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CONTINUOUS ANALYSIS OF THE ADDITIVE SCHWARZ METHOD: A
STABLE DECOMPOSITION IN H! WITH EXPLICIT DEPENDENCE OF THE
CONSTANTS ON THE SHAPE REGULARITY OF THE DECOMPOSITION

MARTIN J. GANDER, LAURENCE HALPERN, AND KEVIN SANTUGINI

ABSTRACT. The classical convergence result for the additive Schwaezonditioner
with coarse grid is based on a stable decomposition. Thettesidls for discrete versions
of the Schwarz preconditioner, and states that the pretiondd operator has a uniformly
bounded condition number that depends only on the number ofscof the domain de-
composition, the ratio between the average diameter of théosndins and the overlap
width, and on the shape regularity of the domain decomposition

The classical Schwarz method was however defined at the countrlevel, and simi-
larly, the additive Schwarz preconditioner can also be defat the continuous level. We
presentin this paper a continuous analysis of the additiev&rz preconditioned operator
with coarse grid in two dimensions. We show that the classicatlition number estimate
also holds for the continuous formulation, and as in the discrase, the result is based on
a stable decomposition, but now of the Sobolev spéteThe advantage of such a contin-
uous result is that it is independent of the type of fine griditization, and thus does the
more natural continuous formulation of the Schwarz methodceisThe upper bound we
provide for the classical condition number is also explieitjch gives us the quantitative
dependance of the upper bound on the shape regularity obthaid decomposition.

1. INTRODUCTION

With the generalization of parallelism in today’s compstgrarallelizable mathematical
algorithms are of increasing importance. Domain decontippsinethods make it possible
to perform numerical simulations in parallel, see for exintipe books [32, 30, 34], or the
monographs [36, 8], and references therein. Consider apdifferential equation to be
solved on a big domaif. In domain decomposition methods, an iterative approatb-in
duced by Schwarz [31] is to decompose the big dorfzinto several smaller overlapping
subdomaing;, Q = J{'; Qj, and then to compute approximatianj‘sdefined by

P = f in Q,

|
U = Ut onry,

@
j

wherel'j; denote the interfaces. In practice, it is more efficient ®the general algorithm
(1) as a preconditioner for a Krylov subspace method, likeRE3 or conjugate gradients,
see for example [18, 19] for a more detailed explanation. Athditive Schwarz operator
defines one such preconditioned operator, related to (1)a Homain decomposition with
both an overlap and a coarse mesh, Dryja and Widlund [13]egatdlaat the condition
number of the discrete Additive Schwarz operator is unifgrbounded,i.e. it does not
depend on the number of subdomains. However, it dependseonutmber of colors of
the domain decomposition, on the ratio between the dianoétére subdomain and the
thickness of the overlaps, and on the shape regularity ofitimeain decomposition, see

2010Mathematics Subject ClassificatioB5N55.



2 M. GANDER, L. HALPERN, AND K. SANTUGINI

also Toselli and Widlund [34, Chap. 2]. Schwarz precondiis have then mostly been
analyzed at the discrete level, see for example [7, 28, 39pR8pectral discretizations, [3]

for the non-selfadjoint case, [4] for parabolic problen@,fpr some non-symmetric and
indefinite problems, [5] for multiplicative versions of thkgyorithm, [10] for discretizations

on unstructured meshes, [9] when also the coarse grid iswainhing, [15, 11, 26, 27]

for mixed finite element discretizations, [12] for mortaritinelement problems, [16] for

discontinuous Galerkin discretizations, and [17] for nucad linear algebra techniques.
For lower bounds on the convergence of Schwarz methods2kee [

Schwarz domain decomposition methods are however nataigfined and analyzed at
the continuous level, like in (1), see for example [23, 24, 8chwarz methods were also
invented by Schwarz at the continuous level [31], and theemecent class of optimized
Schwarz methods was formulated and analyzed at the consraeel, for an introduction
see [18] and references therein. It is however much less btaa to analyze a two level
method at the continous level. In a recent review on coat@esspomponents [35], we find
the comment:

Early on, coarse spaces were not used and only continuobdeprs
were considered; in fact it is unclear what a coarse problan might
be.

The purpose of our paper is to present an analysis of the twebAelditive Schwarz opera-
tor in a continuous setting, and to prove that its conditiomber is bounded independently
of the number of subdomains. The proof succeeds by estatyiie existence of a stable
decomposition of every function iH}(Q) as a sum of functions belonging to thg(Q;)
plus a coarse function belonging to the space of continudersewise linear functions
P.(7) where.7 is our coarse triangular mesh.

Our goal in this paper is to obtain at each step explicit ugoemnds, including for the
constants. To do so requires an explicit and quantitatifimition of the notion of shape
regularity. This opens the way for upper bounds of the caodivf the Additive Schwarz
operator when the underlying domain decomposition is napshiegular.

First, we recall in section 2 the definition of the precoradigd additive Schwarz op-
erator, and the abstract results giving an estimate of thditon number of the Additive
Schwarz operator as soon as three assumptions hold. Thaf thetpaper is then devoted
to showing that these assumptions hold for a decompositithre@ontinuous level, the key
assumption being the existence of a stable decomposititber gpecifying in section 3 the
geometric parameters of the domain decomposition, we prosection 4 the existence of
a stable decomposition in the continuous case in the absdrceoarse mesh albeit with
a constant that depends on the number of subdomains. Sécisotledicated to proving
our main theorem, Theorem 5.12, which establishes thatgiptesence of a coarse mesh,
there exists a uniformly stable decomposition with an eiplipper bound that does not
depend on the number of subdomains. Using this result, wepnesection 6 that the con-
dition number of the additive Schwarz operator has a unifpbuunded condition number
in the continuous case when there is a co®smesh.

2. THE ADDITIVE SCHWARZ OPERATOR

In this section, we recall the abstract results in Toseli @idlund [34, chap. 2]. Let
(Vi)o<i<n be Hilbert spaces, withl being a coarse space. ét= S RTVi, where the
RI are linear extension operators. lzt, -) be a symmetric, positive definite bilinear form
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onV. We wish to find the uniqua in V satisfying
a(u,v) = (f,v) forallvin V.
Letdi(-, ) be symmetric positive definite bilinear forms on theWe defineP :V — V, by
a(Ru,v)=a(u,R'v) forallvinV.
Let R = RTR. The additive Schwarz operator is defined by

N
(2 Pad 1= i; R.

This is ana-symmetrica-positive operator. We are interested in bounding the dimrdi
number (with respect to the bilinear fora of the preconditioned operat8g.

Definition 2.1. Leta be a symmetric, positive bilinear form on a vector spdcéet P be
a continuous linear application frovhto V. We call

max yev a(Pu,u)
P)— a(u,u)=1
K(P) min yev a(Pu,u)
a(u,u)=1

thea-condition number oP.
Assumption 2.2(Stable decomposition)There exists a consta@y such that allu in V
admit the decomposition

(3) u:i)R,-Tui, with  {u eV}, and ia(ui,ui)gcga(u,u).

Assumption 2.3(Strengthened Cauchy Schwarz inequaliti#pr all i, j > 1, there exist
constants &< &; < 1 such that for ally € Vi andu; € V; we have

1 1
4) la(RMui, R uj)| < &;a(Rui, RN ui) Za(Rf uj, R uj) 2.
We denote by (&) the spectral radius of the matid& = {&;j }.

Assumption 2.4(Local stability) There existg > 0 such that/i > 0 andvuy; € rangqﬁ)
we have

(5) a(R"u, RTu) < wd (Ui, u).

The following fundamental result can be found in Toselli &didilund [34], see Theo-
rem2.7.

