
HAL Id: hal-00461981
https://hal.science/hal-00461981

Submitted on 8 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrepancy Search for the Flexible Job Shop
Scheduling Problem

Abir Ben Hmida, Mohamed Haouari, Marie-José Huguet, Pierre Lopez

To cite this version:
Abir Ben Hmida, Mohamed Haouari, Marie-José Huguet, Pierre Lopez. Discrepancy Search for the
Flexible Job Shop Scheduling Problem. Computers and Operations Research, 2010, 37 (12), p. 2192-
2201. �hal-00461981�

https://hal.science/hal-00461981
https://hal.archives-ouvertes.fr

 1

Discrepancy Search for the Flexible

Job Shop Scheduling Problem


Abir Ben Hmida
1,2,3

, Mohamed Haouari
3
, Marie-José Huguet

1,2
, Pierre Lopez

1,2

1
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

2
Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

(abenhmid@laas.fr, huguet@laas.fr, lopez@laas.fr)

3
Ecole Polytechnique de Tunisie, Unité ROI, La Marsa, Tunisia

(mohamed.haouari@ept.rnu.tn)

ABSTRACT

The Flexible Job Shop scheduling Problem (FJSP) is a generalization of the classical Job

Shop Problem in which each operation must be processed on a given machine chosen among

a finite subset of candidate machines. The aim is to find an allocation for each operation and

to define the sequence of operations on each machine so that the resulting schedule has a

minimal completion time. We propose a variant of the Climbing Discrepancy Search

approach for solving this problem. We also present various neighborhood structures related to

assignment and sequencing problems. We report the results of extensive computational

experiments carried out on well-known benchmarks for flexible job shop scheduling. The

results demonstrate that the proposed approach outperforms the best-known algorithms for the

FJSP on some types of benchmarks and remains comparable with them on other ones.

Keywords: Scheduling, Allocation, Flexible Job Shop, Discrepancy Search, Neighborhood

structures.

mailto:abenhmid@laas.fr
mailto:huguet@laas.fr
mailto:lopez@laas.fr
mailto:mohamed.haouari@ept.rnu.tn

 2

1. Introduction

The Flexible Job Shop Problem (FJSP) is a generalization of the traditional Job Shop

scheduling Problem (JSP), in which it is desired to process operations on a machine chosen

among a set of available ones. Therefore, the FJSP is more computationally difficult than the

JSP, since it presents a further decision level besides the sequencing one, i.e., the job

assignment. Determining the job assignment requires assigning each operation on a specific

machine chosen among a set of machines. This problem is known to be strongly NP-Hard

even if each job has at most three operations and there are two machines [1].

The complexity of the FJSP suggests the adoption of heuristic methods producing reasonably

good schedules in an acceptable execution time, instead of seeking for an exact solution. In

recent years, the use of metaheuristics such as Tabu Search (TS) and Genetic Algorithms

(GAs) has led to better results than classical dispatching or greedy heuristic algorithms

[2, 3, 4].

In this paper, we present a new discrepancy-based method, called Climbing Depth-bound

Discrepancy Search (CDDS), used initially for solving the hybrid flow shop problem [5].

Adapted to the problem under study, CDDS mixes, in an original way, some already known

concepts and strategies. In particular, we use the block concept of Jurisch [6] to find the

neighborhood structure. Computational experiments show that our algorithm outperforms the

GA of Pezzella et al. [3] for all instances, and the TS of Mastrolilli and Gambardella [2] and

the GA of Gao et al. [4] for some instances. Moreover, our algorithm proves that space

exploration using the concept of discrepancy is suitable to develop efficient algorithms for the

FJSP.

The remainder of the paper is organized as follows. In Section 2, we introduce the problem

formulation and we provide a relevant-literature review. In Section 3, we present the

considered method by detailing: the initial solution, the adapted discrepancy concept, the

neighborhood structures, and the proposed algorithm. In Section 4, we present an extensive

computational study comparing the results of different neighborhood structures and with the

best-known approaches. Some conclusions are given in Section 5.

 3

2. Problem formulation and previous works

The FJSP is formally formulated as follows. Let



J  J i 
1 iN

 be a set of N jobs to be

scheduled where each job



J i consists of



n i operations. Let



O
i, j

be the j
th

operation of



J i . Let



M  M k 
1 km

 be a set of m machines. Each machine can process only one operation at a

time (disjunctive resource). Each operation



O i, j can be processed without interruption on a

unique machine R, selected among a given subset



M i, j  M ; note that a given machine is

able to process different operations of every job Ji  J (that is, re-circulation may occur).

Given a schedule, we denote by sti,j and Ci,j the starting time and completion time of operation



O i, j (1≤i≤N, 1≤j≤ni), respectively. The objective is to find a schedule having a minimum

completion time (or, makespan), denoted by



Cmax  max
i1..N

(C i) , where



C i  max 1 j n
i

(C i, j) is

the completion time of job



J i .

Moreover, we shall assume that:

- All machines are available at time 0;

- All jobs are released at time 0;

- The order of operations for each job is predefined and cannot be modified.

Brucker and Schlie [7] propose a polynomial algorithm for solving the FJSP with two jobs, in

which the processing times are identical whatever the machine chosen to perform an

operation. Based on the observation that the FJSP turns into the classical job-shop scheduling

problem when a routing is chosen, Brandimarte [8] was the first to use a decomposition

approach for the FJSP. He solved the assignment problem using some dispatching rules and

then solved the resulting job shop subproblems using a tabu search (TS) heuristic. Jurisch [6]

considered the routing and scheduling decisions simultaneously and proposed a TS algorithm

to solve it. Hurink et al. [9] and Barnes and Chambers [10] developed TS algorithms to solve

the FJSP. Dauzère-Pérès and Paulli [11] defined a new neighborhood structure for the

problem where there was no distinction between reassigning and resequencing an operation,

and proposed a TS algorithm. Mastrolilli and Gambardella [2] improved the previous work

and presented two neighborhood functions. Their TS is the well-known efficient approach for

solving FJSPs. In [12], a genetic algorithm (GA) based on a discrete dynamic programming

approach was proposed. In [13], Kacem et al. proposed a localization approach to solve the

resource assignment problem, and an evolutionary approach controlled by the assignment

model for the problem. Zhang and Gen [14] proposed a multistage operation-based GA to

 4

deal with the problem based on a dynamic programming model. In [15], the authors treated

this problem with a hybrid of particle swarm optimization and simulated annealing as a local

search algorithm. Fattahi et al. [16] proposed a mathematical model and hybridizing of two

methods, TS and simulated annealing. They developed six different algorithms for the FJSP.

