition). Let Ω be a bounded domain ofR2. A col-
lection of domains(Ωi)1≤i≤N is an overlapping domain decomposition ofΩ if

Ω =
N⋃

i=1

Ωi .

In this article, we use the parameterH to represent the average size of subdomains. For
the definition ofH, we use the concept of diameter, which we recall here:

Definition 3.4 (Domain Diameter). Let U be a bounded subset ofR2. We define the
diameter ofU to be

diam(U) = sup
xxx∈U
yyy∈U

‖xxx−yyy‖.

The concept of an overlapping domain decomposition raises the question on how to
define the overlap width of the decomposition. We use the following definition:

Definition 3.5 (Overlap of the Decomposition). A domain decomposition(Ωi)1≤i≤N is
said to have overlap width2 δ > 0, if there exists a non overlapping domain decomposition
(Ui)1≤i≤N of Ω such that for alli, 1≤ i ≤ N, Ui ⊂ Ωi and

{xxx∈ Ω | dist(xxx,Ui)< δ} ⊂ Ωi .

In practice, it is easier to start with a non overlapping domain decomposition, and then to
build from it an overlapping one. If(Ui)1≤i≤N is a non overlapping domain decomposition
of Ω, then the(Ωi)1≤i≤N defined by

(9) Ωi = {xxx∈ Ω | dist(xxx,Ui)< δ}
forms an overlapping domain decomposition ofΩ with overlap widthδ . We denote by
((Ui)1≤i≤N,(Ωi)1≤i≤N) such a decomposition.

Definition 3.6 (Colors of the Decomposition). The number of colors of an overlapping
domain decomposition(Ωi)1≤i≤N of domainΩ is the smallest integerNc such that there
exists a partition of{1, . . . ,N} into Nc sets(Ik)1≤k≤Nc such that

Ωi ∩Ω j = /0,

wheneveri 6= j andi, j both belong to the same colorIk.

In order to determine the number of colors of the decomposition, it is easiest to consider
the nonoverlapping decomposition(Ui)1≤i≤N. Clearly the number of colors can only in-
crease withδ . However forδ small enough it remains constant: there existsδ0 andNc > 0
that depend only on the(Ui) such that for allδ , 0< δ < δ0, the overlapping domain de-
composition(Ωi)1≤i≤N with overlap widthδ derived from the(Ui)1≤i≤N has a number of
colors equal toNc.

2Geometrically, the parameterδ corresponds to half the overlap of the subdomains
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Remark3.7. The geometric Definition 3.6 for the number of colors is equivalent to the
algebraic Definition 2.6 for the bilinear forms implied by the geometric domain decom-
position, like in this paper, whereRT

i Vi contains all functions that areH1
0 in Ω and null

outsideΩi anda is an integral overΩ.

4. STABLE DECOMPOSITION WITHOUT A COARSE MESH

To understand the importance of the coarse mesh, we begin by proving the existence of a
stable decomposition without a coarse mesh. In that case, the constantC0 in (7) stemming
from the stable decomposition depends on the number of subdomains. We consider a
bounded domainΩ being decomposed intoN overlapping subdomainsΩi with overlap
width δ . We make the following assumptions on the domain decomposition:

Assumption 4.1. The domain decomposition(Ωi)1≤i≤N is derived from a non overlapping
one by formula (9), and we refer to it by((Ui)1≤i≤N,(Ωi)1≤i≤N).

Assumption 4.2. Let H be the smallest diameter among the diameters of the subdomains
Ui . We suppose there exist uniform parametersCd > 0, ca > 0 andCa > 0 such that for all
i in {1, . . . ,N}
(10) H ≤ diam(Ui)≤CdH, caH2 ≤ |Ui | ≤CaH2,

where|Ui | is the Lebesgue measure of the subdomainUi .

To construct the stable decomposition, we use a partition ofunity.

Lemma 4.3(Partition of Unity). Let Ω be an open domain ofR2, N > 0 be the number of
subdomains, and(Ui)1≤i≤N be domains ofR2 satisfying(8). Withδ > 0 the overlap width,
we define

Ω̃i = {xxx∈ R
2 | dist(xxx,Ui)< δ},

and denote by Nc the number of colors of this domain decomposition3. Then, there exists
a universal4 constantλ2, 0 < λ2 ≤ 6, and N functions(ψi)1≤i≤N in C ∞(R2) having the
following properties:

(1) For all i in {1, . . . ,N}, ψi vanishes outside of̃Ωi .
(2) For all xxx inR

2, 0≤ ψi(xxx)≤ 1.
(3) For all xxx in Ω, ∑i ψi(xxx) = 1.

(4) For all xxx in Ω, ∑N
i=1‖∇ψi(xxx)‖2 ≤ 2λ 2

2
(Nc−1)2

δ 2 .

Proof. The result is classical and well known, see [1, Th. 3.15], we only show how to
obtain the explicit constant in the bound given in 4. We startwith a functionρ in C ∞(R2)
which vanishes outside the unit ball, and satisfies for allxxx in R

2 that 0≤ ρ(xxx)≤ 1, and the
integral

∫
R2 ρ(xxx)dxxx= 1. For allε > 0, we then setρε(xxx) = 1

ε2 ρ( xxx
ε ), and we define for alli

in {1, . . . ,N} the function

hi(xxx) =

{
1 if dist(xxx,Ui)<

δ
2 ,

0 otherwise.

We now regularize the functionshi using a convolution,

φi := ρδ/2∗hi .

3TheΩ̃i can extend beyond the domainΩ, in contrast to theΩi defined earlier
4It depends only on the dimension but we have restricted ourselves to two-dimensional domains
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The functionsφi vanish outside of̃Ωi , are identically equal to 1 inU i , and for allxxx in R
2

we have 0≤ φi ≤ 1. Moreover, since‖∇φi‖L∞(R2) ≤ ‖∇ρ δ
2
‖L1(R2) ‖hi‖L∞(R2),

‖∇φi‖L∞(R2) ≤
2‖∇ρ‖L1(R2)

δ
.

We then set

ψi = φi

i−1

∏
k=1

(1−φk),

and the(ψi)1≤i≤N are then a partition of unity. Moreover

∇ψi = ∇φi

i−1

∏
k=1

(1−φk)−
i−1

∑
j=1

φi∇φ j

i−1

∏
k=1
k6= j

(1−φk).

At a given pointxxx, at mostNc−1 terms of the above sum may be non zero, therefore,
by the Cauchy-Schwarz inequality, we obtain

N

∑
i=1

‖∇ψi(xxx)‖2 ≤ (Nc−1)
N

∑
i=1

‖∇φi(xxx)‖2
i−1

∏
k=1

(1−φk)
2+

N

∑
i=1

i−1

∑
j=1

|φi |2‖∇φ j(xxx)‖2
i−1

∏
k=1,k6= j

(1−φk)
2

≤ (Nc−1)
N

∑
i=1

‖∇φi(xxx)‖2
i−1

∏
k=1

(1−φk)
2+

N

∑
i=1

N

∑
j=i+1

|φ j |2‖∇φi(xxx)‖2
j−1

∏
k=1,k6=i

(1−φk)
2

≤ (Nc−1)
N

∑
i=1

‖∇φi(xxx)‖2
i−1

∏
k=1

(1−φk)
2

(
1+

N

∑
j=i+1

|φ j |2
j−1

∏
k=i+1

(1−φk)
2

)

≤ (Nc−1)
N

∑
i=1

‖∇φi(xxx)‖2
i−1

∏
k=1

(1−φk)
2

(
1+

N

∑
j=i+1

φ j

j−1

∏
k=i+1

(1−φk)

)

≤ (Nc−1)
N

∑
i=1

‖∇φi(xxx)‖2
i−1

∏
k=1

(1−φk)
2

(
2−

N

∏
k=i

(1−φk)

)

≤ 2(Nc−1)
N

∑
i=1

‖∇φi(xxx)‖2.

Moreover, each term is bounded by max1≤ j≤i‖∇φ j‖2
L∞(Ω), and at no pointxxx in Ω, there

may be more thanNc−1 nonzero terms in the sum. Hence, for allxxx in Ω

N

∑
i=1

‖∇ψi(xxx)‖2 ≤
8(Nc−1)2‖∇ρ‖2

L1(R2)

δ 2 .