Theorem 2.5. Let Assumptions 2.2, 2.3 and 2.4, be satisfied. Then theditmmnumber
K (Pyg) satisfies

(6) K(Pag) < Ciw(p(&) +1).
Proof. The proof of Theorem 2.7 in Toselli and Widlund [34] also ifithe V; have
infinite dimension. O

In order to get a more concrete estimate, the strenghtenedh@<chwarz Assump-
tion 2.3 is often replaced in the literature by an assumpdiothe number of colors of the
decomposition. The number of colors is defined as follows:
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Definition 2.6 (Number of colors) In an abstract domain decomposition into the fine
spacesVi)i<i<n, the number of colors is the smallest inteddrsuch that there exists
a partition of{1,...,N} into N; sets(lx)1<k<n, such thaR"V; is a-orthogonal withRjTVj
wheneveii and j are distinct indices that belong to the salpeThe fine spaceg andV;

are said to have the same color whiemd j belong to the samk.

Then we can use the number of colors in estimate (6) insteealydfg on the spectral
radius of the strengthened Cauchy-Schwarz matrix.

Theorem 2.7. Let Assumptions 2.2, and 2.4, be satisfied. Suppose thahéhédcompo-
sition { has N colors. Then the a-condition numbe(P,g) satisfies

(7) K (Pag) < C50(Ne+1).
Before proving the result we make the following remark:

Remark2.8. In the literature, three distinct integers are used in extn{7), and these
constants can be defined both in the concrete geometringeftidlomain decomposition,
and in the abstract setting:

e In the concrete setting of domain decomposition, one camelBfi as the maxi-
mum numbelN of neighbors, including itself, a subdomain can have. Ttisger
is the connectivity of the domain decomposition. This numtan replace (&)
in Theorem 2.5, since we always hgués’) < N, see [34, Lemma 2.10] (where
N is used as the name for this constant). In the abstract gettire could define
Nk as the maximum overin {1,...,N} of the number oRJTVj, jin{1,...,N},
which are nog-orthogonal taR" V..

e The number of colordl. we defined in the abstract setting, see Definition 2.6, can
also be defined in a transparent way in the concrete geonsettiog of domain
decomposition, see Definition 3.6. We always hile< Ny in both the concrete
and abstract setting, and thus proving a result with theteabbl; implies the
result with the constariti.

e In the concrete setting of domain decomposition, one cameldfias the max-
imum number of subdomains a point can belong to. In the atistedting, one
can defineN as the largest integer for which there exiistinct RTV; whose
intersection is no{0}. We always havé\ < N; in both the abstract setting and
the concrete setting, so a result with the consbéuig the most accurate. In the
concrete case, when taeare defined as integrals over a subdomain, it is possible
to replaceN. with N in (7), see the original proof of [14, Th. 4.1]. It is unknown
to the authors if the result wit can be generalized to an abstract domain decom-
position.

In the remainder of this paper, we always work with the nunadf@olorsN.

We now proceed with the proof of Theorem 2.7

Proof. We only need to change part of the proof of Theorem 2.7 in Ticesedl Widlund
[34]. We already know that a lower bound for the smallest mighie is J[CS, see [34,
Lemma 2.5]. To get the estimate on the largest eigenvaludplimv the ideas of [34,
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Lemma 2.6] but additionally group thé by color. For each coldkin {1,...,N:}, we get:

a(SY Ry S Pu) = a(Ru,Pu)= Y a(Ru,Ru) < w Y &(Ru,Ru)
i€l JEZk iGZk ]GZK iGZk

i€l

Nl

<wY a(Ru,u) <wa(y Ru,u) < wa( P.wZP,-u)%a(u,u).
i€l i€l i€l j€Tk

Dividing by a(¥ici, RU, Y jei, Pj u)%, we therefore get

1 1
a(y Ry, Z Pju)Z < wa(u,u)?,
i€l j€Tk

and thus can estimate using again the Cauchy-Schwarz ilitgqua
a(y Ru,u)y<a(y Ru, Z Pju)%a(u7u)% < wa(u,u).
= i€k J€lk
We also know thaa(Pou,u) < wa(u,u), see [34, Lemma 2.6]. Therefore, summing over
all colors and?), we geta(P,qu,u) < (N + 1)wa(u,u) foralluin V. O

While the local stability and the strengthened Cauchy-Schwequality can naturally
be extended to the continuous case, the stable decompossalt is traditionaly shown
using properties of the fine discretization of the probleae, for example Toselli and Wid-
lund [34]. For a continuous formulation, we need to use othehniques, which is the
purpose of this paper.

3. GEOMETRY AND DECOMPOSITION INTO SUBDOMAINS

/\ \?\ [
\

|

FIGURE 1. Domain decomposition with a coarse mesh

First, we recall the defintion of a domain:

Definition 3.1. A domain ofR? is an open connected setkf whose boundaryQ is of
null Lebesgue measureWe denote byQ| the Lebesgue measure of the dom@in

We recall the definition of a non overlapping and an overlagpiomain decomposition:
Litis possible for a pathological open connected sé&%fo have a boundary with strictly positive measure.

For example(0, 1) x (1/4,3/4) UUT_; Uﬁizfolfl(% — 274, 241 4 2-4) x (0,1) is open, connected and dense
in (0,1) x (0,1) but has a measure smaller thaf19.
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Definition 3.2 (Non Overlapping Decomposition)_et Q be a bounded domain &?. A
collection of domaingU;)1<i<n, is @ non overlapping domain decompositior(bif

N
8) ﬁzUUi, Unuj=0 foralli # j.

i=1
Definition 3.3 (Overlapping Decomposition)Let Q be a bounded domain @&?2. A col-
lection of domaingQ;)1<i<n is an overlapping domain decomposition(ff

N
Q=
i=1

In this article, we use the parametérto represent the average size of subdomains. For
the definition ofH, we use the concept of diameter, which we recall here:

Definition 3.4 (Domain Diameter) Let U be a bounded subset &#. We define the
diameter o to be
diam(U) = sup|x—y]|.

xeU
yeu
The concept of an overlapping domain decomposition raisegjtiestion on how to
define the overlap width of the decomposition. We use theviotig definition:

Definition 3.5 (Overlap of the Decomposition)A domain decompositiofiQ;)1<i<n iS
said to have overlap wid®d > 0, if there exists a non overlapping domain decomposition
(Ui)1<i<n of Q such that for all, 1 <i <N, U; C Q; and

{xe Q|dist(x,Uj) < 0} C Q.

In practice, itis easier to start with a non overlapping diond@composition, and then to
build from it an overlapping one. [U)1<i<n is a non overlapping domain decomposition
of Q, then the(Q;)1<i<n defined by

9) Qi = {x€ Q| dist(x,U;) < 3}
forms an overlapping domain decompositionfwith overlap widthd. We denote by
((Ui)1<i<n, (Qi)1<i<n) such a decomposition.

Definition 3.6 (Colors of the Decomposition)The number of colors of an overlapping
domain decompositioQ;)1<i<n of domainQ is the smallest intege¥; such that there
exists a partition of1,...,N} into N¢ sets(ly)1<k<n. Such that

Qi ﬁﬁj =0,
whenevel # j andi, j both belong to the same colty:

In order to determine the number of colors of the decompmwsitt is easiest to consider
the nonoverlapping decompositigd;)1<j<n. Clearly the number of colors can only in-
crease withd. However ford small enough it remains constant: there exdgtandN; > 0
that depend only on th@J;) such that for alld, 0 < & < &, the overlapping domain de-
composition(Q;)1<i<n With overlap widthd derived from theU;)1<i<y has a number of
colors equal to\..

2Geometrically, the parametércorresponds to half the overlap of the subdomains
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Remark3.7. The geometric Definition 3.6 for the number of colors is eglént to the
algebraic Definition 2.6 for the bilinear forms implied byetheometric domain decom-
position, like in this paper, wherEiTVi contains all functions that arld& in Q and null
outsideQ; anda is an integral ovef.