Pezzella et al. [3] presented a GA in which a mix of different strategies for generating the

initial population, selecting individuals for reproduction, and reproducing new individuals is

presented. Tay and Ho [17] proposed dispatching rules obtained by the genetic programming

framework to solve the multiobjective FJSP with respect to minimum makespan, mean

tardiness, and mean flow time objectives. Gao et al. [4] studied the FJSP with three

objectives: minimization of the makespan, minimization of the maximum machine workload,

and minimization of the total workload. They developed a hybrid genetic algorithm (hGA)

based on the integrated approach for this problem. Their algorithm is the well-known

competitive GA for solving the FJSP.

It is noteworthy that, to the best of our knowledge, the use of a discrepancy-based method had

not been previously used for the flexible job shop problem.

3. Discrepancy-based search methods

Discrepancy-based methods are tree search methods developed for solving hard combinatorial

problems. These methods consider a branching scheme based on the concept of discrepancy

to expand the search tree. This can be viewed as an alternative to the branching scheme used

in a Chronological Backtracking method. The basic method, Limited Discrepancy Search

(LDS), is instantiated to generate several variants, among them, Depth-bounded Discrepancy

Search (DDS) and Climbing Discrepancy Search (CDS).

3.1 Limited Discrepancy Search

The objective of LDS, proposed by Harvey [18], is to provide a tree search method for

supervising the application of some ordering heuristics (variable and value ordering). It starts

from initial variable instantiations suggested by a given heuristic and successively explores

branches with increasing discrepancies from it, i.e., by changing the instantiation of some

variables. Basically, a discrepancy occurs if the choice of a variable does not follow the rank

of the ordering heuristic (the initial instantiation). The method stops when a solution is found

 5

(if such a solution does exist) or when an inconsistency is detected (the tree is entirely

expanded).

The concept of discrepancy was first introduced for binary variables. In this case, exploring

the branch corresponding to the best Boolean value (according a value ordering) involves no

discrepancy while exploring the remaining branch implies just one discrepancy. It was then

adapted to suit to non-binary variables in two ways (Figure 1). The first one considers that

choosing the first ranked value (rank 1, denoted by the instantiation of X by V0 in the figure)

leads to 0 discrepancy, while choosing all other ranked values implies 1 discrepancy. In the

second way, choosing value with rank r implies r – 1 discrepancies.

k 0 1 1 1 1

 V 0 V 1 V 2 V 3 .. . V n

 X

Seco nd w ay First w ay

 X

 k 0 1 2 3 4

 V 0 V 1 V 2 V 3 .. . V n

Figure 1. Counting discrepancies

We choose to adapt the first discrepancy definition to our work; this choice has been

experimentally chosen (see [19] for more details). To more deeply understand the adopted

discrepancy mechanism, see below and illustration in Figure 2.

Dealing with a problem defined over N binary variables, an LDS strategy can be described as

shown in Algorithm 1. In this algorithm, Initial_Instantiation() exhaustively instantiates all

variables following a given heuristic, while the function No_Solution() decides whether an

instantiation has to be rejected as part of a solution (a solution corresponds to a feasible

assignment for all the variables). Compute_Leaves() generates leaves at discrepancy k from

the initial instantiation (by changing the instantiation of k variables), and stops when a

solution is found and returns it.

 6

k  0 -- k is the number of discrepancies

kmax  N -- N is the number of variables

Init_Inst  Initial_Instantiation()

while No_Solution(Init_Inst) and (k < kmax) do

 k  k+1

 -- Generate leaves at discrepancy k from Init_Inst

 -- Stop when a solution is found

 Inst’  Compute_Leaves(Init_Inst, k)

 Init_Inst  Inst’

end while

Algorithm 1. Limited Discrepancy Search

In such a basic implementation, the main drawback of LDS is to be highly redundant: during

the search for solutions with k discrepancies, solutions with 0 to k – 1 discrepancies are

revisited. To avoid this, Improved LDS method (ILDS) was proposed in [20]. Another

improvement of LDS consists in applying discrepancy first at the top of the tree to correct

early mistakes in the instantiation heuristic; this yields the Depth-bounded Discrepancy

Search method (DDS) proposed in [21]. In the DDS algorithm, a given depth limits the

generation of leaves with k discrepancies.

All these methods (LDS, ILDS, DDS) lead to a feasible solution, if it exists, and are closely

connected to an efficient instantiation heuristic.

3.2 Climbing Discrepancy Search

Climbing Discrepancy Search (CDS) is a local search method that adapts the concept of

discrepancy to find a good solution for combinatorial optimization problems [22]. It starts

from an initial solution delivered by a given heuristic. Then, a sequence of neighborhoods

including nodes with discrepancy equal to 1, 2,…, kmax, respectively, are consecutively

explored (that is, we start with a neighborhood including nodes having a discrepancy equal to

1, then those equal to 2, and so on). When a leaf with an improved value of the objective

function is found, the reference solution is updated, the number of discrepancies is reset to 0,

and the process for exploring the neighborhoods is restarted. A pseudo-code of CDS is

displayed in Algorithm 2. In this algorithm, Initial_Solution() provides a feasible

instantiation for all variables following a given heuristic and then returns the first reference

solution. Moreover, Compute_Leaves() generates leaves at discrepancy k from it, and stops

when an improved solution is reached or when its neighborhood is entirely explored.