Settingλ2 := 2‖∇ρ‖2
L1(R2)

, the result follows. Note that here‖∇ρ‖L1(R2)=
∫
R2(|∂xρ |2+

|∂yρ |2)1/2dxxx. Using theW1,1(R2) functionρ(xxx) = 1−‖xxx‖2, we obtain the estimateλ2 =
6. �

It is easy to build a stable decomposition using a partition of unity, however to get
an estimate inH/δ instead of an estimate inH2/δ 2 we need more assumptions on the
regularity of theUi , specifically we must control the curvature of the boundary of theUi .
Unfortunately, the subdomains of a non overlapping domain decomposition are at best
piecewiseC ∞: there will always be corners at cross points. For this reason, we introduce
the notions of pseudo normal and pseudo curvature:
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Assumption 4.4. LetU be a bounded domain ofR2. We suppose there exist an open layer
L containing∂U and a vector fieldXXX continuous onL∩U , C ∞ onL∩U such that:

DXXX(xxx)(XXX(xxx)) = 0, ‖XXX(xxx)‖= 1

and such that there existsε0 > 0 such that for all positiveε < ε0 and for allx̂xx in ∂U :

x̂xx+ εXXX(x̂xx) ∈U, x̂xx− εXXX(x̂xx) /∈U.

The vector fieldXXX is called an interior pseudo normal.
Setting for all positiveδ

Uδ = {xxx∈U s.t. dist(xxx,∂U)< δ},
Vδ = {x̂xx+sX(x̂xx), x̂xx∈ ∂U,0< s< δ},

we assume there existR̂> 0, θXXX, 0< θXXX ≤ π/2 andδ0, 0< δ0 ≤ R̂sinθXXX such that

VR̂ ⊂ L∩U,

Uδ ⊂Vδ/sinθXXX for all positiveδ ≤ δ0.

The parameterθXXX formally represents the smallest angle between the pseudo normal and
the tangents. We finally set

R̃ :=
1

‖divXXX‖L∞(L)
.

We callR̃ theXXX-pseudo curvature ofU .

When the boundary of the domainU is C 1, XXX is the interior normal. Unfortunately, as
theUi form a non overlapping domain decomposition ofΩ, they cannot be supposed to be
C 1. It is perfectly reasonnable to assume the existence of a pseudo normal for Lipshitz
domains, see [21, §1.5].

Using these assumptions, we can prove the following lemma:

Lemma 4.5. Let U be an open domain that satisfies assumptions 4.4, then for all δ ≤ δ0,
we have

‖u‖2
L2(Uδ )

≤ 2

(
1+

R̂

R̃

)
δ R̂

sinθXXX
‖∇u‖2

L2(U)+2

(
1+

R̂

R̃

)
δ

R̂sinθXXX
‖u‖2

L2(U).

Proof. We have

‖u‖L2(Uδ ) ≤ ‖u‖L2(Vδ/sinθXXX )
.

For all xxx in VR̂, we define

d(xxx) = inf{s,xxx−sXXX(xxx) /∈ L∩U}.

The functiond is lower semicontinuous. Note thatd(xxx+sXXX(xxx)) = d(xxx+sXXX) provided the
whole segement[xxx,xxx+sXXX(xxx)] belongs toL∩U . Also note that for allδ < R̂

Vδ = {xxx∈VR̂ s.t. d(xxx)< δ}.

Define functionψ by

ψ(xxx) = xxx+(
R̂sinθXXX

δ
−1)d(xxx)XXX(xxx).
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for all xxx in Vδ/sinθXXX . We haved(ψ(xxx) = R̂sinθXXX
δ d(xxx) and:

∫

Vδ/sinθXXX
|u(xxx)|2dxxx≤ 2

∫

Vδ/sinθXXX
|u(ψ(xxx))|2dxxx

︸ ︷︷ ︸
I

+2
∫

Vδ/sinθXXX
d(xxx)(

R̂sinθXXX

δ
−1)

∫ d(xxx)(
R̂sinθXXX

δ −1)

0
|∇u(xxx+sXXX(xxx))|2dsdxxx

︸ ︷︷ ︸
II

.

(11)

To further estimate the termI , we need to compute the Jacobian ofψ: let us first suppose
thatd is C 1. In the orthonormal basis(τττ1,τττ2) whereτττ1 = XXX(xxx) andτττ2 is orthogonal to
τττ1, we have

Jψ(xxx) =

[
R̂sinθXXX

δ ( R̂sinθXXX
δ −1) ∂d

∂τττ2

0 1+( R̂sinθXXX
δ −1)d(xxx)divXXX(xxx)

]
.

Therefore, sinceψ(Vδ/sinθXXX ) =VR̂, we get

det(Jψ(xxx)) =
R̂sinθXXX

δ
(1+(

R̂sinθXXX

δ
−1)d(xxx)divXXX(xxx)).

This does not depend on the derivatives ofd. Besides, one can prove that for alls in R

such that the segment[xxx,xxx+sXXX(xxx)] is included inL∩U :

(1+sdivXXX(xxx))(1−sdivXXX(xxx+sXXX)) = 1.

Therefore, settingyyy= ψ(xxx), we get

I =
∫

Vδ/sinθXXX
|u(ψ(xxx))|2dxxx

=
δ

R̂sinθXXX

∫

VR̂
|u(yyy)|2(1− (1− δ

R̂sinθXXX
)d(yyy)divXXX(yyy))dyyy

≤ (1+
R̂

R̃
)

δ
R̂sinθXXX

∫

VR̂
|u(yyy)|2dyyy.

This formula holds even whend is notC 1: the idea is to prove by Fubini that the formula
holds on open subsets of the formVxxx = {xxx+ rτττ2+ sXXX(xxx+ rτττ2),0< r,s< ε} whereτττ2 is
orthogonal toXXX(xxx), and then to proceed by way of a partition of unity. Thereforewe have

(12) |I | ≤ (1+
R̂

R̃
)

δ
R̂sinθXXX

‖u‖2
L2(L∩U).

We now deal with the termII : we compute

II = (
R̂sinθXXX

δ
−1)

∫

Vδ/sinθXXX
d(xxx)

∫ d(xxx)(
R̂sinθXXX

δ −1)

0
|∇u(xxx+sXXX(xxx))|2dsdxxx

= (
R̂sinθXXX

δ
−1)

∫ R̂− δ
sinθXXX

0

∫

VR̂
χ
{

s

R̂sinθXXX/δ −1
< d(xxx)<

δ
sinθXXX

}
d(xxx)|∇u(xxx+sXXX(xxx))|2dxxxds,
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and then using the change of variablesyyy= xxx+sXXX(xxx) we obtain

II = (
R̂sinθXXX

δ
−1)

∫ R̂− δ
sinθXXX

0

∫

VR̂
χ
{

sR̂sinθXXX

R̂sinθXXX −δ
< d(yyy)<

δ
sinθXXX

+s

}

(d(yyy)−s)|∇u(yyy)|2(1−sdivXXX(yyy))dyyyds

= (
R̂sinθXXX

δ
−1)

∫

VR̂

∫ d(yyy)
R̂

(R̂− δ
sinθXXX

)

(d(yyy)−δ/sinθXXX)+
(d(yyy)−s)|∇u(yyy)|2(1−sdivXXX(yyy))dyyyds

≤ (
R̂sinθXXX

δ
−1)

∫

VR̂
|∇u(yyy)|2

∫ d(yyy)
R̂

(R̂−δ/sinθXXX)

(d(yyy)−δ/sinθXXX)+
(d(yyy)−s)(1−sdivXXX(yyy))dsdyyy

≤ (
R̂sinθXXX

δ
−1)(1+

R̂−δ/sinθXXX

R̃
)

δ 2

sin2 θXXX

∫

VR̂

(
1− d(yyy)

R̂

)
|∇u(yyy)|2dyyy

≤ (1+
R̂

R̃
)(R̂− δ

sinθXXX
)

δ
sinθXXX

∫

VR̂
|∇u(yyy)|2dyyy.

We thus obtain the estimate

(13) |II | ≤
(

1+
R̂

R̃

)
R̂

δ
sinθXXX

‖∇u‖2
L2(VR̂)

.