4. STABLE DECOMPOSITION WITHOUT A COARSE MESH

To understand the importance of the coarse mesh, we begiobiyng the existence of a
stable decomposition without a coarse mesh. In that casepthstanCy in (7) stemming
from the stable decomposition depends on the number of sudids. We consider a
bounded domai2 being decomposed intd overlapping subdomain®; with overlap
width 6. We make the following assumptions on the domain deconipasit

Assumption 4.1. The domain decompositiqif;)1<i<n is derived from a non overlapping
one by formula (9), and we refer to it fyU;)1<i<n, (Qi)1<i<N)-

Assumption 4.2. Let H be the smallest diameter among the diameters of the subdemai
U;. We suppose there exist uniform parame€gys- 0, c; > 0 andC, > 0 such that for all
iin{1,...,N}

(10) H < diamU;) <CgH, caH? < |Uj| < CaH?,
where|Uj| is the Lebesgue measure of the subdonbkin
To construct the stable decomposition, we use a partitiamiy.

Lemma 4.3 (Partition of Unity) LetQ be an open domain @2, N > 0 be the number of
subdomains, an@J;)1<i<n be domains oR? satisfying(8). With & > 0 the overlap width,
we define
Qi = {x e R?| dist(x,U;) < 8},

and denote by Nthe number of colors of this domain decomposttiohihen, there exists
a universat constantA,, 0 < A, < 6, and N functiong ¢ )1<i<n in %‘”(Rz) having the
following properties:

(1) Foralliin {1,...,N}, ¢ vanishes outside @;.

(2) ForallxinR?,0< gi(x) < 1.

(3) ForallxinQ, 3; gi(x) = 1.

(4) Forallxin @, $N 4[|y (x) 2 < 222 Ne 22

Proof. The result is classical and well known, see [1, Th. 3.15], wl show how to
obtain the explicit constant in the bound given in 4. We st a functionp in ' (R?)

which vanishes outside the unit ball, and satisfies fox allR? that 0< p(x) < 1, and the

integral [r2 p(X)dx = 1. For alle > 0, we then sepg(X) = ip(g), and we define for all

g2
in {1,...,N} the function
1 ifdist(x,Uj) < $
hi(X): (-7 I)<2a
0 otherwise
We now regularize the functioris using a convolution,
@ = ps/2xhi.

3Theﬁi can extend beyond the domdl) in contrast to th&; defined earlier
“4It depends only on the dimension but we have restricted otgseéb two-dimensional domains
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The functionsy vanish outside of);, are identically equal to 1 ib;, and for allx in R?
we have 0< @ < 1. Moreover, sinc{J@ || o r2) < Hng 22y il (R2).

2| 0p|| (k2
100l < =5
We then set
i-1
=@ [](1- ).

n

and the(y )1<i<n are then a partition of unity. Moreover

i-1 i-1 i-1

Oy =0a[]1-a)— 3 abg [1(1- ).
= =&

At a given pointx, at mostN. — 1 terms of the above sum may be non zero, therefore,
by the Cauchy-Schwarz inequality we obtain

N i—-1 i—1

i—1
2 2 2
ZIIDW e < ZI\DQ )l D(l @) ZZWI 0@ (X)]| k_|;Lé](1 %)
N j—1
2 2 12 2 N2
ZHDfn )|l H(l @) +IZJ:I+1|CPJ| 0@ (x| kzﬂ#i(l %)
N j—1
ZHDfn H2|'|(1 %) <1+ > 1P ] (1—%)2>
j=1+1 k=i+1
i—1 N
_ 2 o 2
< (Ne 1)_;|\D<H(X)H le(l @) <1+ zﬂ S
ZHDfn H2|'|(1 %)’ (2

(1- @))
-1 _;IIDm(xﬂ\z-

Moreover, each term is bounded by rrﬂa;g.||D(p,||2oo , and at no poink in Q, there
may be more thail; — 1 nonzero terms in the sum. Hence foraih Q

N 8(Ne — 12| 0p 4 e
> 190091 < e

SettingA; : _2||Dp||L1 z2): the result follows. Note that hefiélp|| 1 g2, = [p2(|0xp |2+
10yp|?)Y/?dx. Using the\Nl l(RZ) functionp(x) = 1— ||x
6.

N

2

j—1
@[] Q- @))

]

4

2, we obtain the estimat® =
O

It is easy to build a stable decomposition using a partitibrdty, however to get
an estimate irH /d instead of an estimate iH2/5% we need more assumptions on the
regularity of theU;, specifically we must control the curvature of the bounddrthe U;.
Unfortunately, the subdomains of a non overlapping domaicochposition are at best
piecewise€g: there will always be corners at cross points. For this nease introduce
the notions of pseudo normal and pseudo curvature:
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Assumption 4.4. LetU be a bounded domain &2. We suppose there exist an open layer
L containingdU and a vector fiel&X continuous o NU, €® onLNU such that:
DX(x)(X(x)) =0, IX(X)[ =1
and such that there existg > 0 such that for all positive < & and for allX in U:
X+eX(X) eU, X—eX(X) ¢ U.

The vector fieldX is called an interior pseudo normal.
Setting for all positived

U = {xeU s.t. distx,dU) < 3},
V% = {X+sX(X),%x € dU,0 < s< &},
we assume there exiB> 0, 8y, 0 < Bx < 11/2 anddy, 0 < & < Rsinbx such that
VRcLNU,
U% cvosin  for all positived < &.

The paramete6y formally represents the smallest angle between the psenhoah and
the tangents. We finally set
1

Ri= mee
[[div X[ e (1)
We callR the X-pseudo curvature df .

When the boundary of the domdihis €2, X is the interior normal. Unfortunately, as
theU; form a non overlapping domain decompositiortyfthey cannot be supposed to be
¢*. It is perfectly reasonnable to assume the existence of adpseormal for Lipshitz
domains, see [21, §1.5].

Using these assumptions, we can prove the following lemma:

Lemma 4.5. Let U be an open domain that satisfies assumptions 4.4, thedi & < dy,
we have

HUHEZ(U5) <2 (l+ g) S;S]—IZXHDUHEZM +2 <1+ g) If\’s,iiex”u"EZ(U)'
Proof. We have
lulleows) < l1ull 2oyssnex -
For allxin VR, we define
d(x) = inf{s,x—sX(x) ¢ LNU}.
The functiond is lower semicontinuous. Note thdtx + sX(x)) = d(x+ sX) provided the

whole segemerik, X+ sX(x)] belongs td-NU. Also note that for alb < R
Ve = {xeVRs.t.d(x) < 5.
Define functiony by

w0 =x+ (C0X _1apox(x).
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for all xin \/9/si"é  We haved ((x) = 'QSiT”eXd(x) and:
(11)

2 2
Lm0 <2 [ () e

A (X)(ﬁsinex 1
+2 d(x)(RS';eX —1)/0 %7 | Du(x + sX(x)) 2dsdx.

\/0/sinbyx

To further estimate the termwe need to compute the Jacobianiofliet us first suppose
thatd is 1. In the orthonormal basi&r, T2) wheret; = X(X) and 12 is orthogonal to
T1, We have

Rsin6y Rsinfx ad
W= 3 SIS
0 1+ (R0% _1)d(x)divX(x)

Therefore, sincey(V9/sinfx) = VR, we get

detdy(x)) = FA{SigeX (1+(QS?9" —1)d(X) divX(x)).

This does not depend on the derivativesdofBesides, one can prove that for alin R
such that the segme, X+ sX(x)] is included inLNU:

(1+ sdivX (X)) (1— sdivX (X + X)) = 1.

Therefore, setting = (), we get

= Jy9/sinbx |U(1,U(X))‘2dx
0 5 .
= RsinGy . VF}|U(Y)\2(1— (1- Rsiny )d(y) divX(y))dy

<04 2 asrae /V Ju(y)Pdy.