 7

k  0 -- k is the number of discrepancies

kmax  N -- N is the number of variables

Sol  Initial_Solution() –- Sol is the first reference solution

 -- suggested by the heuristic

while (k < kmax) do

 k  k+1

 do

 Sol’  Compute_Leaves(Sol, k) -- Generate leaves at discrepancy k

 -- from Sol

 If Better(Sol’, Sol) then

 Sol  Sol’ -- Update the current solution

 k  0

 end if

 until(Compute_Leaves(Sol, k) = ø)

end while

Algorithm 2. Climbing Discrepancy Search

The aim of CDS strategy is to find a feasible solution of high-quality in terms of criterion

value. As mentioned by their authors, the CDS method is close to Variable Neighborhood

Search (VNS) [23]. Roughly speaking, both approaches explore the solution space using

similar strategies. Indeed, VNS starts with an initial solution and iteratively explores

neighborhoods that are more and more distant from this solution. The exploration of each

neighborhood terminates by returning the best solution it contains. If this solution improves

the current one, it becomes the reference solution and the process is restarted.

It is important to stress the fact that by using a tree search to explore leaves in the same order

as done by VNS, we can remember, in a sense, which leaves have been explored, contrarily to

VNS method which moves from a solution to a better one, without storing information about

the visited search space regions. Therefore it cannot know whether it is revisiting solutions or

it has entirely explored the search space [22]. The interest of CDS is that the principle of

discrepancy defines neighborhoods as branches in a search tree. This leads to structure the

local search method by restricting redundancies following discrepancy principle.

As an example to illustrate the above exploration processes, let us consider a decision

problem (in minimization form of an objective function f()) consisting of four binary variables

x1, x2, x3, x4. The value ordering heuristic orders nodes left to right and, by convention, we

consider that we descend the search tree to the left with xi = 0, to the right with xi = 1,

 i = 1,2,3,4. A solution is obtained with the instantiation of the four variables. Initially the

 8

reference solution Sref (associated to criterion value fref) is the left branch of the tree (thick line

in Figure 2).

Figure 2 illustrates the search trees obtained using LDS (a), DDS (b), and CDS (c). In this

example for DDS, discrepancies are authorized till depth 2. The subscribed number below

branches corresponds to the discrepancy number. The types of dotted lines are representative

of the successive iterations.

 x2

 x1

 x3

a) LD S

 0 1 1 2 1 2 2 3

d

 x4

 4 1 2 2 3 2 3 3

0

 1

 2

 3

 x2

 x1

 x3

b) D D S (d= 2)

 0 1 1 2

d

 x4

 1 2 2 3

0

 1

 2

 3

 x2

 x1

 x3

c) C D S

 0 1 1 2 1 2 2 3

d

 x4

 4 1 2 2 3 2 3 3

0

 1

 2

 3

 fref f fref f fref f fref f< fref

 0 1 1 2 1 2 2 3

Figure 2. LDS, DDS, and CDS search principles

 9

3.3. The proposed approach

3.3.1. Problem variables and constraints

To solve the FJSP under study, we have to select an operation, to allocate a resource for the

selected operation, to set its start time, and so on until scheduling all operations. To reduce the

makespan, we only consider two kinds of variables: operation selection and resource

allocation. (The start time of each operation will be set at the earliest possible value.) The

values of these two types of variables are ordered following a given instantiation heuristic

presented below.

We denote by X the operation selection variables vector and by A the resource allocation

variables vector. Thus, Xj corresponds to the j
th

 operation in the sequence and Aj is its

assignment value (



 j  1,..., NO , with NO the total number of operations). The domain of

variable Xj is {



O1,1
,



O1,2
,…,



O1,n
1

,



O2,1
,…,



ON ,1
,…,



ON ,n
N

} which corresponds to the choice of

the operation to be scheduled. The values taken by the Xj variables have to be all different.

The Aj domains are {M1,…, Mm}. Moreover, we consider precedence constraints between two

consecutive operations of the same job and precedence constraints that may join each

operation with other jobs operations. The exploration strategy first considers an operation

selection variable to choose an operation, secondly considers a resource allocation variable to

assign the selected operation to a resource.

3.3.2. Initial solution

We have two types of value ordering heuristics: the first one ranks operations whilst the

second one ranks resources.

- Type 1: Operation selection. A sensible choice of the operations order seems to be of

main interest for obtaining good quality solutions. It has been experimentally proved

that it is a good policy to give the priority to the operation having the Earliest Starting

Time (EST). The starting time of each operation Oi,j is calculated as follows:

 10

 0 if j = 1

sti,j = with i=1,…,N and j=2,…,ni

 Ci,j otherwise

where Ci,j-1 corresponds to the completion time of operation Oi,j-1 and is equal to sti,j-1 +

pi,j-1,k where pi,j-1,k is the processing time of Oi,j-1 on machine k  Mi,j-1.

In case of ties, we suggest selecting the operation having the Earliest Due Date (EDD).

The due date of each operation Oi,j (hereafter denoted by di,j) is calculated as follows:

 UB if j = ni

di,j = with i=1,…,N and j=1,…,ni1

 di,j+1 – Av(pi,j+1) otherwise

where UB is an approximate value of the makespan and Av(pi,j+1) is the average

processing time of Oi,j+1 through all machines of Mi,j+1.

- Type 2: Assignment of operations to machines. The operation of the job chosen by the

heuristic of Type 1 is assigned to the machine such that the operation completes as

soon as possible; hence, following an Earliest Completion Time (ECT) rule. This latter

rule is dynamic, that is, the machine with the highest priority depends on the machines

previously loaded. According to discrepancy principle, a rank of machine assignments

is specified for each operation, ordering by the ECT on each machine.