Combining inequalities (12) and (13) with inequality (11) concludes the proof. �

Theorem 4.6(Stable Decomposition without Coarse Grid). Let Ω be a bounded domain
ofR2, and(Ui)1≤i≤N be a non overlapping domain decomposition ofΩ. We suppose there
exist R̃, R̂ and1/sinθXXX such that for each Ui there exists an open layer Li containing
∂Ui , a vector field XXXi continuous on Li ∩U i , C ∞ on Li ∩Ui such thatDXXXi(xxx)(XXXi(xxx)) = 0,
‖XXXi(xxx)‖ = 1, ‖divXXXi‖∞ ≤ 1/R̃, andε0 > 0 such that for all positiveε < ε0 and for all
x̂xx in ∂Ui , x̂xx+ εXXXi(x̂xx) ∈ U and x̂xx− εXXXi(x̂xx) /∈ U. Setting, for all positiveδ ′, Uδ ′

i := {xxx ∈
U, dist(xxx,∂Ui) < δ ′}, and Vδ ′

i := {x̂xx+ sXXXi(x̂xx), x̂xx ∈ ∂Ui ,0 < s< δ ′}, we assume there

exists aδ0, 0< δ0 ≤ R̂sinθXXX such that VR̂
i ⊂ Li ∩Ui and Uδ ′

i ⊂ Vδ ′/sinθXXX
i for all positive

δ ′ ≤ δ0.
Let δ < δ0 be positive. SetΩi = {xxx ∈ Ω|dist(xxx,∂Ωi) < δ}. The(Ωi)1≤i≤N form an

overlapping domain decomposition ofΩ.
Then, if u is in H1

0(Ω), there exist(ui)1≤i≤N such that for all i,1≤ i ≤N, ui is in H1
0(Ωi)

and

u=
N

∑
i=1

ui , with(14)

N

∑
i=1

‖ui‖2
L2(Ωi)

≤ ‖u‖2
L2(Ω),(15)

N

∑
i=1

‖∇ui‖2
L2(Ωi)

≤ 2‖∇u‖2
L2(Ω)+

4λ 2
2 (Nc−1)2

δ 2 ‖u‖2
L2(Ωδ )

,(16)



12 M. GANDER, L. HALPERN, AND K. SANTUGINI

whereλ2 is the universal constant of Lemma 4.3 and whereΩδ =
⋃

i 6= j Ωi ∩Ω j . We further
have:

N

∑
i=1

‖∇ui‖2
L2(Ωi)

≤
(

2+8λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) R̂
δ sinθXXX

)
‖∇u‖2

L2(Ω)

+8λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) 1

R̂δ sinθXXX
‖u‖2

L2(Ω).

(17)

Proof. We use Lemma 4.3 and setui :=ψiu, which satisfies already (14). We then estimate

N

∑
i=1

∫

Ω
|ui(xxx)|2dxxx=

∫

Ω

N

∑
i=1

|ψi(xxx)u(xxx)|2dxxx=
∫

Ω
|u(xxx)|2

N

∑
i=1

(ψi(xxx))
2dxxx≤

∫

Ω
|u(xxx)|2,

since∑N
i=1(ψi(xxx))2 ≤ 1, which shows (15). We finally need to estimate the derivative term.

We have∇ui = ψi∇u+u∇ψi , and therefore

(18)
N

∑
i=1

∫

Ω
|∇ui(xxx)|2dxxx≤ 2

∫

Ω
|∇u(xxx)|2

N

∑
i=1

|ψi |2dxxx+2
∫

Ω
|u(xxx)|2

N

∑
i=1

|∇ψi |2dxxx.

The first term on the right in (18) can be bounded as above. To bound the second term, we
use result 4 in Lemma 4.3:

(19)
∫

Ω
|u(xxx)|2

N

∑
i=1

|∇ψi(xxx)|2dxxx≤ ‖
N

∑
i=1

|∇ψi |2‖L∞(R2)

∫

Ω
|u(xxx)|2dxxx≤ 2λ 2

2 (Nc−1)2

δ 2 ‖u‖2
L2(Ωδ )

.

Combining these estimates leads to (16). To get (17), one first notice that

‖u‖2
L2(Ωδ )

≤
N

∑
i=1

‖u‖2
L2(Uδ

i )

then apply Lemma 4.5 on eachUδ
i . �

The lone 1/δ 2 factor in estimate (16) can further be treated using the Poincaré inequality
on Ω, see [1, Th. 6.30], which then explicitly reveals the dependence on the number of
subdomains:

Corrollary 4.7. Let Ω be a bounded domain. Let Ui , Ωi and (ui)1≤i≤N be as in Theo-
rem 4.6. Then we have

N

∑
i=1

‖∇ui‖2
L2(Ωi)

≤
(

2+8λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) R̂
δ sinθXXX

+λ 2
2CaN(Nc−1)2

(
1+

R̂

R̃

) (diam(Ω))2

|Ω|
H

R̂sinθXXX

H
δ

)
‖∇u‖2

L2(Ω),

(20)

where Ca is the constant of Assumption 4.2.

Proof. We start with (16), and use Poincaré’s inequality onH1
0(Ω), i.e.

‖u‖2
L2(Ω) ≤C‖∇u‖2

L2(Ω),

but we need an estimate of the constantC. SinceΩ is, up to a rotation, a subset of
(0,diam(Ω))×R, the constantC is bounded by the Poincaré constant for(0,diam(Ω))×R,
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which is smaller than 1/8(diam(Ω))2. We therefore obtain

N

∑
i=1

‖∇ui‖2
L2(Ωi)

≤
(

2+8λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) R̂
δ sinθXXX

+λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) (diam(Ω))2

R̂δ sinθXXX

)
‖∇u‖2

L2(Ω).

But we also have

(diam(Ω))2 =
(diam(Ω))2

|Ω|
|Ω|
H2 H2 ≤CaN

(diam(Ω))2

|Ω| H2

because|Ω|
H2 ≤CaN by Assumption 4.2, which concludes the proof. �

The dependence on the number of subdomainsN in estimate (20) is undesirable for
domain decomposition methods, since these methods should be scalable, which means
their convergence behavior should not deteriorate as one uses more and more subdomains
(which corresponds to more and more processors). In the nextsection, we show how to
establish a better estimate with the use of a coarse mesh.

5. STABLE DECOMPOSITION WITH A COARSE MESH

We now introduce a discrete structure into our continuous analysis, namely a coarse
mesh over the entire domain, in order to remove the dependence on the number of subdo-
mains in estimate (20), see Figure 1. We present the general idea of the continuous proof
in the presence of a discrete, coarse mesh first in subsection5.1. We then show the de-
tails of the proof in the next three subsections. In subsection 5.2, we construct the coarse
component of the stable decomposition. In subsection 5.3, we construct the non coarse
components. Finally, we conclude by stating our main theorem in subsection 5.4.

5.1. General idea. The main idea is to use the following classical lemma [33, chap. II
§1.4 pp. 51]:

Lemma 5.1(Generalized Poincaré’s inequality). Let O be a bounded open set satisfying
the cone condition5. Letℓ be a continuous linear form on H1(O) such thatKer(ℓ)∩R= {0}
Then, there exists a constant C> 0 such that

‖u‖2
L2(O) ≤C(‖∇u‖2

L2(O)+ |ℓ(u)|2)

for all u in H1(O).

Proof. The classical proof is by contradiction. Suppose this is notthe case. Then, there
exists a sequence(un)n∈N∗ such that for alln≥ 1, un in H1(O), un 6= 0 and

(21) ‖un‖2
L2(O) > n(‖∇un‖2

L2(O)+ |ℓ(un)|2).

We normalize and replaceun by un/‖un‖L2(O), therefore we may also suppose‖un‖L2(O) =

1. We extract a subsequence(unk)k∈N that converges weakly tou in H1(O). We have
by (21)

‖∇u‖L2(O) ≤ liminf
k→∞

‖∇unk‖L2(O) = 0.

5See [1, §4.6].
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Thereforeu is a constant function. Moreover, sinceℓ is continuous, it is weakly continuous,
and by (21)

ℓ(u) = lim
k→∞

ℓ(unk) = 0.

Thereforeu= 0. By the compactness [1, Th. 6.3] of the inclusion ofH1(O) in L2(O), we
can take the limit in‖un‖L2(O) = 1 and obtain‖u‖L2(O) = 1. This is a contradiction. �

For our purposes, we need estimates for the constants. Unfortunately the previous proof
by contradiction is not constructive and does not allow us toestimate the constantC when
the domainO varies. However for convex and star shaped domains, the constants can be
estimated, as we will show later in Lemma 5.10.

We return to the stable decomposition problem with a coarse mesh. How can we use
the coarse mesh to prevent the constant to depend on the number of subdomains? The
basic idea is to defineN linear formsℓi onH1(Ωi) such that for allu in H1

0(Ω) there exists
(ui)1≤i≤N, such that for alli, 1≤ i ≤ N, ui is in H1

0(Ωi) and

u=
N

∑
i=1

ui(22)

N

∑
i=1

‖∇ui‖2
L2(Ωi)

≤C(
δ
H
,Nc)‖∇u‖2

L2(Ω)+C(
δ
H
,N)

N

∑
i=1

|ℓi(u)|2,(23)

where by extensionℓi(u) meansℓi(u|Ωi
), effectively replacing theL2 square norm in (16)

with ∑N
i=1|ℓi(u)|2. We propose here to takeℓi(u) := 1

|Ai |
∫

Ai
u(xxx)dxxx with Ai ⊂ Ωi . We then

search foru0 in the space of continuous, piecewise linear functionsP1(T ), whereT is
a coarse triangular grid, such thatℓi(u0) = ℓi(u) for all i, 1 ≤ i ≤ N and‖∇u0‖L2(Ω) ≤
C‖∇u‖L2(Ω). Then, we apply (23) tou−u0. The second term vanishes and the constant of
the stable decomposition does not depend on the number of subdomains in the decompo-
sition any longer. This idea implies that the coarse mesh should be able to control at least
one constant in each subdomain,i.e., for the coarse mesh to prevent the dependence of the
condition number on the number of subdomains, it only needs to be able to subtract one
constant per subdomain! Intuitively, this means that the coarse mesh must have at least one
node in each subdomain.