This formula holds even whethis not%: the idea is to prove by Fubini that the formula
holds on open subsets of the fokfa= {X+rT2+sX(X+rT2),0<r,s< €} wherety is
orthogonal taX(x), and then to proceed by way of a partition of unity. Therefeechave

R o 2
(12) [ <(1+ ﬁ)mHUHLZ(LﬁU)'

We now deal with the terrtl : we compute

3si (9 (5% -1
=Ry [ a0 [T Dux () o
_Rsinéx R-gnag s 5 )
= (T —1)/0 /Vﬁx{ﬁsmx/é_l <d(0) < G }d(x)|Du(x+sX(x))| dxds,
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and then using the change of variabjes x+ sX(x) we obtain

Rsinbx R sag sRsinfy 5
=25 [ ‘{ﬁesirmx—a<d(w<sinex+s}
(d(y) — )| 0u(y) |*(1— sdivX(y))dyds

Rsmex /V/ 5 (4y) - )| 0uy)(L - scv X (y))cyes

)—5/sinbx )+
d

< (RS';“’X W [ ) 9 savx gy

< (R0 ”Q'”%smi; [ (1- %) u oy

< DR 22 [ nuyay
We thus obtain the estimate
19 1< (14§ ) R 102,
Combining inequalities (12) and (13) with inequality (1bncludes the proof. |

Theorem 4.6(Stable Decomposition without Coarse Grid)et Q be a bounded domain
of R?, and( i )1<i<n be a non overlapping domain decompositiorof\We suppose there
existR, R and1/sinBx such that for each [Uthere exists an open layer, kontaining
dU;, a vector field¥ continuous on LNU;, € on L NU; such thatDX;(x)(X;(x)) = 0,
[Xi(x)|| = 1, [|divXi|» < 1/R, andgy > 0 such that for all positivee < & and for all
% in 0U;, X+ eX;(X) € U andX— £X;(X) ¢ U. Setting, for all positivey’, U2 := {x e
U, dist(x,0U;) < &}, and \' := {X+ sX;(X),X € dU;,0 < s < &'}, we assume there
exists ady, 0 < & < Rsinx such that )}  LjnU; and Yo' ¢ Vs/s'”ex for all positive
&' < .

Let & < & be positive. Se©) = {x € Q|dist(x,0Q;) < &}. The(Qi)1<i<n form an
overlapping domain decomposition @f

Then, ifuisin H(Q), there existu;)1<i<n such that foralli,1 <i <N, u is in H}(Q))
and

N
(14) u=>» u, with
2"

N
(15) 'Zl”Ui ||EZ(Qi) < HUHEZ(Q)
i=

N 2
425 (N —
(16) 3 100 < 21000 PR e,
i=
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where); is the universal constant of Lemma 4.3 and whefe= Uizj QiNQj. We further

have:
R
(2+9300-17(1+ & )5smex> ul

N 2
3 I0uilEzq, <
i=

JullZ,

17)
+8AZ(N; —
Proof. We use Lemma 4.3 and sgt= yu, which satisfies already (14). We then estimate
)P,

ax= | |u<x>|2i§<wi<x>>2dxs L

2 (1+ R) R sinbx

N ) N
Ui (X)|“dx = /

> Juoorax=[ 5w
(i (X)) < 1, which shows (15). We finally need to estimate the deriegtvm

sincey N ((x))? < 1,
We havely; = (0u+ ullys, and therefore
N
/\Du. \de<2/|Du(x)\zzl|q,/i|2dx+2/|u | Z|Dq,l|2dx
Q i= Q i=

(18)
i; Q
The first term on the right in (18) can be bounded as above. Tladthe second term, we

use result 4 in Lemma 4.3
223 (Ne— 1)
52 ||u|||_2 Q(S

(19)
[ ueor? Z‘D“" 2dx<uzmw| i) | u0 <
Combining these estimates leads to (16). To get (17), ortenbitice that

IullF2 gs) < ZHUIILZ ud)
(]

then apply Lemma 4.5 on eattf
The lone ¥ &2 factor in estimate (16) can further be treated using thed@o@inequality
on Q, see [1, Th. 6.30], which then explicitly reveals the deparéd on the number of

subdomains:
Corrollary 4.7. Let Q be a bounded domain. Let\L); and (ui)1<i<n be as in Theo-

rem 4.6. Then we have

ds |n9x
(diam(Q))> H H
Q| RsinBx &

;Uz\

(20)
)< <2+8)\22(NC— 1) (

N
i;HDui ||E2(Q)

where G is the constant of Assumption 4.2
Proof. We start with (16), and use Poincaré’s inequaht)Hq}(Q

TS

;Ul\ X

+AZCaN(Ne (

||u|||_2 < CHDUHLZ

but we need an estimate of the const@nt SinceQ is, up to a rotation, a subset of
(0,diam(Q)) x R, the constant is bounded by the Poincaré constantf@mdiam(Q))
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which is smaller than A8(diam(Q))?. We therefore obtain

ND.Z <|248A3(N.—1 1F§ R
i;” Uiliz(q) = | 2+8A2(Ne —1) ( + )5SIn9x

o iafr . R (diam@)2\
+AZ(Ne— 1) (1+§)mx> 10ull2(q)

But we also have

diam(Q))? |Q diam(Q))?
(diam(Q))? = 7( n§1§| ) |I—|2| CaNi( |n§1§| ) H?
becrcluse_?—z| < CaN by Assumption 4.2, which concludes the proof. O

The dependence on the number of subdomBiria estimate (20) is undesirable for
domain decomposition methods, since these methods sheuttdlable, which means
their convergence behavior should not deteriorate as agerasre and more subdomains
(which corresponds to more and more processors). In theseetion, we show how to
establish a better estimate with the use of a coarse mesh.

5. STABLE DECOMPOSITION WITH A COARSE MESH

We now introduce a discrete structure into our continuowsyais, namely a coarse
mesh over the entire domain, in order to remove the deperdamthe number of subdo-
mains in estimate (20), see Figure 1. We present the genkealaf the continuous proof
in the presence of a discrete, coarse mesh first in subsegtion/Ve then show the de-
tails of the proof in the next three subsections. In subsedi2, we construct the coarse
component of the stable decomposition. In subsection 5e3¢canstruct the non coarse
components. Finally, we conclude by stating our main theadresubsection 5.4.

5.1. General idea. The main idea is to use the following classical lemma [33 pcHa
81.4 pp. 51]:

Lemma 5.1 (Generalized Poincaré’s inequalityl.et O be a bounded open set satisfying
the cone conditioh Let/ be a continuous linear form onH0) such thaKer(?) "R = {0}
Then, there exists a constantC0 such that

HU|| ) < C(||DU|| ot le(u)?)
for all uin H(O).

Proof. The classical proof is by contradiction. Suppose this isthetcase. Then, there
exists a sequenden)nen+ such that for alh > 1, u, in H(O), u, # 0 and

(21) lunllF2() > n(lIBunlFz ) +€(un) ?).

We normalize and replac by un/||unl| 2(c), therefore we may also suppaia || 2.0y =

1. We extract a subsequen(s, ke that converges weakly to in H1(O). We have
by (21)
1BUll2(0) < liminf{|Dun, | 2(0) = 0.

5See [1, §4.6].
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Thereforauis a constant function. Moreover, sinCis continuous, it is weakly continuous,
and by (21)
£(u) = lim £(un, ) =0.
k— 00

Thereforeu = 0. By the compactness [1, Th. 6.3] of the inclusiorHdf{O) in L2(O), we
can take the limit irj[un | 2oy = 1 and obtair|u[| 2o, = 1. This is a contradiction. [

For our purposes, we need estimates for the constants. tunébely the previous proof
by contradiction is not constructive and does not allow usstimate the consta@twhen
the domainO varies. However for convex and star shaped domains, thé¢ardescan be
estimated, as we will show later in Lemma 5.10.

We return to the stable decomposition problem with a coarsshmHow can we use
the coarse mesh to prevent the constant to depend on the nofdebdomains? The
basic idea is to defind linear forms¢; onH1(Q;) such that for alliin H3(Q) there exists
(U)1<i<n, such that for all, 1 <i <N, u; is in H}(Qi) and

N
(22) u= Zl Uj

N b bo) N
(23) 3 11060, < €l Nl gy +Clig M) 3 1)

where by extensiofi (u) means/(uq, ), effectively replacing th&2 square norm in (16)
with SN |4 (u)|2. We propose here to takg(u) := m‘%(fk u(x)dx with Ay C Q;. We then
search forug in the space of continuous, piecewise linear functiBr(s7), where.7 is

a coarse triangular grid, such thatuo) = £i(u) for all i, 1 <i < N and||Ouol| 2(q) <
C||Du|||_z(Q). Then, we apply (23) ta— up. The second term vanishes and the constant of
the stable decomposition does not depend on the humber dbsins in the decompo-
sition any longer. This idea implies that the coarse meshldhme able to control at least
one constant in each subdomdie,, for the coarse mesh to prevent the dependence of the
condition number on the number of subdomains, it only needsetable to subtract one
constant per subdomain! Intuitively, this means that trees®mesh must have at least one
node in each subdomain.