After each instantiation of Type 2, we use a simple calculation to update the finishing time of

the selected operation as well as the starting time of the successor operation. We also maintain

the availability date of the chosen resource. Moreover, as said before, Type 2 assignment is

interleaved with Type 1 selection, that is, a machine is assigned after each operation selection.

3.3.3. Discrepancy for flexible job shop problems

Because of the existence of two types of variables, we consider here two types of

discrepancies: discrepancy on operation selection variables and discrepancy on resource

allocation variables. Indeed, our goal is to improve the makespan of our solutions, and since

 11

resources are not identical, discrepancy on allocation variables can improve it. Also, the

sequence of jobs to be scheduled has an impact on the total completion time.

Therefore, achieving a discrepancy consists in:

- Selecting another operation to be scheduled than the operation given uppermost by a

value ordering heuristic. Operation selection variables are N-ary variables. The

number of discrepancy is computed as follows: the first value given by the heuristic

corresponds to 0 discrepancy, all the other values correspond to 1 discrepancy. Let

consider 3 operations and let consider that the first selected operation is O1, O2 the

second, and O3 the third one (this order is given by a value ordering heuristic).

Selecting another operation than O1 in the first position (X1) consists in making one

discrepancy in this level, and so on (see Figure 3).

O 1

O 2

O 2

O 3

O 3

O 1

 O 3

O 3

O 1

O 1 O 2

O 1

 0 1 1 2 1 2

 O 3

X 1

X 2

X 3

 k

O 2 O 2

Figure 3. Discrepancies only on the three first operation selection variables

Based on the example above, we note that the search heuristic gives priority to O1,

then to O2 and finally to O3 (Sol={1,2,3}), the 1-discrepancy solutions are {2,1,3},

{3,1,2} and {1,3,2}, where the underlined value represents the made discrepancy. A 2-

discrepancy solution consists in making an additional discrepancy on the 1-

discrepancy ones. Thus, we obtain, {2,3,1} from {2,1,3}, and {3,2,1} from {3,1,2}.

- Assigning the operation to another resource than the resource suggested by a value

ordering heuristic. The number of discrepancy is computed as follows: the first value

given by the heuristic corresponds to 0 discrepancy, all the other values correspond to

 12

1 discrepancy. In this case, let consider that O1 can be processed by one machine

among the set {R2, R1, R3} (this order is given by a value ordering heuristic), O2 by

one machine among {R1, R4}, and O3 by only R1. Selecting another machine than R2

for the first operation O1 consists in making a discrepancy in this level, and so on (see

Figure 4).

R 2

R 1

R 1

R 4

R 1

R 3

R 4

 R 1

R 1

R 1

R1

R1

R 4

R 1

 0 1 1 2 1 2

R 1

X 1=O 1

A 1

X 2=O 2

A 2

X 3=O 3

A 3

 k

Figure 4. Discrepancies only on the three first resource allocation variables

To obtain solutions of k + 1 discrepancies directly from a set of solutions with k discrepancies

(without revisiting solutions with 0,…, k – 1 discrepancies), we consider for each solution the

latest instantiated variable having the k
th

 discrepancy value and we just have to choose a

remaining variable for the k + 1
th

 discrepancy value. This strategy allows us to generate the

solutions without redundancy, given that choices already made at the level of a given node

will be inhibited during the following choice.

3.3.4. Proposed discrepancy-based method

In our problem, the initial leaf (with 0 discrepancy) is a solution since we do not constrain the

makespan value. Nevertheless, we may use the discrepancy principle to expand the search tree

for visiting the neighborhood of this initial solution. Two casual ways to stop this exploration

are to set a limit for the CPU time or to reach a given lower bound on the makespan. To limit

the search tree, one can also use the idea of DDS method that gives priority to variables at the

top of the tree (job selection at the initial stages).

To improve the search, we have to consider the CDS method that goes from an initial solution

to a better one, and so on. The idea of applying discrepancies only at the top of the search tree

 13

can be also joined with CDS algorithm to limit the search tree expansion. Therefore, we use

Climbing Depth-bounded Discrepancy Search (CDDS) [5] which combines both the CDS and

the DDS methods. With this method, one can restrict neighborhoods to be visited by only

using discrepancies on variables at the top of the tree (see Algorithm 3). Note that DDS

algorithm has not been implemented in this paper.

k  0 -- k is the number of discrepancy

kmax  N -- N is the number of variables

Sol  Initial_Solution() -- Sol is the reference solution suggested

 -- by the heuristic

while (k < kmax) do

 k  k+1

 do

 Sol’ Compute_Leaves(Sol, d, k) -- Generate leaves at discrepancy k

 -- from Sol and at d-depth value

 -- from the top of the tree with 1<d<N

 if Better(Sol’, Sol) then

 Sol  Sol’ -- Update the current solution

 k  0

 end if

 until(Compute_leaves(Sol, d, k) = ø)

end while

Algorithm 3. Climbing Depth-bounded Discrepancy Search

In CDDS algorithm, the function Compute_Leaves() generates leaves at discrepancy k from

the reference solution and at d-depth value from the top of the tree, and stops when a better

solution than the reference one is reached or when its neighborhood is entirely expanded.

Note that the CDDS method that is discussed in this paper shares the same general framework

with the method implemented in [5] for solving a hybrid flow shop problem. However, we

have tailored the different search and discrepancy heuristics to capture the specific features of

the FJSP.

3.3.4. Proposed neighborhood structures

To diversify solutions, we propose four different types of neighborhood structures that are

both based on the block concept [6]. A block (denoted by B) is a succession of at least two

critical operations processed on the same resource. A critical operation is an operation

belonging to the critical path in the constraint network, which can be defined as the longest

schedule. The critical path’s operations are connected by a precedence constraint or by a

 14

disjunctive precedence (being able to be realized by the same resource). We cannot obtain an

infeasible solution since we respect the precedence and disjunctive constraints.