5.2. Projection of H1
0 into P1(T ). In this subsection, we will consider a family of tri-

angular meshesT of domainΩ with the following uniform properties:

Assumption 5.2(Geometric Properties of the Coarse Grid). (1) All anglesθ for all
cells in the meshT are bounded by 0< θmin≤ θ ≤ θmax< π whereθmin andθmax

do not depend onH.
(2) The length of any edge in meshT lies betweencpH andCPH wherecp > 0 and

Cp > 0 depend neither on the cell nor onH.
(3) No node has more thanK neighbors.

In order to simplify our analysis, we make the following assumption:

Assumption 5.3. We assume that the coarse meshT has precisely one node per subdo-
main,xxxi ∈ Ωi .

Even though it should be possible to derive mesh independentestimates for the norm
of the coarse component without Assumption 5.3, this could be rather cumbersome, since
it leads to a rectangular instead of a square matrix, see the analysis below. In addition, in
practical situations, one node for the coarse mesh per subdomain is a common choice.
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Exterior nodesB′

Boundary nodesB

Neighboring nodesV

FIGURE 2. Boundary and exterior nodes in meshT

Given a meshT , and givenr > 0, we introduce the linear forms

ℓi : H1
0(Ω)→ R,

u 7→ 1
πr2

∫

B(xxxi ,r)
u(xxx)dxxx,

(24)

wherei belongs to{1, . . . ,N} and wherexxxi is the position of the i-th node in meshT . We
also define

ℓ : H1
0(Ω)→ R

N,

u 7→ (ℓi(u))1≤i≤N.

Theorem 5.4. LetΩ be a bounded domain ofR2. LetT be a coarse mesh onΩ satisfying
Assumption 5.2, with Hh the shortest height of all triangles inT , K the maximum number
of neighbors of any node inT , and let r be smaller than Hh

4K+1. Then, for all u in H1
0(Ω),

there exists uH in P1(T )∩H1
0(Ω) such that

ℓi(uH) = ℓi(u) for all i in {1, . . . ,N},

‖∇uH‖2
L2(Ω) ≤

1
tanθmin

1+2r/Hh

1−
(
(2K+1)+(4K+1)r/Hh

)
r/Hh

2K(
2CpH

πr
+π)‖∇u‖2

L2(Ω).

Note here thatr ≤ Hh
4K+1 ensures that 1−

(
(2K +1)+ (4K +1)r/Hh

)
r/Hh is positive.

The remainder of this subsection is dedicated to the proof ofthis theorem.

5.2.1. An equivalent norm.Our goal is to construct a convenient equivalent norm to the
H1

0(Ω) norm for functions inP1(T ). Let T be a mesh ofΩ having N nodes. As a
convention, nodes of meshT located exactly on∂Ω will be called exterior nodes and
are not counted among the numbered nodes. This choice is motivated by the homogenous
Dirichlet condition. We denote byV the set of all(i, j) in {1, . . . ,N}2 that are indices
of neighboring nodes. We also denote byB the set of all nodesi in {1, . . . ,N} who are
neighbor to an exterior node, see Figure 2.
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xxxi xxx j

θi j

θ ji

FIGURE 3. Angles and gradient norm inP1(T )

Definition 5.5. Let T be a mesh of domainΩ. Let V andB be the neighbor and the
boundary set of meshT . We define

‖·‖V ,B : RN → R
+,

yyy 7→
√

∑
(i, j)∈V

|yi −y j |2+ ∑
i∈B

|yi |2.

Whenu is in P1(T )∩H1
0(Ω), we define

‖u‖V ,B := ‖(u(xxxi))1≤i≤N‖V ,B,

where thexxxi are the interior nodes of meshT .

Lemma 5.6. Let uH belong to P1(T )∩H1
0(Ω), then the norms uH 7→ ‖∇uH‖L2(Ω) and

‖·‖V ,B are equivalent. Moreover, the equivalence constants depend only on the constants
of Assumption 5.2,

(25)
2
3

minABC∈T |ABC|
C2

pH2 ‖uH‖2
V ,B ≤ ‖∇uH‖2

L2(Ω) ≤
1

tanθmin
‖uH‖2

V ,B.

Proof. It is easy to compute the norm, see Appendix A for details. Forall uH in P1(T )∩
H1

0(Ω), we then have

‖∇uH‖2
L2(Ω) =

1
2 ∑
(i, j)∈V

(
1

tan(θi j )
+

1
tan(θ ji )

)
|ui −u j |2

+
1
2 ∑

i∈B

∑
i′∈V ′

i

(
1

tan(θii ′)
+

1
tan(θi′i)

)
|ui |2,

whereθi j andθ ji are the angles opposite to edge[xxxixxx j ], see Figure 3, and whereV ′
i is the

set of all exterior nodes located on the boundary ofΩ that are neighbors of nodei. The
problem is that the tan(θi j ) can be negative whenθi j >

π
2 . This is not a problem for the

right-hand side of inequality (25), but to establish the left-hand side of inequality (25),



CONTINUOUS ANALYSIS OF THE ADDITIVE SCHWARZ METHOD 17

when there are obtuse angles in the mesh, we need to estimate

‖uH‖2
V ,B =

1
2 ∑

ABC∈T

(
|uH(A)−uH(B)|2+ |uH(B)−uH(C)|2+ |uH(C)−uH(A)|2

)

=
1
2 ∑

ABC∈T

(
|∇uH(ABC) · (xxxA−xxxB)|2+ |∇uH(ABC) · (xxxB−xxxC)|2+ |∇uH(ABC) · (xxxC−xxxA)|2

)

≤ 1
2 ∑

ABC∈T

‖∇uH(ABC)‖2
R2

(
‖xxxA−xxxB‖2+‖xxxB−xxxC‖2+‖xxxC−xxxA‖2)

≤ 3
2

C2
pH2 ∑

ABC∈T

‖∇uH(ABC)‖2
R2

≤ 3
2

C2
pH2 ∑

ABC∈T

‖∇uH‖2
L2(ABC)

|ABC|

≤ 3
2

C2
pH2 ∑

ABC∈T

‖∇uH‖2
L2(ABC)

|ABC|

≤ 3
2

C2
pH2

minABC∈T |ABC| ∑
ABC∈T

‖∇uH‖2
L2(ABC)

=
3
2

C2
pH2

minABC∈T |ABC| ∑
ABC∈T

‖∇uH‖2
L2(Ω),

where the sum is taken over all trianglesABC in meshT . �

5.2.2. Boundedness.Our goal now is to estimate‖ℓ(u)‖V ,B as function of‖∇u‖L2(Ω)

whenu is in H1
0(Ω).

Lemma 5.7. Let T be a coarse mesh onΩ, and let r> 0 be such that2r is smaller than
the smallest height of any triangle inT . Then, for all u in H1

0(Ω), we have

(26) ∑
(i, j)∈V

∣∣ℓi(u)− ℓ j(u)
∣∣2+ ∑

i∈B

|ℓi(u)|2 ≤ 2(
2CpH

πr
+π)K‖∇u‖2

L2(Ω).

Proof. By density, we only need to prove the result foru in C ∞
c . Dealing with the second

term of (26) is possible but cumbersome. It would be much easier to estimate this term
if the sum was over the exterior nodes that are physically on the boundary ofΩ. Let B′

be the set of the indices of the exterior nodes ofT located on the boundary: their indices
are outside of{1, . . . ,N}. Let V ′ be the set of all pairs of indices of neighboring nodes
including exterior nodes (these nodes were excluded inV ). Note thati belongs toB if and
only if there exists at least one indexj in B′ such that(i, j) belongs toV ′. We have

∑
i∈B

|ℓi(u)|2 ≤ ∑
i∈B

∑
j∈B′
(i, j)∈V ′

∣∣ℓi(u)− ℓ j(u)+ ℓ j(u)
∣∣2

≤ ∑
i∈B

∑
j∈B′
(i, j)∈V ′

(
2
∣∣ℓi(u)− ℓ j(u)

∣∣2+2
∣∣ℓ j(u)

∣∣2
)

≤ 2 ∑
(i, j)∈V ′

j∈B′

∣∣ℓi(u)− ℓ j(u)
∣∣2+2K ∑

j∈B′

∣∣ℓ j(u)
∣∣2 ,
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where the first sum has been dropped, since the indicesi can only vary inB due to the
constraints on the second sum. We thus obtain

(27) ∑
(i, j)∈V

∣∣ℓi(u)− ℓ j(u)
∣∣2+ ∑

i∈B

|ℓi(u)|2 ≤ 2 ∑
(i, j)∈V ′

∣∣ℓi(u)− ℓ j(u)
∣∣2+2K ∑

i∈B′
|ℓi(u)|2 .