5.2. Projection of H} into 21(.7). In this subsection, we will consider a family of tri-
angular meshes” of domainQ with the following uniform properties:

Assumption 5.2(Geometric Properties of the Coarse Grid) (1) All angles @ for all
cells in the mestky” are bounded by & Bmin < 8 < Bmax < TTWherebmin andBmax
do not depend oHl.

(2) The length of any edge in mesh lies betweercyH andCpH wherecy, > 0 and
Cp > 0 depend neither on the cell nor bh
(3) No node has more thatineighbors.

In order to simplify our analysis, we make the following asgtion:

Assumption 5.3. We assume that the coarse me8thas precisely one node per subdo-
main,X; € Q;.

Even though it should be possible to derive mesh indeperetimhates for the norm
of the coarse component without Assumption 5.3, this coalddther cumbersome, since
it leads to a rectangular instead of a square matrix, seendigsas below. In addition, in
practical situations, one node for the coarse mesh per suidds a common choice.
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® Exterior nodes#’
® Boundary nodes#

* Neighboring nodey”

FIGURE 2. Boundary and exterior nodes in megh

Given a mesty, and giverr > 0, we introduce the linear forms

4 H(Q) = R,

ur iz / u(x)dx,
= JB(xi,r)

wherei belongs tof1,...,N} and wherex; is the position of the i-th node in mesh. We
also define

(24)

0:H(Q) - RN,

U (4i(U))1<i<n.
Theorem 5.4. LetQ be a bounded domain &?. Let.7 be a coarse mesh dd satisfying
Assumption 5.2, with jithe shortest height of all triangles ifr, K the maximum number
of neighbors of any node i, and let r be smaller thaq%*;l. Then, for all u in H(Q),
there exists y in P1(.7) NH(Q) such that

4i(up) =4 (u) foralliin {1,...,N},
2C,H
< 1 1+2r/Hy 2K( Cp N
tanBmin 1 — ((2K +1) + (4K + 1)r /Hy)r /Hp mr

100U |22 10Uz -

Note here that < g ensures that & ((2K + 1) + (4K + 1)r /Hn)r /Hy is positive.

The remainder of this subsection is dedicated to the protfistheorem.

5.2.1. An equivalent normQur goal is to construct a convenient equivalent norm to the
H&(Q) norm for functions inP (7). Let .7 be a mesh of havingN nodes. As a
convention, nodes of mesl located exactly ordQ will be called exterior nodes and
are not counted among the numbered nodes. This choice igateatiby the homogenous
Dirichlet condition. We denote by’ the set of all(i, j) in {1,...,N}? that are indices

of neighboring nodes. We also denote #ythe set of all nodesin {1,...,N} who are
neighbor to an exterior node, see Figure 2.
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FIGURE 3. Angles and gradient norm i (.7)

Definition 5.5. Let .7 be a mesh of domaif. Let ¥ and % be the neighbor and the
boundary set of mesk. We define

I-ly.2 RN = RY,

YH\/ ? Vi —Vil2+'y lvil%
(i,))ev 17

Whenuis in P (7) NH(Q), we define

[ull v,z = [|(u(X)1<i<nll» 2,
where thex; are the interior nodes of mesh.

Lemma 5.6. Let uy belong to R(7) NH(Q), then the norms i — [Ouk | L2(q) and
I-|l+ 2 are equivalent. Moreover, the equivalence constants di&paly on the constants
of Assumption 5.2,

2 minapce 7 |ABC :
@) G Il < [l <

2
u O -
< gl

Proof. It is easy to compute the norm, see Appendix A for details.dfany in P (7)N
H&(Q), we then have

1 1 i
IOt =3 > (G ) 9"
Iz () 2(”)24 tan(6j) =~ tan(6;) ) :

41 Z( t 1 >|u-|2
2i&y& \tan(8) - tan(8y) Y

wheref; and6j; are the angles opposite to edgex;], see Figure 3, and whetg' is the
set of all exterior nodes located on the boundarfahat are neighbors of node The
problem is that the tdi8j) can be negative whefi; > g This is not a problem for the
right-hand side of inequality (25), but to establish the-hkend side of inequality (25),
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when there are obtuse angles in the mesh, we need to estimate

1
lunll% = 5 2 (1ur (A) = Uk (B)[* + |un (B) — U (C) >+ |un (C) — un (A)?)

ABCe.7
1

=3 é (I0un (ABC) - (Xa — X8)|* + [Oun (ABC) - (Xg — Xc )|+ | Cun (ABC) - (Xc — Xa)[?)
ABCe.7
1

<5 2 10uA (ABO) 122 (IIXa — X81>+ (X8 —Xc 1% + 1%c — Xal|?)
ABCe.7
3

< ZC2H? (| Oup (ABC)||2,
2 P ABé,? ®

2
B 5 PU e
“2" &, |ABC

1Bun |12
< §C|§H2 Z L2(ABC)
2" ks |ABG
C2H2
P 2

_— 0
m|nABC€7|ABC| ABéy” UH HLZ(ABC)

C3H?

== Y [0uwEg,
2 minagce 7|ABC] pg& &

3
<=
-2

3

where the sum is taken over all triangkeBCin mesh.7 . O

5.2.2. BoundednessOur goal now is to estimatg((u)|,,» as function of||0u| 2(q)
whenuis in H}(Q).

Lemma 5.7. Let 7 be a coarse mesh dp, and let r> 0 be such tha®r is smaller than
the smallest height of any triangle i#f. Then, for allu in I-&(Q), we have

(26) S (6w -6 Y awP <2

(i,))er i€z

Proof. By density, we only need to prove the result foin ¢;°. Dealing with the second
term of (26) is possible but cumbersome. It would be mucheedsiestimate this term

if the sum was over the exterior nodes that are physicallyherbbundary of2. Let %'

be the set of the indices of the exterior nodes’focated on the boundary: their indices
are outside of 1,...,N}. Let ¥’ be the set of all pairs of indices of neighboring nodes
including exterior nodes (these nodes were excluded)inNote that belongs toZ if and
only if there exists at least one indgin %’ such that(i, j) belongs to¥’. We have

S WPy Y | (u)+ £ (w)[?

ies €A jch
(i,j)ev’
< 2|6 (u) — £5 (W] +2¢5 ()|
33 (2l6(w -6 +2]9) )
(i,j)ev’
<2 Y Jau-GP+2K S (g,
(i,j)e'V’ €A
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where the first sum has been dropped, since the indicaa only vary in% due to the
constraints on the second sum. We thus obtain

@) 5 [6w-t0fs 3 <2 5 ja -G s
(i,Ne” ic# (i,h)er’ i

We start by estimating the first term. L@t j) be in¥”, i.e. be neighbor nodes. We have
1 , 2
—— u(x dx—/ u(x)dx
meré /B(xi,r) ) B(Xj.r) )
1

T omPré

2

/ U(X+Xi) —u(x+ x;)dx
B(O,r)
2

. 1
= ./B(O,r)./o Ou(x+ (1—t)xj +tx) - (X — X;)dtdx
1

1
2 2
<= Ou(x+ (L—t)x; +tx) || dtdx||x; — X;
_71|2/Bo,r)/o [ Butx+ (2= t)x; +tx)]| 1% — Xl

i "I 1 ? dtdl
—?/B@,r)/o | Ou(x+ (1 t)x; +tx) [P ctax

whered := [|x — ;|| < CpH. We definev:= -, and letw be a unit vector orthogonal

tov. Then using the equality; — X; = dv and the change of variabl&s= sv+ ow, we get