An interesting property proposed by Jurisch [6] is that if we have two solutions y and y’ with

Cmax(y’) < Cmax(y), then we necessarily get at least one of these properties:

- In y’, there is at least one operation of a block B of y having been processed on a

different resource than in y.

- In y’, there is at least one operation of a block B of y, different from the first operation,

processed before the first one of B.

- In y’, there is at least one operation of a block B of y, different from the last operation,

processed after the last one of B.

Based on these all Jurisch’s properties, we can obtain two types of neighborhoods N1 and N2

presented as follows.

- The first neighborhood N1 consists in:

 Assigning each operation Oi of B, on another machine R available at

the release date of Oi (denoted by ri). If R is occupied by Oj at ri, then

we give priority to Oi (i.e., Oi precedes Oi, denoted by Oi  Oj).

 Sequencing an operation of B, different from the first (resp. the last)

one, before (resp. after) the first (resp. the last) operation of B. Only an

adjustment of the starting time of operations will be considered.

- The second neighborhood N2 consists in:

 Assigning each operation Oi of B, on another machine R available at ri.

If R is occupied by Oj at ri, then we assign Oj on another machine given

by ECT.

 Sequencing an operation of B, different from the first (resp. the last)

one, before (resp. after) the first (resp. the last) operation of B. An

adjustment of successor’s operations assignment and starting time will

 15

be done using ECT.

- Two natural extensions of previous neighborhoods consist in trying all possible

insertion positions for each considered operation. Hence, extending N1 yields a third

neighborhood N3 that is defined as:

 Assigning each operation Oi of B, on another machine R available at ri.

If R is occupied by Oj at ri, then we give priority to Oi (Oi  Oj).

 Sequencing an operation of B, different from the first (resp. the last)

one, before (resp. after) each operation of B. Only an adjustment of the

starting time of operations will be considered.

Also, extending N2 yields a fourth neighborhood N4 that is defined as:

 Assigning each operation Oi of B, on another machine R. available at ri.

If R is occupied by Oj at ri, then we assign Oj on another machine given

by ECT.

 Sequencing an operation of B, different from the first (resp. the last)

one, before (resp. after) each operation of B. An adjustment of

successor’s operations assignment and starting time will be done using

ECT.

We note that N3 dominates



N1 (



N1  N 3) and that N4 dominates N2 (



N 2  N 4).

These neighborhood structures imply that discrepancies are not applied to all problem

variables. Only some relevant ones, chosen by using the block notion, will be considered.

Therefore, using neighborhood structures defined above prunes the process of discrepancies

by focusing on promising chosen variables with regard to the considered evaluation criterion.

Indeed, it has been experimentally selected that using a complete-swap neighborhood leads to

a lesser efficiency both in terms of quality and of CPU time (see Section 4.2). Note that a

complete-swap neighborhood structure implies that discrepancies are applied to all problem

variables. Hence, two neighborhood structures are developed and defined as follows:

- The first complete-swap neighborhood



CS  N1 consists in:

 16

 Assigning each considered operation Oi, on another machine R

available at ri. If R is occupied by Oj at ri, then we give priority to Oi

(Oi  Oj).

 Sequencing a considered operation, different from the first (resp. the

last) one, before (resp. after) each operation in the sequence respecting

the precedence and disjunctive constraints. Only an adjustment of the

starting time of operations will be considered.

- The second complete-swap neighborhood



CS  N2 consists in:

 Assigning each considered operation Oi, on another machine R

available at ri. If R is occupied by Oj at ri, then we give priority to Oi

(Oi  Oj).

 Sequencing a considered operation, different from the first (resp. the

last) one, before (resp. after) each operation in the sequence respecting

the precedence and disjunctive constraints. An adjustment of

successor’s operations assignment and starting time will be done using

ECT.

The next section is devoted to the evaluation of CDDS method via the four developed

neighborhoods for the flexible job-shop scheduling problem.

4. Computational experiments

4.1. Test beds

We propose to compare four different strategies (



CDDS  N1,



CDDS  N2 ,



CDDS  N 3, and



CDDS  N 4) in terms of solutions quality and CPU time. Also, we report a comparison

between our method and state-of-the-art algorithms. We considered four types of benchmark

instances presenting as follows:

- The first data set (BRdata) is a set of 10 problems from Brandimarte [8]. The number

of jobs ranges between 10 and 20, and the number of machines ranges between 4 and

15. The flexibility per operation ranges between 1.43 and 4.10. Machines are

unrelated.

 17

- The second data set (BCdata) is a set of 21 problems from [10]. As a job shop can be

extended to a flexible job shop by simply adding some machines that already exist in

the job shop, the data were constructed from three of the most challenging classical

job shop scheduling problems [24, 25] (mt10, la24, la40) by replicating machines. The

processing times for operations on replicated machines are assumed to be identical to

the original. The number of jobs ranges between 10 and 15, and the number of

machines varies between 11 and 18. The flexibility per operation varies between 1.07

and 1.30. Machines are identical.

- The third test sample (DPdata) is a set of 18 problems from [11]. The flexibility per

operation varies between 1.13 and 5.02. Machines are identical for 50% of instances,

and unrelated for the others.

- The fourth test sample (HUdata) is a set of 129 problems from [9]. The problems were

obtained from three problems by Fisher and Thompson [24] and 40 problems by

Lawrence [25] (la01 – la40). Hurink et al. [9] generated three sets of test problems:

Edata, Rdata and Vdata. The first set contains the problems with the least amount of

flexibility (1.15), whereas the average flexibility is equal to 2 in Rdata and to m/2 in

Vdata (ranges between 2.50 and 7.50). Machines are identical.