We start by estimating the first term. Let(i, j) be inV ′, i.e. be neighbor nodes. We have

1
π2r4

∣∣∣∣
∫

B(xxxi ,r)
u(xxx)dxxx−

∫

B(xxx j ,r)
u(xxx)dxxx

∣∣∣∣
2

=
1

π2r4

∣∣∣∣
∫

B(0,r)
u(xxx+xxxi)−u(xxx+xxx j)dxxx

∣∣∣∣
2

=
1

π2r4

∣∣∣∣
∫

B(0,r)

∫ 1

0
∇u(xxx+(1− t)xxx j + txxxi) · (xxxi −xxx j)dtdxxx

∣∣∣∣
2

≤ 1
πr2

∫

B(0,r)

∫ 1

0

∥∥∇u(xxx+(1− t)xxx j + txxxi)
∥∥2

dtdxxx‖xxxi −xxx j‖2

≤ d2

πr2

∫

B(0,r)

∫ 1

0

∥∥∇u(xxx+(1− t)xxx j + txxxi)
∥∥2

dtdxxx.

whered := ‖xxxi −xxx j‖ ≤CpH. We definevvv :=
xxxi−xxx j

d , and letwww be a unit vector orthogonal
to vvv. Then using the equalityxxxi −xxx j = dvvv and the change of variablesxxx= svvv+σwww, we get

∫

B(0,r)

∫ 1

0

∥∥∇u(xxx+(1− t)xxx j + txxxi)
∥∥2

dtdxxx

=
∫ r

−r

∫ +
√

r2−σ2

−
√

r2−σ2

∫ 1

0

∥∥∇u(xxx j +σwww+(s+ td)vvv)
∥∥2

dtdsdσ

=
∫ r

−r

∫ 1

0

∫ +
√

r2−σ2

−
√

r2−σ2

∥∥∇u(xxx j +σwww+(s+ td)vvv)
∥∥2

dsdtdσ

=
∫ r

−r

∫ 1

0

∫ +
√

r2−σ2+td

−
√

r2−σ2+td

∥∥∇u(xxx j +σwww+ s̃vvv)
∥∥2

ds̃dtdσ

=
∫ r

−r

∫ +
√

r2−σ2+d

−
√

r2−σ2

∥∥∇u(xxx j +σwww+ s̃vvv)
∥∥2
(∫ 1

0
χ
[ s̃−

√
r2−σ2
d , s̃+

√
r2−σ2
d ]

(t)dt

)
ds̃dσ

≤ 2r
d

∫ r

−r

∫ +
√

r2−σ2+d

−
√

r2−σ2

∥∥∇u(xxx j +σwww+ s̃vvv)
∥∥2

ds̃dσ ,

which leads to the estimate

1
π2r4

∣∣∣∣
∫

B(xxxi ,r)
u(xxx)dxxx−

∫

B(xxx j ,r)
u(xxx)dxxx

∣∣∣∣
2

≤ 2CpH

πr

∫

Ti, j

‖∇u(xxx)‖2dxxx,

whereTi, j is the set of all pointsxxx whose distance to the segment[xxxi ,xxx j ] is smaller thanr.
Since 2r is smaller than the height of any triangle in the mesh, no point xxx may belong to
more thanK tubesTi, j , see Figure 4 on the left. Therefore, we have

(28) ∑
(i, j)∈V ′

∣∣∣∣
1

πr2

∫

B(xxxi ,r)
u(xxx)dxxx− 1

πr2

∫

B(xxx j ,r)
u(xxx)dxxx

∣∣∣∣
2

≤ K
2CpH

πr

∫

Ω
‖∇u(xxx)‖2dxxx.

We now estimate the second term of the right-hand side of (27). Let i be inB′, i.e. i
is the index of a node located exactly on the boundary of domain Ω, thenu vanishes on at
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xxxi

xxx j

Ti j

r

xi

θ

θ0

u(r,θ)

FIGURE 4. Tubes and their overlaps on the left, and estimate of the mean
on a ball centered on an exterior edge on the right

least two radii. Letθ1 be the angle between the horizontal and one of the radii on whichu is
zero, see Figure 4 on the right. Witheeeρ(θ) := (cosθ ,sinθ) andeeeθ (θ) := (−sinθ ,cosθ),
we obtain

1
π2r4

∣∣∣∣
∫

B(xxxi ,r)
u(xxx)dxxx

∣∣∣∣
2

≤ 1
πr2

∫

B(xxxi ,r)
|u(xxx)|2dxxx

=
1

πr2

∫ r

0

∫ θ0+π

θ0−π

∣∣u(xxxi +ρeeeρ(θ))
∣∣2dθρdρ

=
1

πr2

∫ r

0
ρ
∫ θ0+π

θ0−π

∣∣∣∣
∫ θ

θ0

∇u(xxxi +ρeeeρ(t)) · (ρeeeθ (t))dt

∣∣∣∣
2

dθρdρ

≤ 1
πr2

∫ r

0
ρ2
∫ θ0+π

θ0−π
|θ −θ0|

∫ max(θ0,θ)

min(θ0,θ)

∥∥∇u(xxxi +ρeeeρ(t))
∥∥2

dtdθρdρ

≤
∫ r

0

∫ θ0+π

θ0−π

∫ max(θ0,θ)

min(θ0,θ)

∥∥∇u(xxxi +ρeeeρ(t))
∥∥2

dtdθρdρ

=
∫ r

0

∫ θ0+π

θ0−π

∥∥∇u(xxxi +ρeeeρ(t))
∥∥2
(∫ θ0+π

θ0−π
χ(min(θ0,θ),max(θ0,θ))(t)dθ

)
dtρdρ

≤ π
∫ r

0

∫ θ0+π

θ0−π

∥∥∇u(xxxi +ρeeeρ(t))
∥∥2

dtρdρ

= π
∫

B(xxxi ,r)
‖∇u(xxx)‖2dxxx.

No point6 xxx in Ω can be in more than one ballB(xxxi , r), therefore summing this inequality
over i in B′, we get

(29) ∑
i∈B′

|ℓi(u)|2 ≤ π
∫

Ω
‖∇u(xxx)‖2dxxx.

6One can construct pathological meshes in non pathological cases where two exterior nodesA andB that are
not neighbors are closer thanHh. However, in that case, one can easily avoid that problem by redefiningℓA(u)
wheneverA is in B′ to be 1

πr2

∫
VA∩B(xxxA,r)

u(xxx)dxxx whereVA is the union of all triangles in meshT that have node

A as a vertex.
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Combining (27) with Inequalities (28) and (29), we finally obtain

‖u‖2
V ,B ≤ 2(

2CpH

πr
+π)K

∫

Ω
‖∇u(xxx)‖2dxxx.

�

5.2.3. Continuity of theℓ−1 linear form. Let ε ∈R, with 0< ε < 1
2, and chooser := εHh,

whereHh is the smallest triangle height among all the triangles in the coarse meshT .
Let L := [l i j ] be the matrix associated with the linear functionℓ, i.e. the matrix such that
L · (uH(xxxi))1≤i≤N = ℓ(uH) for all uH in P1(Ω). This is a square matrix, by Assumption 5.3,
of sizeN×N, and satisfies the following properties:

• For all i, j in {1, . . . ,N}, we havel i j ≥ 0.
• For all i, j not belonging toV , l i, j = 0, which implies that for any giveni, there

are at mostK integersj such thatl i j 6= 0.
• For all i in {1, . . . ,N}, we havel ii ≥ 1− ε.
• For all i in {1, . . . ,N}, we have∑N

j=1 l i j = 1 if i /∈ B, and∑N
j=1 l i j ≤ 1 if i ∈ B.

Lemma 5.8. If ε ≤ 1
4K+1, then the matrix L is invertible, and for all uuu inR

n, we have, with
1−
(
(2K+1)+(4K+1)ε

)
ε ≥ 0 that

(30)
1−
(
(2K+1)+(4K+1)ε

)
ε

1+2ε
‖uuu‖V ,B ≤‖Luuu‖V ,B ≤ (1+(2K+3)ε+(4K+1)ε2)‖uuu‖V ,B.

Proof. For all integersi, 1≤ i ≤ N, we havel ii ≥ 1− ε and∑ j |l i j | ≤ 1. Sinceε < 1
2, L

is a strictly diagonally dominant matrix, hence invertible. For the remainder of this proof,
we will denote byVi the set of all integerj such that(i, j) belongs toV . We also define
l∗i := 1−∑n

j=1 l i j , and note thatl∗i is always non negative and smaller thanε, and it vanishes
if i does not belong toB.