Lo [} w1+ ) et

+y/r2—g?
-/, /m

_/ // HDux,+0w+(s+td )||? dsdtdo

V2—g24d Lo
7/ / /mm ||Du(x; + ow-+ &v)||* dsdtdo

+1/r2—g2+d ey N
_/ /m ||:|U(XJ+O'W+SV)|| (/0 X[.&\/W’y\/ﬁﬁ](t)d{) dSdo

1
/ |0u(x; + oW+ (s+td)v)||* dtdsdo

Vr2—o2+d 2
/ /\/ﬁ | Ou(x; + ow+ 8v)|* dsdo,
r<—o

which leads to the estimate

1 2
/ u(X)dx— / ux)dx| <
B(xi.r) B(X;.r)

mr4
whereTi j is the set of all pointx whose distance to the segméxt x;] is smaller tham.
Since 2 is smaller than the height of any triangle in the mesh, notpomay belong to
more tharK tubesT; j, see Figure 4 on the left. Therefore, we have

2

2C,H

12 / u(x)ax — 12 / u(dx| <K=2 / | 0u(x)||?dx.
(i,jjey | 0" JB(.r) mr? Jex;r) m Jo

We now estimate the second term of the right-hand side of (2&)i be in#', i.e. i
is the index of a node located exactly on the boundary of dofathenu vanishes on at

X)||%dx,

(28)
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FIGURE4. Tubes and their overlaps on the left, and estimate of ttemme
on a ball centered on an exterior edge on the right

least two radii. LeB; be the angle between the horizontal and one of the radii oohwtis
zero, see Figure 4 on the right. Wigh(8) := (cosB,sin8) andeg(0) := (—sinf,coso),
we obtain

1

— u(x)dx
merd /B(Xa,r) )
1

< = u(x)|2 dx
< mz/w| ()|
1 r rBp+m 2
:m/o /eoin |u(xi + peo(8))|"dopdp
1 r Bo+11
= m/o p /9
0,

1 [, [btm 0 6 max(8o,8) 2 40
S 2 - Ou(x; + pey (t
< TlTZ/o P /607n| 0|/min(90,9) H (X + pep( ))H pdp

2

2
dépdp

L i+ pey(0)-(peo ()t

r rBp+m rmax6,0) 5
f/ / | |0u(x + pep (1)) || > dtdBpdp
0 JB—m Jmin(6p,0)

"o N t)do | dtpd
fr— H e H
/0/90—71 [|Ou(xi + pep ()| </90rr X(min(6,6),max6,0)) (1) ) pdp

r rB+m 5
gn// | Ou(x + pep (1)) || *dtpdp
0 JGy—m

. n/ 10u(X)]| 2 dx.
JB(X;,r)

No poinf x in Q can be in more than one b&(x;,r), therefore summing this inequality
overi in #', we get

(29) > 16 < [ 0u0 Fox.

ies

80ne can construct pathological meshes in non pathologisakoahere two exterior nodésandB that are
not neighbors are closer thaty,. However, in that case, one can easily avoid that problenmetgfiningla(u)
wheneveA is in %’ to be# JoarBixa,r) U(X)dX whereVy is the union of all triangles in mesf that have node
Aas a vertex.
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Combining (27) with Inequalities (28) and (29), we finallytain

2C,H
Tr

03,5 < 2525+ 10K [ [0u0) e

5.2.3. Continuity of the/~! linear form. Lete € R, with 0 < £ < % and choose := €Hp,
whereHy, is the smallest triangle height among all the triangles & ¢barse mesty.
Let L := [lj;] be the matrix associated with the linear functigm.e. the matrix such that
L (un (Xi))1<i<n = £(up) for all uy in P(Q). This is a square matrix, by Assumption 5.3,
of sizeN x N, and satisfies the following properties:

Foralli,jin {1,...,N}, we havdjj > 0.

For alli, j not belonging to?, |; j = 0, which implies that for any given there
are at mosK integersj such that;j # 0.

Foralliin {1,...,N}, we havd; > 1—¢.

Foralliin {1,...,N}, we havez'j\‘zllij =1ifi¢ A, andzlj\l:llij <1ifie A.

Lemma5.8. If £ < 5k, then the matrix L is invertible, and for allin R", we have, with

1— ((2K+1)+ (4K +1)e)e > Othat

(30)

1-((2K+1)+ (4K +1)g)e
1+2¢

lully.z < |[Lully,z < (1+(2K+3)e+ (4K +1)&?)||ull» 7.

Proof. For all integers, 1 <i <N, we havelj > 1—¢ andy|ljj| < 1. Sincee < % L
is a strictly diagonally dominant matrix, hence invertibr the remainder of this proof,
we will denote by¥; the set of all integefj such that(i, j) belongs to¥. We also define
li:=1-73"_,lij, and note thal{" is always non negative and smaller ttgnd it vanishes
if i does not belong tds.

We start by estimating the first term of the nojn} - », see Definition 5.5. We have

(i =) uk|?

™M
Mz

(i,)er k=1

2

N N

= z lik (U — Uj) — z ik (U — uj) + (Ui — uj) = lfu + 15 ug |
(i,))ev |k=1 k=1

k#i k#j
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and using now the Cauchy-Schwarz inequality §d x /lik (Ux — U;), we obtain

N N
Y Z|k+z|jk+1+| +17 | x
Gev \[g1 K2
k 2 2 2 2
th\ukfud +Z|1k|Uk*UJ| + U = U7 7 w7 4 17 g
k;ﬁl k;éj
M 2 2 2
<(@142e) Y Y lifu—uif? +lek\uk—u1\ + U = g7 1|+ 1 g
(i,))ev 'ﬁz'l
A 1
N
< (1+2¢) ; Jui — uj[>+ 2K maxtli| S |u; —u.|2+2Kma>4|| |ui]
(i.her ey i£7

< (1+2¢) ((1+2Ks) > lu Ui — uj|? +2Ke Z|u.|2>

(i,)ey €A
which yields the inequality
N
CIVIDY \z(|,k_|,k)uk|2 (1+2¢) ((1+2K£) > lui—uj+2Ke Z|u.|2>
(i,))er k=1 (i.))er &2

We now estimate the second term of the norm in Definition 5.5,

2

:z th kau| |)

€A |k
k;él

N

u
kzl ik U

€A

and again using the Cauchy-Schwarz inequality,8g x +/Tik (Ux — Uj), we obtain

N N
< z th-‘r(l—h*) <Z|ik|uk—Ui|2+(l—|i*)Ui|2>,
i€ \ k=1 K=1
kA
<(+e) Yy (Zl.k|uk—u.|2 (1 Ii*)|ui|2>
ie#
<(@+emadl] S uw—ulf+(21+e) Y |uf?
K ey i
<(l+ee y |uk—ui\2+(1+£)Z|ui|2,
(ik)yer €A
which proves the inequality
2
(32) > thuk (L+e)e 5 [w—ul+(1+e) S |ul>
icA |k (i.ker icA

Now combining inequalities (31) and (32), we establish tgktrpart of inequality (30).
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Proving the left part of inequality (30) is a little more diffilt. We start by estimating
the first term of the nornjj-||» ». To establish (31), we used the equality

N N
z ,kf|Jk ukizllk Uk — Uj) ZIJ" Uk —Uu Uj)*|i*ui+|}kuj'.
k=1

k;él k;éj

Putting the(u; — u;) term onto the left-hand side of the equation and all the atyens
onto the right- hand side, we get