The proposed CDDS algorithm was coded in C and implemented on an Intel Core 2 Duo 2.9

GHz Personal Computer with 2GB of RAM. We set the maximum CPU time to 15 s for all

test instances except for DPdata instances. For such DPdata instances, we set this maximum

CPU time to 200 s because of the huge values of operation processing times that imply

significant additional CPU time to find solutions. If no optimal solution was found within

time limit, then the search is stopped and the best solution is output as the final schedule. The

depth of discrepancy in our method is fixed at 7 from the top of the tree; this number has been

experimentally chosen.

4.2. Computational results

The results of the computational study on BRdata are summarized in Table 1. Results given

by each algorithm are compared with LBs proposed in [2]. The first and second columns

symbolize the name and size of the problem, respectively. In the third column, the average

number of available machines per operation (flex.) is shown for each problem. In the fourth

column, (LB,UB) denotes the best lower and upper bounds that have ever been found (a

 18

unique value means that LB=UB; the optimum value is known). The bold values indicate that

the corresponding algorithm found the best among the four approaches. The total number of

the best solutions given by each algorithm is summarized in the line #Best. The values

underlined in bold indicate optimal solutions (



Cmax  LB). The makespan associated with an

asterisk is the best-known upper bound so far. The Mean Relative Error (MRE) is calculated

as follows:



MRE 
C max  LB 

LB
 100 % .

As shown in Table 1,



CDDS  N 4 produces the best gap which is equal to 15.03% and

generates 90% of best found solutions, followed by



CDDS  N2 , which presents 15.27% as a

gap and 90% of best found solutions. In the third place comes



CDDS  N 3 which presents an

average gap equal to 15.33% and provides 80% of best found solutions, and finally comes



CDDS  N1 with 15.76% as a gap from LBs and 70% of best found solutions. We can

conclude on the contribution of the use of the dynamic heuristic ECT which allows pushing

the search in a more effective way. We also note that



N 3 dominates



N1 for all instances in 15

seconds, while



N 4 dominates



N2 for only 9 instances. If we consider all approaches, CDDS

presents an average gap of 14.98% from lower bounds. When a complete-swap neighborhood

is considered, CDDS presents an average gap of 17.59% from lower bounds. Thus, we can

conclude on the contribution of the use of block notion which permits boosting the search in a

more effective way.

Table 1. Performance of each approach of CDDS on BRdata

Instance N×m flex. (LB,UB)
CDDS

1N 2N 3N 4N

MK01 10×6 2.09 (36,42) 40 40 40 40

MK02 10×6 4.10 (24,32) 26 26 26 26

MK03 15×8 3.01 (204,211) 204 204 204 204

MK04 15×8 1.91 (48,81) 60 60 60 60

MK05 15×4 1.71 (168,186) 175 173 173 173

MK06 10×15 3.27 (33,86) 60 59 59 58

MK07 20×5 2.83 (133,157) 139 139 139 139

MK08 20×10 1.43 523 523 523 523 523

MK09 20×10 2.53 (299,369) 307 307 307 307

MK10 20×15 2.98 (165,296) 198 197 198 198

MRE 15.76 15.27 15.33 15.03

#Best 7 9 8 9

 19

A comparison in terms of CPU time between the four strategies is not significant considering

this class of problems, since 80% of the problems required the maximum CPU time (15 s),

and for the two other instances (MK03 and MK08), we obtain the optimal solutions at the

initial solutions (≈ 0 s).

Next, in Table 2 we compare our method CDDS in terms of MRE and time with the genetic

algorithm (GA) of Pezzella et al. [3], the Tabu Search method (TS) of Mastrolilli and

Gambardella [2], and the genetic algorithm (hGA) of Gao et al. [4]. Contrarily to CDDS

method that is deterministic by nature, TS and hGA algorithms are carried out five runs on the

same problem instance in order to obtain meaningful results. CDDS results are obtained

through the four above-described different deterministic neighborhood structures. Thus, a

comparison of the respective CPU times is irrelevant.

Table 2. Performance comparison between the proposed CDDS and (GA, TS, hGA) on BRdata

Instance N×m flex. (LB,UB) CDDS GA TS hGA

Cmax MRE Cmax MRE Cmax MRE Cmax MRE

MK01 10×6 2.09 (36,42)
40*

(40)

11.11

(11.11)
40 11.11

40

(40)

11.11

(11.11)

40

(40)

11.11

(11.11)

MK02 10×6 4.10 (24,32) 26*

(26)

8.33

(8.33)

26 8.33 26

(26)

8.33

(8.33)

26

(26)

8.33

(8.33)
MK03 15×8 3.01 (204,211) 204*

(204)

0.00

(0.00)

204 0.00 204

(204)

0.00

(0.00)

204

(204)

0.00

(0.00)
MK04 15×8 1.91 (48,81) 60*

(60)

25.00

(25.00)

60 25.00 60

(60)

25.00

(25.00)

60

(60)

25.00

(25.00)
MK05 15×4 1.71 (168,186) 173

(173.5)

2.98

(3.27)

173 2.98 173

(173)

2.98

(2.98)

172*

(172)

2.38

(2.38)
MK06 10×15 3.27 (33,86) 58*

(59)

75.76

(78.79)

63 90.91 58

(58.4)

75.76

(76.97)

58

(58)

75.76

(75.76)
MK07 20×5 2.83 (133,157) 139*

(139)

4.51

(4.51)

139 4.51 144

(147)

8.27

(10.52)

139

(139)

4.51

4.51
MK08 20×10 1.43 523 523*

(523)

0.00

(0.00)

523 0.00 523

(523)

0.00

(0.00)

523

523

0.00

(0.00)
MK09 20×10 2.53 (299,369) 307*

(307)

2.68

(2.68)

311 4.01 307

(307)

2.68

(2.68)

307

(307)

2.68

(2.68)
MK10 20×15 2.98 (165,296) 197*

(197.75)

19.39

(19.85)

212 28.48 198

(199.2)

20.00

(20.73)

197

(197)

19.39

(19.39)

MRE
14.98

(15.34)
17.53

15.41

(15.83)

14.92

(14.92)

#Best
9

(7)
6

7

(6)

10

(10)

CI-CPU
385

(96)
unknown

370

(74)

455

(91)

 20

This comparison is dressed respectively on BRdata. Columns 1 to 4 correspond to the same

quantities of Table 1. For each instance, we give the best makespan resulted from the

corresponding algorithm (out of four strategies of CDDS algorithm and five runs for GA, TS,

and hGA algorithms) and the average makespan under it, besides of the Mean Relative Error

(MRE) of the obtained results. Line #Best gives the number of solutions having the best-

known upper bound so far. Line CI-CPU gives the sum of the computer-independent CPU

time and the average time under it, in seconds, out of four (resp. five) runs for CDDS (resp.