We start by estimating the first term of the norm‖·‖V ,B, see Definition 5.5. We have

∑
(i, j)∈V

|
N

∑
k=1

(l ik − l jk)uk|2

= ∑
(i, j)∈V

∣∣∣∣∣∣∣

N

∑
k=1
k6=i

l ik(uk−ui)−
N

∑
k=1
k6= j

l jk(uk−u j)+(ui −u j)− l∗i ui + l∗j u j

∣∣∣∣∣∣∣

2

,
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and using now the Cauchy-Schwarz inequality for
√

l ik ×
√

l ik(uk−ui), we obtain

≤ ∑
(i, j)∈V




N

∑
k=1
k6=i

l ik +
N

∑
k=1
k6= j

l jk +1+ l∗i + l∗j


×

×




N

∑
k=1
k6=i

l ik|uk−ui |2+
N

∑
k=1
k6= j

l jk|uk−u j |2+ |ui −u j |2+ l∗i |ui |2+ l∗j |u j |2




≤ (1+2ε) ∑
(i, j)∈V




N

∑
k=1
k6=i

l ik|uk−ui |2+
N

∑
k=1
k6= j

l jk|uk−u j |2+ |ui −u j |2+ l∗i |ui |2+ l∗j |u j |2




≤ (1+2ε)

(

∑
(i, j)∈V

|ui −u j |2+2K max
i 6= j

|l i j | ∑
(i, j)∈V

|u j −ui |2+2K max
i∈B

|l∗i |
N

∑
i∈B

|ui |2
)

≤ (1+2ε)

(
(1+2Kε) ∑

(i, j)∈V

|ui −u j |2+2Kε
N

∑
i∈B

|ui |2
)
,

which yields the inequality

(31) ∑
(i, j)∈V

|
N

∑
k=1

(l ik − l jk)uk|2 ≤ (1+2ε)

(
(1+2Kε) ∑

(i, j)∈V

|ui −u j |2+2Kε
N

∑
i∈B

|ui |2
)
.

We now estimate the second term of the norm in Definition 5.5,

∑
i∈B

∣∣∣∣∣
N

∑
k=1

l ikuk

∣∣∣∣∣

2

= ∑
i∈B

∣∣∣∣∣∣∣

N

∑
k=1
k6=i

l ik(uk−ui)+(1− l∗i )ui

∣∣∣∣∣∣∣

2

and again using the Cauchy-Schwarz inequality on
√

l ik ×
√

l ik(uk−ui), we obtain

≤ ∑
i∈B




N

∑
k=1
k6=i

l ik +(1− l∗i )



(

N

∑
k=1

l ik|uk−ui |2+(1− l∗i )|ui |2
)
,

≤ (1+ ε) ∑
i∈B

(
N

∑
k=1

l ik|uk−ui |2+(1− l∗i )|ui |2
)

≤ (1+ ε)max
i 6=k

|l ik| ∑
(i,k)∈V

|uk−ui |2+(1+ ε) ∑
i∈B

|ui |2

≤ (1+ ε)ε ∑
(i,k)∈V

|uk−ui |2+(1+ ε) ∑
i∈B

|ui |2,

which proves the inequality

(32) ∑
i∈B

∣∣∣∣∣
N

∑
k=1

l ikuk

∣∣∣∣∣

2

≤ (1+ ε)ε ∑
(i,k)∈V

|uk−ui |2+(1+ ε) ∑
i∈B

|ui |2.

Now combining inequalities (31) and (32), we establish the right part of inequality (30).
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Proving the left part of inequality (30) is a little more difficult. We start by estimating
the first term of the norm‖·‖V ,B. To establish (31), we used the equality

N

∑
k=1

(l ik − l jk)uk =
N

∑
k=1
k6=i

l ik(uk−ui)−
N

∑
k=1
k6= j

l jk(uk−u j)+(ui −u j)− l∗i ui + l∗j u j .

Putting the(ui − u j) term onto the left-hand side of the equation and all the otherterms
onto the right-hand side, we get

∑
(i, j)∈V

|ui −u j |2

= ∑
(i, j)∈V

∣∣∣∣∣∣∣

N

∑
k=1

(l ik − l jk)uk−
N

∑
k=1
k6=i

l ik(uk−ui)+
N

∑
k=1
k6= j

l jk(uk−u j)+ l∗i ui − l∗j u j

∣∣∣∣∣∣∣

2

= ∑
(i, j)∈V

∣∣∣∣∣∣∣

(
(Luuu)i − (Luuu) j

)
−

N

∑
k=1
k6=i

l ik(uk−ui)+
N

∑
k=1
k6= j

l jk(uk−u j)+ l∗i ui − l∗j u j

∣∣∣∣∣∣∣

2

,

and using again the Cauchy-Schwarz inequality, as we did earlier, we find

≤ ∑
(i, j)∈V

(
1+(1− l∗i − l ii )+(1− l∗j − l j j )+ l∗i + l∗j

)
×

×


|(Luuu)i − (Luuu) j |2+

N

∑
k=1
k6=i

l ik|uk−ui |2+
N

∑
k=1
k6= j

l jk|uk−u j |2+ l∗i |ui |2+ l∗j |u j |2




≤ (1+2ε) ∑
(i, j)∈V

(
|(Luuu)i − (Luuu) j |2+max

k6=i
|l ik| ∑

k∈Vi

|uk−ui |2

+max
k6= j

|l jk| ∑
k∈V j

|uk−u j |2+ l∗i |ui |2+ l∗j |u j |2
)

≤ (1+2ε) ∑
(i, j)∈V

(
|(Luuu)i − (Luuu) j |2+ ε ∑

k∈Vi

|uk−ui |2+ ε ∑
k∈V j

|uk−u j |2+ l∗i |ui |2+ l∗j |u j |2
)

≤ (1+2ε) ∑
(i, j)∈V

|(Luuu)i − (Luuu) j |2+2(1+2ε)Kε ∑
(i, j)∈V

|u j −ui |2+2(1+2ε)Kε ∑
i∈B

|ui |2.

The ε terms will be absorbed by the left-hand side, provided we chooseε small enough.
To absorb the third term, we must first estimate the second term in norm ‖·‖V ,B. To
establish (32), we used

N

∑
k=1

l ikuk =
N

∑
k=1
k6=i

l ik(uk−ui)+(1− l∗i )ui .
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We putui onto the left-hand side of the equality and all the other terms onto the right-hand
side to obtain

∑
i∈B

|ui |2

= ∑
i∈B

|
N

∑
k=1

l ikuk−
N

∑
k=1
k6=i

l ik(uk−ui)+ l∗i ui |2

= ∑
i∈B

|(Luuu)i −
N

∑
k=1

l ik(uk−ui)+ l∗i ui |2

≤ ∑
i∈B


1+

N

∑
k=1
k6=i

l ik + l∗i





|(Luuu)i |2+

N

∑
k=1
k6=i

l ik|uk−ui |2+ l∗i |ui |2




≤ (1+ ε) ∑
i∈B

(
|(Luuu)i |2+max

k6=i
|l ik| ∑

k∈Vi

|uk−ui |2+max
j∈B

|l∗j ||ui |2
)

≤ (1+ ε) ∑
i∈B

|(Luuu)i |2+(1+ ε)max
i 6= j

|l i j | ∑
(i, j)∈V

|u j −ui |2+(1+ ε)max
i∈B

|l∗i | ∑
i∈B

|ui |2

≤ (1+ ε) ∑
i∈B

|(Luuu)i |2+(1+ ε)ε ∑
(i, j)∈V

|u j −ui |2+(1+ ε)ε ∑
i∈B

|ui |2.

We add now the last two estimates to get

‖uuu‖2
V ,B ≤ (1+2ε)‖Luuu‖2

V ,B +
(
(2K+1)+(4K+1)ε

)
ε‖uuu‖2

V ,B.

If ε ≤ 1
4K+1 then

(
(2K+1)+(4K+1)ε

)
ε < 1, which concludes the proof. �

5.2.4. End of the proof of the Theorem 5.4.We just combine Lemma 5.6, Lemma 5.7, and
Lemma 5.8, and we have successively the existence and uniqueness ofuH (since the matrix
L is invertible), and the estimates

‖∇uH‖2
L2(Ω) ≤C1‖uH‖2

V ,B ≤C2C1‖ℓ(u)‖2
V ,B ≤C3C2C1‖∇u‖2

L2(Ω),

whereC1 = 1
tanθmin

, C2 = 1+2r/Hh

1−
(
(2K+1)+(4K+1)r/Hh

)
r/Hh

andC3 = 2K(
2CpH

πr + π). To apply

these inequalities, it is sufficient for the ratior/Hh to be smaller than 1/((4K +1)), where
Hh is the length of the shortest height of any triangle in the mesh T .