Ui —uj|?
(i,ner
2
N N N
= z z ik —lik) Uk—th Uk — Ui +Z|Jk Uk —uj) +1iui = 17y;
(i,)er |k=1 k?él k#
2
= z ((Lu)i — ZI.k Uk — Ui +lek —uj) +u =),
(i,)er k# k?éj

and using again the Cauchy-Schwarz inequality, as we digtgave find

<3 (T4+ Q=1 =li) + Q=17 = 1)+ +17) x
i.her

x| (Lw)i — (Lu)j? + z kU — ui |? + Z i U= U [ 415 i 2 1 g 2
k;él k;éj
< (1+2¢) Qumrwumﬁ+mw%u e u?
(Ij)zef/ ki k;/i

s

T maxily w—w2+wmﬁ+wmf)
k] ke

< (1+2¢) ; ( —(Lw)jP+e 3 lu—ufP+e %ukujz+|r|ui|2+|;|uj|2>
(i,)er ke i

<(142e) 5 |Lwi—(Lu)iP+2(1+28)Ke T [uj—uP+2(1+2e)Ke S [uif*
(i,)ev (i,)er ic#

The ¢ terms will be absorbed by the left-hand side, provided wenshe small enough.
To absorb the third term, we must first estimate the secomd bernorm ||-| ». To

establish (32), we used

Z LU = Z likc (U — i) = )ui.
k;él
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We puty; onto the left-hand side of the equality and all the other seomto the right-hand
side to obtain

Y luif?

ies
N N ,
= > 1> lik— 2||k Uk — i) + 1" ui]
i€e# k=1

#I

= |(Lu); Z"k U — ) + 17w 2

€A
S_ 1+zllk+|* |(Lu)i |2+lek|ukful|2+| |u,\2
e k;ﬁl Ilz;él
<@+e) 3 <<Lu> - mai] 3 Juc—u [+ max; |u.|2>
€2 ke
< (1+8) Y [(Luj[?+ (1+ ) maxil;| ; U = ulP+ (14 maxly| Y Juif®
ica 7] (i,))er ic2

<(1te) Y I(LwiP+(1+e)e Y Juj—uff+ 1+e)s_%\ui|2.
i€

i€ (i,))er
We add now the last two estimates to get

Ul o < (1+28)[LullF 5+ (2K + 1) + (4K + 1)e) e Jull5, 4.

If & < 52+ then((2K + 1) + (4K + 1)g) e < 1, which concludes the proof. O

5.2.4. End of the proof of the Theorem 5.¥Ve just combine Lemma 5.6, Lemma 5.7, and
Lemma 5.8, and we have successively the existence and wmaisgieluy (since the matrix
L is invertible), and the estimates

10UR (P2 < Callumll% s < CoCall€(u)[15 5 < CaCoCr|DUlZz
C, — 1+2r /Hy
tanemin’ 2 1 ((2K+1)+(4K+1)r /Hy ) /Hp

these inequalities, it is sufficient for the ratigH;, to be smaller than A (4K + 1)), where
Hh is the length of the shortest height of any triangle in thelm&s

whereC; = andCsz = 2K(% + m). To apply

5.3. Non coarse elements!n this subsection, we construct the non coarse elemerntgof t
stable decomposition. We make the following assumptiorheit:

Assumption 5.9(Star shape dfl;). We assume that there exists a unifagrauch that for
all the domain decompositions we consider rU; is star shaped with respect to any
point in the ballB(x;,r), wherer = eH, and where the&; are the nodes of the coarse mesh
Z and whereH, is the length of the shortest height of any triangle in m&sh

First we improve Lemma 5.1 in order to obtain estimates ferdbnstants involved.

Lemma 5.10. Let w be an open domain &? with a diameter smaller than H. Let« H.
We suppose there exists in w such that

e The ball BXo,2r) is included inw.

e The setw is star-shaped with respect to adlin the ball Bx,r).
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Then for all u in H(w), and for alln > 0, we have the estimate:

1 4
2y < (LEMI? H214H1H2H4/ 2
[ juyry < =2 ((r2+2 tam | T2 | [ I IPe
2 2
+<1+1)H4/ u(x)dx| .
n,/ m=|J/Bxor)

Proof. Without loss of generality, we can suppose thgt= 0. Then, for alln > 0:

[ luty)Pay
w
—/ u( )—i/ u(x)dx+i/ u(x)dxzd
= Jo|"VY 2 B(O,) 2 Joy) y
141 B 2 1\ |w) ’
<l o (U09) ~UO0)OK Y <1+r7)rr2r4 /. o, U
1+n ? 1\ H2 2
= 24 Jy /B(o’r)(u(y)—u(x))dx dy-+ <1+n) e ./B(O,r)U(X)dx ’

and it remains to estimate the first term in the sum on the right

P /
_ 1 /
CTRrt Jy

1 7 v 1
S 2 Ou((1—t)x+ty)||%|ly — x| ctdxdy.
=2 ./w./Bm,r) /o I0u((1— t)x-+ty) || [ly — x| *ctclxdy

2
dy

/. o, (U0~ U)X

2
dy

1
/IB(OA,r) /o Ou((1—-t)x+ty) - (y—x)dtdx

Now using the change of variabl&gs= (1 —t)x-+ty, we get

1 1 dt
Ig—/// Ou(x)||?(ly — X||2dx’ d
2 ) B(ty’(H)r)H OOy — x| A=ty y

1 1 / dt /
= 2 DO 12 [ [ 1y =X P ] < (1 r)y g Tpx.

Using the further change of variablgs=y — X’ yields

1
< (Il [ IR - 1 < f}dy(f‘ttytd’(

1 1 t a
< 2 [ JOuOOI 7 IV IPXUIX — g < 1 g ax
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and a final change of variablgé = L;y' gives

1 1 dt
|<7/ Dux’z// "12dy” = dx’
< m2.w” | I B(oi)mW?r)HYH )/t4

It

i 2 o "2y 112 /%
< sz JI0WOI? [Fmin [ I 110 ¢

1 o (1 tHAY L, r? PN
= 2 JLIEUOOI? [ min( e r2( + 1) G ox

t4H4 r2

1 1
=12 (/o min (5" (3

1 4
r H? 1\%* H 1 H? H4 )
:E ((I’2+2> +%> —é—rfz—ﬁ /(UHDU(X)H dX,

+12) %) [ 060 P

which is the desired result. O

Lemma 5.11. Let Q be a bounded domain @2, and (Ui, Qi)1<i<n be an associated
domain decomposition with overlap widéh> 0. Let.7 be a coarse mesh of2, and
assume that Assumptions 5.3, 5.2 and 5.9 are verified. Weaalame the Usatisfy
Assumption 4.4 with uniforrR, R and1/sin6x. Then for any u in §(Q), there exists
(Uj)1<i<n in H3 (Qi), such that for all i,1 <i <N, y is in H}(Q;), u= 3N,y and for all
n >0,

N|Du-2 <[ 2+8A2(N, 1)2187IQ
i;| |HL2(Qi)— +8A5(Ne — (+|§)5sin9x

8(1+r’) 2 F’i r2

AZ(Ne—1)? (14 = ) e
+ =g MU (14 &) g
1 4
C3H2 1\* CgH CiH* 1 C3H?
T t3) taa | T ar i | )P
r 2 2r 2r 2 r
1 » C2H2 N
+8(1+= ) A2(Ne—1)? (14 = ) m==0—— S |4i(u)|?,
(25 )220 02 (1 ) B S 6w

whereA; is the universal constant of Lemma 4.3, &h@) = # J(x.r) U(X)dX.
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Proof. We use the same, as in the proof of Theorem 4.6. Since didin) < CyH, we
have, for alln > 0,

N
lullEzi@) = ¥ U2,
L2(Q) i; L=(Ui)

1 4
1 r2 C3H?Z 1\*% H CiH* 1 C3H2 | N
g% ( at +2> LG UM Zl”Du”Ez(UO
r V2r r r &
+ <1+ 1) nC3H? S 16 (u) |2
n i;
1 4
_ (A+n)r? CiH? 1 4+CdH _CiH* 1 CcjH? =T
3 2 2 or a4 2 2 L2(Q)
+ <1+ 1) nC3H? S 16 (u) 2.
n iZi
Inserting this estimate into estimate (17). concludes thefp O

5.4. Stable Decomposition with Coarse MeshCombining our previous results, we ob-
tain now our main theorem on the existence of a stable decsitigpowith a coarse mesh.
We provide this theorem with all assumptions in order fooibé self contained.