GA, TS and hGA) to compute all the solutions of each data set. These values were computed

using the normalization coefficients of Dongarra [26]. Thus, to normalize CDDS CPU time

values with ones of Gao et al. [4], we have multiplied CDDS CPU time by

0.803=(2426/3018). Referred to Dongarra’s conversion tables, our machine spends 2426

Mflop/s while the Gao et al.’s ones spends 3018 Mflop/s. As mentioned above, a comparison

in terms of CPU time is irrelevant because of the deterministic nature of CDDS faced to GA,

hGA and TS methods, but we give these values to just have an idea about the speed of each

method.

We observe that CDDS outperforms the GA algorithm of Pezzella et al. [3] and the TS

algorithm of Mastrolilli and Gambardella [2] as well. It also remains comparable with the

best-known GA of Gao et al. [4]. Indeed, hGA outperforms CDDS on only one instance

(MK05). When all instances are considered, the mean relative error of CDDS is 14.98% faced

to 14.92% for hGA.

For all next instances, Pezzella et al. [3] have reported only the MRE of the best-obtained

schedules without the CPU time used and without details of each instance.

Table 3 displays a comparison between the different variants of CDDS and other best-known

algorithms on BCdata. Globally, CDDS found 81% of best known-solutions (17 among 21

test instances), while TS found 86% (18 among 21 test instances) and hGA found 62% (13

among 21 test instances). We note that TS algorithm outperforms CDDS on only one instance

(mt10xyz). Besides, the average makespan out of four runs of CDDS is little better than all

other algorithms. Indeed, average MRE of average makespan of CDDS is equal to 22.60%

faced to 22.63% for TS and 22.66% of hGA method.

 21

Table 3. Performance comparison between the proposed CDDS and (TS, hGA) on BCdata

Instance N×m flex. (LB,UB)
CDDS

TS hGA
1N N2 N3 N4 Cmax

mt10x 10×11 1.10 (655, 929) 918 918 918 918
918*

(918)

918

(918)

918

(918)

mt10xx 10×12 1.20 (655, 929) 918 918 918 918
918*

(918)

918

(918)

918

(918)

mt10xxx 10×13 1.30 (655, 936) 918 918 918 918
918*

(918)
918

(918)

918

(918)

mt10xy 10×12 1.20 (655, 913) 906 906 906 906
906

(906)

906

(906)

905*

(905)

mt10xyz 10×13 1.20 (655, 849) 851 851 851 849
849

(850.5)

847*

(850)

849

(849)

mt10c1 10×11 1.10 (655, 927) 930 928 928 928
928

(928.5)

928

(928)

927*

(927.2)

mt10cc 10×12 1.20 (655, 914) 912 910 911 910
910*

(910.75)

910

(910)

910

(910)

setb4x 15×11 1.10 (846, 937) 925 925 925 925
925*

(925)

925

(925)

925

(931)

setb4xx 15×12 1.20 (846, 930) 925 925 925 925
925*

(925)

925

(926.4)

925

(925)

setb4xxx 15×13 1.30 (846, 925) 925 925 925 925
925*

(925)

925

(925)

925

(925)

setb4xy 15×12 1.20 (845, 924) 916 916 916 916
916*

(916)

916

(916)

916

(916)

setb4xyz 15×13 1.30 (838, 914) 908 908 905 905
905*

(906.5)

905

(908.2)

905

(905)

setb4c9 15×11 1.10 (857, 924) 919 919 919 919
919

(919)

919

(919.2)

914*

(914)

setb4cc 15×12 1.20 (857, 909) 911 911 909 911
909*

(910.5)

909

(911.6)

914

(914)

seti5x 15×16 1.07 (955, 1218) 1201 1203 1201 1201
1201*

(1201.5)

1201

(1203.6)

1204

(1204)

seti5xx 15×17 1.13 (955, 1204) 1199 1199 1199 1199
1199*

(1199)

1199

(1200.6)

1202

(1203)

seti5xxx 15×18 1.20 (955, 1213) 1198 1198 1197 1197
1197*

(1197.5)

1197

(1198.4)

1204

(1204)

seti5xy 15×17 1.13 (955, 1148) 1140 1137 1139 1136
1136*

(1138)

1136

(1136.4)

1136

(1136.5)

seti5xyz 15×18 1.20 (955, 1127) 1125 1126 1125 1125
1125*

(1125.3)

1125

(1126.6)

1126

(1126)

seti5c12 15×16 1.07 (1027,1185) 1174 1175 1174 1175
1174*

(1174.5)

1174

(1174.2)

1175

(1175)

seti5cc 15×17 1.13 (955, 1136) 1138 1137 1136 1137
1136*

(1137)

1136

(1136.4)

1138

(1138)

MRE 22.65 22.62 22.58 22.58
22.54

(22.60)

22.53

(22.63)

22.61

(22.66)

#Best 11 9 15 14
17

(8)

18

(7)

13

(10)

CI-CPU 253 253 253 253
1012

(253)

1780

(356)

4105

(821)

 22

Table 4. Performance comparison between the proposed CDDS and (TS, hGA) on DPdata