5.3. Non coarse elements.In this subsection, we construct the non coarse elements of the
stable decomposition. We make the following assumption on theUi :

Assumption 5.9(Star shape ofUi). We assume that there exists a uniformε such that for
all the domain decompositions we consider forΩ, Ui is star shaped with respect to any
point in the ballB(xxxi , r), wherer = εHh and where thexxxi are the nodes of the coarse mesh
T and whereHh is the length of the shortest height of any triangle in meshT .

First we improve Lemma 5.1 in order to obtain estimates for the constants involved.

Lemma 5.10. Letω be an open domain ofR2 with a diameter smaller than H. Let r< H.
We suppose there exists xxxO in ω such that

• The ball B(xxxO,2r) is included inω.
• The setω is star-shaped with respect to all xxx in the ball B(xxx, r).
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Then for all u in H1(ω), and for allη > 0, we have the estimate:

∫

ω
|u(yyy)|2dyyy≤ (1+η)r2

3






(

H2

r2 +
1
2

) 1
4

+
H

4
√

2r




4

− 1
2
− H2

r2 − H4

2r4



∫

ω
‖∇u(xxx)‖2dxxx

+

(
1+

1
η

)
H2

πr4

∣∣∣∣
∫

B(xxxO,r)
u(xxx)dxxx

∣∣∣∣
2

.

Proof. Without loss of generality, we can suppose thatxxxO = 000. Then, for allη > 0:

∫

ω
|u(yyy)|2dyyy

=
∫

ω

∣∣∣∣u(yyy)−
1

πr2

∫

B(000,r)
u(xxx)dxxx+

1
πr2

∫

B(000,r)
u(xxx)dxxx

∣∣∣∣
2

dyyy

≤ 1+η
π2r4

∫

ω

∣∣∣∣
∫

B(000,r)
(u(yyy)−u(xxx))dxxx

∣∣∣∣
2

dyyy+

(
1+

1
η

) |ω|
π2r4

∣∣∣∣
∫

B(000,r)
u(xxx)dxxx

∣∣∣∣
2

≤ 1+η
π2r4

∫

ω

∣∣∣∣
∫

B(000,r)
(u(yyy)−u(xxx))dxxx

∣∣∣∣
2

dyyy+

(
1+

1
η

)
H2

πr4

∣∣∣∣
∫

B(000,r)
u(xxx)dxxx

∣∣∣∣
2

,

and it remains to estimate the first term in the sum on the right,

I :=
1

π2r4

∫

ω

∣∣∣∣
∫

B(000,r)
(u(yyy)−u(xxx))dxxx

∣∣∣∣
2

dyyy

=
1

π2r4

∫

ω

∣∣∣∣
∫

B(000,r)

∫ 1

0
∇u((1− t)xxx+ tyyy) · (yyy−xxx)dtdxxx

∣∣∣∣
2

dyyy

≤ 1
πr2

∫

ω

∫

B(000,r)

∫ 1

0
‖∇u((1− t)xxx+ tyyy)‖2‖yyy−xxx‖2dtdxxxdyyy.

Now using the change of variablesxxx′ = (1− t)xxx+ tyyy, we get

I ≤ 1
πr2

∫

ω

∫ 1

0

∫

B(tyyy,(1−t)r)
‖∇u(xxx′)‖2‖yyy−xxx′‖2dxxx′

dt
(1− t)4 dyyy

=
1

πr2

∫

ω
‖∇u(xxx′)‖2

∫ 1

0

∫

ω
‖yyy−xxx′‖2χ{‖xxx′− tyyy‖ ≤ (1− t)r}dyyy

dt
(1− t)4 dxxx′.

Using the further change of variablesyyy′ = yyy−xxx′ yields

I ≤ 1
πr2

∫

ω
‖∇u(xxx′)‖2

∫ 1

0

∫

ω−xxx′
‖yyy′‖2χ{‖xxx′− t

1− t
yyy′‖ ≤ r}dyyy′

dt
(1− t)4 dxxx′

≤ 1
πr2

∫

ω
‖∇u(xxx′)‖2

∫ 1

0

∫

B(0,H)
‖yyy′‖2χ{‖xxx′− t

1− t
yyy′‖ ≤ r}dyyy′

dt
(1− t)4 dxxx′
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and a final change of variablesyyy′′ = t
1−t yyy

′ gives

I ≤ 1
πr2

∫

ω
‖∇u(xxx′)‖2

∫ 1

0

∫

B(0, tH
1−t )∩B(xxx′,r)

‖yyy′′‖2dyyy′′
dt
t4 dxxx′

≤ 1
πr2

∫

ω
‖∇u(xxx′)‖2

∫ 1

0
min(

∫

B(0, tH
1−t )

‖yyy′′‖2dyyy′′,
∫

B(xxx′,r)
‖yyy′′‖2dyyy′′)

dt
t4 dxxx′

=
1
r2

∫

ω
‖∇u(xxx′)‖2

∫ 1

0
min(

t4H4

2(1− t)4 , r
2(

r2

2
+‖xxx′′′‖2))

dt
t4 dxxx′

≤ 1
r2

(∫ 1

0
min

( t4H4

2(1− t)4 , r
2(

r2

2
+H2)

)dt
t4

)∫

ω
‖∇u(xxx′)‖2dxxx′

=
r2

3






(

H2

r2 +
1
2

) 1
4

+
H

4
√

2r




4

− 1
2
− H2

r2 − H4

2r4



∫

ω
‖∇u(xxx)‖2dxxx,

which is the desired result. �

Lemma 5.11. Let Ω be a bounded domain ofR2, and (Ui ,Ωi)1≤i≤N be an associated
domain decomposition with overlap widthδ > 0. Let T be a coarse mesh onΩ, and
assume that Assumptions 5.3, 5.2 and 5.9 are verified. We alsoassume the Ui satisfy
Assumption 4.4 with uniform̂R, R̃ and1/sinθXXX. Then for any u in H10(Ω), there exists
(ui)1≤i≤N in H1

0(Ωi), such that for all i,1≤ i ≤ N, ui is in H1
0(Ωi), u= ∑N

i=1ui and for all
η > 0,

N

∑
i=1

‖∇ui‖2
L2(Ωi)

≤
(

2+8λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) R̂
δ sinθXXX

+
8(1+η)

3
λ 2

2 (Nc−1)2
(

1+
R̂

R̃

) r2

R̂δ sinθXXX
×

×






(

C2
dH2

r2 +
1
2

) 1
4

+
CdH

4
√

2r




4

− C4
dH4

2r4 − 1
2
− C2

dH2

r2



)
‖∇u‖2

L2(Ω)

+8

(
1+

1
η

)
λ 2

2 (Nc−1)2
(

1+
R̂

R̃

)
π

C2
dH2

R̂δ sinθXXX

N

∑
i=1

|ℓi(u)|2,

whereλ2 is the universal constant of Lemma 4.3, andℓi(u) = 1
πr2

∫
B(xxxi ,r)

u(xxx)dxxx.
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Proof. We use the sameui as in the proof of Theorem 4.6. Since diam(Ui) ≤ CdH, we
have, for allη > 0,

‖u‖2
L2(Ω) =

N

∑
i=1

‖u‖2
L2(Ui)

≤ (1+η)r2

3






(

C2
dH2

r2 +
1
2

) 1
4

+
CdH

4
√

2r




4

− C4
dH4

2r4 − 1
2
− C2

dH2

r2




N

∑
i=1

‖∇u‖2
L2(Ui)

+

(
1+

1
η

)
πC2

dH2
N

∑
i=1

|ℓi(u)|2

=
(1+η)r2

3






(

C2
dH2

r2 +
1
2

) 1
4

+
CdH

4
√

2r




4

− C4
dH4

2r4 − 1
2
− C2

dH2

r2


‖∇u‖2

L2(Ω)

+

(
1+

1
η

)
πC2

dH2
N

∑
i=1

|ℓi(u)|2.

Inserting this estimate into estimate (17). concludes the proof. �

5.4. Stable Decomposition with Coarse Mesh.Combining our previous results, we ob-
tain now our main theorem on the existence of a stable decomposition with a coarse mesh.
We provide this theorem with all assumptions in order for it to be self contained.