Theorem 5.12(Stable Decomposition Oﬂé with Coarse Mesh)LetQ be a bounded do-
main ofR?, and (U;)1<i<n be a non overlapping domain decompositiofofWe suppose
there exisR, R and1/ sinBx such that for each [there exists an open layer tontaining
dU;, a vector field¥ continuous on LNU;, € on L NU; such thatDX;(x)(X;(x)) = 0,
[Xi(x)|| = 1, [|divXi| < 1/R, andgy > 0 such that for all positivee < & and for all

% in 0U;, X+ eX;(X) € U andX— £X;(X) ¢ U. Setting, for all positivey’, U2 := {x e
U, dist(x,dU;) < &'}, and \' := {X+ sX;(X),X € dU;,0 < s < &'}, we assume there ex-
ists ad, 0 < & < Rsinbyx such that R ¢ LinU; and Yo' ¢ \/i‘y/s‘""eX for all positive
o' < &.

Let & < & be positive. Se©); = {x € Q|dist(x,0Q;) < &}. The(Qi)1<i<n form an
overlapping domain decomposition @f

Let H be the smallest diameter among all @y := max diamJ;/H, and N be the
number of colors of this decomposition.

Let.7 be a triangular coarse mesh of the dom&lrwith N nodes, and suppose that the
i-th nodex of 7 is in U;. Let G, be the ratio between the length of the longest edg€ in
and H, and H be the length of the shortest height of any triangleZin Let 6y, be the
smallest angle in the mes#, and K be the maximum number of neighbors a node of the
coarse mesly” can have.

Letr< %, such that for all i in{1,...,N}, the ball Bx;,2r) is a subset of {) and
that U is star shaped with respect to any point in the balkBr).

Then, there exists a stable decomposition $f®) in PL(.7) NHZ (Q) + 3N H3(Qi),
i.e. for all uin H}(Q), there exists glin P1(.7) NH3(Q) and (u))1<i<n, U € H}(Qi), such
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that

N
u= Ui,
2
s 2 2
,Z)”Dui”LZ(Qi) < C||Du||L2(Q)7
=

where C= C; +2(1+C;)C; and’

1 1+2r/H 2C,H
Ci= + 20 /Hn 2K(=2— 4 m),
tan6min 1— ((2K + 1) + (4K + 1)r /Hn)r /Hy i
R\ R

=24+ 8A2(Ne—1)%(1+ =
Co =2+ 8A(No— 1)%( +R>6sin9x
8 R r2
“AZNe-12 (14 =) =
+3A2(Ne ><+R)R5sine)xX

2 2 o2t 2

1
CiH? 1 7‘+CdH CiH* 1 C3H2
V2r 2rd 2 2 |’

whereA; is the universal constant of Lemma 4.3.

Proof. We takeup = uy from Theorem 5.4, and we apply Lemma 5.11lteug. The term
in1+1/(4n) disappears. We let gg tend to 0 and obtain the stable decomposition with
the given constant. O

6. BOUNDED CONDITION NUMBER OF THE ADDITIVE SCHWARZ OPERATOR AT THE
CONTINUOUS LEVEL

We can now use the stable decomposition we established twtiba condition number
of the continuous Additive Schwarz operator, which leadbhé&following result:

Theorem 6.1(Condition Number Estimate at the Continuous LevéRtQ be a bounded
domain ofR?. Let A be a continuous function frofto the set o2 x 2 symmetric positive
definite matrices. We suppose thgixAis uniformly coercive and uniformly bounded:
there existr > 0 and > 0 such that for alixin Q, and for all € in R?

all&3 < &'AXE < BIIE|I3.
Leta-,-) be the continuous bilinear form ondQ) defined by
au,v) = /Q Ou(x) - A(X)Dv(X)dx.

We use the same notation and the same hypotheses as in THebgeto define the Uthe
Qi, the mesh and all the geometric parameters on which the constantsruepe
Let\p =Py(7). Let\{ = H}(Qi) for 1 <i < N. Let § be defined by

R HG(Q) — HE(Q),
u(x) ifxeQ,
U | X— . .
0 otherwise

Note thatr < 4 ensures that & (2K + 1) + (4K + 1)r /Hy)r /Hy is positive.
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Forall 1<i <N, letd be the bilinear forms on HQ;) defined byg (u,v) = a(RTu,R"v),
i.e.

g(uv) = /Q Ou(x) - A(X) Ov(X)dX.

Let R4 be the preconditioned Additive Schwarz operator definedjbgton(2). Then the
a-condition number of g is bounded by

2
K(Ru) < Ece+1),

where
C=C1+2(1+C1)Cy,
1 1+2r/H 2C,H
C= ki / h P +7T)7
tanBmin 1 — ((2K +1) + (4K + 1)r /Hy)r /Hp s
R\ R
_ 2N _ 1)2 R
C, =2+ 8AF(Ne— 1)?(1+ R)asinex
8 R r2
AZ(Ne—1)% (14 = ) =o——x
+ N 12 +R)R65in9x
1 4
ciH? 1 7‘+CdH CCiH* 1 CcgH?
r2 2 Yor 4 2 r2 ’

whereA; is the universal constant of Lemma 4.3.

Proof. Assumption 2.4 is satisfied by definition with the local slibiparameterw =
1, and Assumption 2.2 is satisfied by Theorem 5.12, shkée uniformly coercive and
uniformly bounded. Therefore, we have a stable decompaosithose constant is tl@of

Theorem 5.12 multiplied b@;. We apply then Theorem 2.7 to conclude. d

The bound of the condition does not depend on the number afosnbins and the
lengths in the formulas always come in ratios, which meaas ttie condition number
stays bounded.

7. CONCLUSION

We have analyzed the Additive Schwarz preconditioned apevéth a coarse mesh at
the continuous level. We provided explicit estimates wisiesbw that the condition number
is independent of the number of subdomains. This continestimate should be helpful
to prove properties of the Additive Schwarz preconditionpdrator when discretized by
various consistent numerical methods for partial difféie#requations, as soon as the dis-
cretization error is small enough. In particular, the ctindinumber estimate should not
depend on the fine discretization.

These explicit estimates also enabled us to deal with nopeshegular domain de-
compositions, where some subdomains are very small, wkiler® are very large. In
particular, in such a case, the classical result would gé/a gondition number linear in
max(H(x))/ min(5(x)). Using the methods developped in this paper, we prove intf2Q]
the condition number is actually linear in m&k(x) /d(x)) which is a much better estimate
for non shape regular domain decompositions.
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APPENDIXA. THE L2 NORM OF THE GRADIENT INPL(T)

Let ABCbe a triangle, and lety, vy, V¢ in R be the values at the corners. There exists
a unique affine mapping defined oveABC, such thau(A) = va, u(B) = vg andu(C) =
vc. We want to computggc||Oul|?. InsideABC, Ou is a constant that satisfies the two
equations

Ou- (AB) = vg — Va, Ou- (AC) =vc —Va.

Hence, in a matrix formulation, we have

X8—Xa YB—YA Ou = VB — VA

Xc—Xa Yc—Ya Ve —Val|’
The inverse of this matrix is readily computed, and we obtain
yc—ya —(yB— yA)] [VB - VA:|
(Xc—%a)  X8—Xa | [Vc—Va
X8—Xa YB—YA
Xc—Xa Yc—Ya

_ 1 (Yc —Ya) (Ve —Va) — (Y8 — Ya) (Vc — Va)
2.7(ABC) [ —(Xc —Xa)(VB —Va) + (X8 —Xa)(Vc —Va) |’
where.”(ABC) is the area of triangl&BC. Therefore, we obtain
_ IAC||(vg — va)® + ||AB||*(vc — va)? — 2(AB, AC) (Vg — Va) (Vc — Va)
4.7 (ABC)2
(CB,CA)(vg —Va)2 + (BA,BC)(Vc — Va)2 + (AB,AC) (Vg — \c)?
4.7 (ABC)2 ’
since Zvg — Va) (Ve —Va) = (VB — Va)? + (Ve — Va)? — (VB — V¢ )?. We thus have
(ve—Vva)?  (va—Vc)?® | (vc—V)?

tan6c) | 2tan(fs) | 2tar(Ba)
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