Theorem 5.12(Stable Decomposition ofH1
0 with Coarse Mesh). Let Ω be a bounded do-

main ofR2, and(Ui)1≤i≤N be a non overlapping domain decomposition ofΩ. We suppose
there existR̃,R̂ and1/sinθXXX such that for each Ui there exists an open layer Li containing
∂Ui , a vector field XXXi continuous on Li ∩U i , C ∞ on Li ∩Ui such thatDXXXi(xxx)(XXXi(xxx)) = 0,
‖XXXi(xxx)‖ = 1, ‖divXXXi‖∞ ≤ 1/R̃, andε0 > 0 such that for all positiveε < ε0 and for all
x̂xx in ∂Ui , x̂xx+ εXXXi(x̂xx) ∈ U and x̂xx− εXXXi(x̂xx) /∈ U. Setting, for all positiveδ ′, Uδ ′

i := {xxx ∈
U, dist(xxx,∂Ui) < δ ′}, and Vδ ′

i := {x̂xx+ sXXXi(x̂xx), x̂xx∈ ∂Ui ,0< s< δ ′}, we assume there ex-

ists aδ0, 0 < δ0 ≤ R̂sinθXXX such that VR̂
i ⊂ Li ∩Ui and Uδ ′

i ⊂ Vδ ′/sinθXXX
i for all positive

δ ′ ≤ δ0.
Let δ < δ0 be positive. SetΩi = {xxx ∈ Ω|dist(xxx,∂Ωi) < δ}. The(Ωi)1≤i≤N form an

overlapping domain decomposition ofΩ.
Let H be the smallest diameter among all Ui , Cd := maxi diamUi/H, and Nc be the

number of colors of this decomposition.
LetT be a triangular coarse mesh of the domainΩ with N nodes, and suppose that the

i-th node xxxi of T is in Ui . Let Cp be the ratio between the length of the longest edge inT

and H, and Hh be the length of the shortest height of any triangle inT . Let θmin be the
smallest angle in the meshT , and K be the maximum number of neighbors a node of the
coarse meshT can have.

Let r ≤ Hh
4K+1, such that for all i in{1, . . . ,N}, the ball B(xxxi ,2r) is a subset of Ui , and

that Ui is star shaped with respect to any point in the ball B(xxxi , r).
Then, there exists a stable decomposition of H1

0(Ω) in P1(T )∩H1
0(Ω)+∑N

i=1H1
0(Ωi),

i.e. for all u in H1
0(Ω), there exists u0 in P1(T )∩H1

0(Ω) and(ui)1≤i≤N, ui ∈ H1
0(Ωi), such
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that

u=
N

∑
i=0

ui ,

N

∑
i=0

‖∇ui‖2
L2(Ωi)

≤C‖∇u‖2
L2(Ω),

where C=C1+2(1+C1)C2 and7

C1 =
1

tanθmin

1+2r/Hh

1−
(
(2K+1)+(4K+1)r/Hh

)
r/Hh

2K(
2CpH

πr
+π),

C2 = 2+8λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) R̂
δ sinθXXX

+
8
3

λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) r2

R̂δ sinθXXX
×

×






(

C2
dH2

r2 +
1
2

) 1
4

+
CdH

4
√

2r




4

− C4
dH4

2r4 − 1
2
− C2

dH2

r2


 ,

whereλ2 is the universal constant of Lemma 4.3.

Proof. We takeu0 = uH from Theorem 5.4, and we apply Lemma 5.11 tou−u0. The term
in 1+1/(4η) disappears. We let goη tend to 0 and obtain the stable decomposition with
the given constant. �

6. BOUNDED CONDITION NUMBER OF THE ADDITIVESCHWARZ OPERATOR AT THE

CONTINUOUS LEVEL

We can now use the stable decomposition we established to bound the condition number
of the continuous Additive Schwarz operator, which leads tothe following result:

Theorem 6.1(Condition Number Estimate at the Continuous Level). Let Ω be a bounded
domain ofR2. Let A be a continuous function fromΩ to the set of2×2 symmetric positive
definite matrices. We suppose that A(xxx) is uniformly coercive and uniformly bounded:
there existα > 0 andβ > 0 such that for all xxx in Ω, and for allξξξ in R

2

α‖ξξξ‖2
2 ≤ ξξξ TA(xxx)ξξξ ≤ β‖ξξξ‖2

2.

Let a(·, ·) be the continuous bilinear form on H10(Ω) defined by

a(u,v) =
∫

Ω
∇u(xxx) ·A(xxx)∇v(xxx)dxxx.

We use the same notation and the same hypotheses as in Theorem5.12 to define the Ui , the
Ωi , the meshT and all the geometric parameters on which the constants depend.

Let V0 = P1(T ). Let Vi = H1
0(Ωi) for 1≤ i ≤ N. Let RT

i be defined by

RT
i : H1

0(Ωi)→ H1
0(Ω),

u 7→
(

xxx 7→
{

u(xxx) if xxx∈ Ωi ,

0 otherwise

)
.

7Note thatr ≤ Hh
4K+1 ensures that 1−

(
(2K+1)+(4K+1)r/Hh

)
r/Hh is positive.
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For all 1≤ i ≤ N, letãi be the bilinear forms on H10(Ωi) defined bỹai(u,v) = a(RT
i u,RT

i v),
i.e.

ãi(u,v) =
∫

Ωi

∇u(xxx) ·A(xxx)∇v(xxx)dxxx.

Let Pad be the preconditioned Additive Schwarz operator defined by equation(2). Then the
a-condition number of Pad is bounded by

κ(Pad)≤
β 2

α2C(Nc+1),

where

C=C1+2(1+C1)C2,

C1 =
1

tanθmin

1+2r/Hh

1−
(
(2K+1)+(4K+1)r/Hh

)
r/Hh

2K(
2CpH

πr
+π),

C2 = 2+8λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) R̂
δ sinθXXX

+
8
3

λ 2
2 (Nc−1)2

(
1+

R̂

R̃

) r2

R̂δ sinθXXX
×

×






(

C2
dH2

r2 +
1
2

) 1
4

+
CdH

4
√

2r




4

− C4
dH4

2r4 − 1
2
− C2

dH2

r2


 ,

whereλ2 is the universal constant of Lemma 4.3.

Proof. Assumption 2.4 is satisfied by definition with the local stability parameterω =
1, and Assumption 2.2 is satisfied by Theorem 5.12, sinceA is uniformly coercive and
uniformly bounded. Therefore, we have a stable decomposition whose constant is theC of

Theorem 5.12 multiplied byβ
2

α2 . We apply then Theorem 2.7 to conclude. �

The bound of the condition does not depend on the number of subdomains and the
lengths in the formulas always come in ratios, which means that the condition number
stays bounded.

7. CONCLUSION

We have analyzed the Additive Schwarz preconditioned operator with a coarse mesh at
the continuous level. We provided explicit estimates whichshow that the condition number
is independent of the number of subdomains. This continuousestimate should be helpful
to prove properties of the Additive Schwarz preconditionedoperator when discretized by
various consistent numerical methods for partial differential equations, as soon as the dis-
cretization error is small enough. In particular, the condition number estimate should not
depend on the fine discretization.

These explicit estimates also enabled us to deal with non shape regular domain de-
compositions, where some subdomains are very small, while others are very large. In
particular, in such a case, the classical result would give us a condition number linear in
max(H(xxx))/min(δ (xxx)). Using the methods developped in this paper, we prove in [20]that
the condition number is actually linear in max(H(xxx)/δ (xxx)) which is a much better estimate
for non shape regular domain decompositions.
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APPENDIX A. THE L2 NORM OF THE GRADIENT INP1(T )

Let ABCbe a triangle, and letva, vb, vc in R be the values at the corners. There exists
a unique affine mappingu defined overABC, such thatu(A) = vA, u(B) = vB andu(C) =
vC. We want to compute

∫
ABC‖∇u‖2. InsideABC, ∇u is a constant that satisfies the two

equations

∇u· (AAABBB) = vB−vA, ∇u· (AAACCC) = vC−vA.

Hence, in a matrix formulation, we have
[
xB−xA yB−yA

xC−xA yC−yA

]
∇u=

[
vB−vA

vC−vA

]
.

The inverse of this matrix is readily computed, and we obtain

∇u=

[
yC−yA −(yB−yA)

−(xC−xA) xB−xA

][
vB−vA

vC−vA

]

∣∣∣∣
xB−xA yB−yA

xC−xA yC−yA

∣∣∣∣

=
1

2S (ABC)

[
(yC−yA)(vB−vA)− (yB−yA)(vC−vA)
−(xC−xA)(vB−vA)+(xB−xA)(vC−vA)

]
,

whereS (ABC) is the area of triangleABC. Therefore, we obtain

‖∇u‖2
R2 =

‖AAACCC‖2(vB−vA)
2+‖AAABBB‖2(vC−vA)

2−2(AAABBB,AAACCC)(vB−vA)(vC−vA)

4S (ABC)2

=
(CCCBBB,CCCAAA)(vB−vA)

2+(BBBAAA,BBBCCC)(vC−vA)
2+(AAABBB,AAACCC)(vB−vC)

2

4S (ABC)2 ,

since 2(vB−vA)(vc−vA) = (vB−vA)
2+(vC−vA)

2− (vB−vC)
2. We thus have

(33) ‖∇u‖2
L2(ABC) = S (ABC)‖∇u‖2

R2 =
(vB−vA)

2

2tan(θC)
+

(vA−vC)
2

2tan(θB)
+

(vC−vB)
2

2tan(θA)
.
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