Instance N×m flex. (LB,UB)
CDDS

TS hGA
1N N2 N3 N4 Cmax

01a
10×5 1.13

(2505,

2530)
2518 2530 2530 2520

2518*

(2524.5)

2518

(2528)

2518

(2518)

02a 10×5 1.69
(2228,

2244)
2231 2244 2232 2231

2231*

(2234.5)

2231

(2234)

2231

(2231)

03a 10×5 2.56
(2228,

2235)
2229 2235 2230 2233

2229*

(2231.8)

2229

(2229.6)

2229

(2229.3)

04a 10×5 1.13
(2503,

2565)
2510 2520 2507 2503

2503*

(2510)

2503

(2516.2)

2515

(2518)

05a 10×5 1.69
(2189,

2229)
2220 2219 2216 2217

2216*

(2218)

2216

(2220)

2217

(2218)

06a 10×5 2.56
(2162,

2216)
2199 2214 2201 2196

2196*

(2202.5)

2203

(2206.4)

2196

(2198)

07a 15×8 1.24
(2187,

2408)
2299 2283 2293 2307

2283*

(2295.5)

2283

(2297.6)

2307

(2309.8)

08a 15×8 2.42
(2061,

2093)
2069 2069 2069 2069

2069*

(2069)

2069

(2071.4)

2073

(2076)

09a 15×8 4.03
(2061,

2074)
2069 2066 2066 2066

2066*

(2066.8)

2066

(2067.4)

2066

(2067)

10a 15×8 1.24
(2178,

2362)
2301 2291 2307 2311

2291*

(2302.5)

2291

(2305.6)

2315

(2315.2)

11a 15×8 2.42
(2017,

2078)
2078 2069 2078 2063

2063*

(2072)

2063

(2065.6)

2071

(2072)

12a 15×8 4.03
(1969,

2047)
2034 2031 2040 2031

2031

(2034)

2034

(2038)

2030

(2030.6)

13a 20×10 1.34
(2161,

2302)
2257 2265 2260 2259

2257*

(2260.3)

2260

(2266.2)

2257

(2260)

14a 20×10 2.99
(2161,

2183)
2167 2189 2183 2176

2167*

(2178.8)

2167

(2168)

2167

(2167.6)

15a 20×10 5.02
(2161,

2171)
2167 2165 2178 2171

2165*

(2170.3)

2167

(2167.2)

2165

(2165.4)

16a 20×10 1.34
(2148,

2301)
2259 2256 2260 2256

2256

(2257.8)

2255

(2258.8)

2256

(2258)

17a 20×10 2.99
(2088,

2169)
2143 2140 2156 2143

2140*

(2145.5)

2141

(2144)

2140

(2142)

18a 20×10 5.02
(2057,

2139)
2137 2127 2131 2131

2127*

(2131.5)

2137

(2140.2)

2127

(2130.7)

MRE 2.15 2.20 2.27 2.13
1.94

(2.18)

2.01

(2.24)

2.12

(2.19)

#Best 6 7 3 6
16

(1)

13

(0)

11

(2)

CI-CPU 2891 2891 2891 2888
11560

(2890)

12335

(2467)

31030

(6206)

 23

Based on the results given in Table 4 on DPdata, we note that CDDS outperforms all other

best-known strategies in terms of mean relative error which is equal to 1.94% faced to 7.63%

for GA, 2.01% for TS, and 2.12% for hGA. Moreover, it provides 89% of best-known

solutions (16 among 18 test instances), while TS provides 72% and only 61% of solutions are

given by hGA algorithm.

Table 5 summarizes the Mean Relative Error (MRE) of the results obtained by CDDS (we

consider the best makespan resulted from four strategies of CDDS algorithm and the average

makespan), and those obtained by other best-known algorithms on HUdata.

Table 5. Performance comparison between the proposed CDDS and (TS, hGA) on HUdata

Instance N×m

Edata

(flex. = 1.15)

Rdata

(flex. = 2)

Vdata

(flex. [2.50,7.50])

CDDS TS hGA CDDS TS hGA CDDS TS hGA

mt06/10/20 6×6

10×10

20×5

0.00

(0.05)

0.00

(0.10)

0.00

(0.10)

0.34

(0.47)

0.34

(0.36)

0.34

(0.34)

0.00

(0.00)

0.00

(0.00)

0.00

(0.00)

la01 – la05
10×5

0.00

(0.73)

0.00

(0.00)

0.00

(0.00)

0.11

(0.28)

0.11

(0.24)

0.07

(0.07)

0.13

(0.23)

0.00

(0.11)

0.00

(0.00)

la06 – la10
15×5

0.00

(0.19)

0.00

(0.00)

0.00

(0.00)

0.03

(0.19)

0.03

(0.08)

0.00

(0.00)

0.00

(0.00)

0.00

(0.03)

0.00

(0.00)

la11 – la15
20×5

0.29

(1.12)

0.29

(0.29)

0.29

(0.29)

0.02

(0.37)

0.02

(0.02)

0.00

(0.00)

0.00

(0.00)

0.00

(0.01)

0.00

(0.00)

la16 – la20
10×10

0.49

(1.15)

0.00

(0.00)

0.02

(0.02)

1.64

(1.90)

1.73

(1.77)

1.64

(1.64)

0.00

(0.00)

0.00

(0.00)

0.00

(0.00)

la21 – la25
15×10

5.70

(6.27)

5.62

(5.93)

5.60

(5.66)

3.82

(4.26)

3.82

(4.38)

3.57

(3.69)

0.70

(1.01)

0.70

(0.85)

0.60

(0.68)

la26 – la30
20×10

3.96

(4.84)

3.47

(3.76)

3.28

(3.32)

0.66

(0.98)

0.59

(0.76)

0.64

(0.72)

0.11

(0.19)

0.11

(0.18)

0.11

(0.13)

la31 – la35
30×10

0.42

(0.83)

0.30

(0.32)

0.32

(3.32)

0.22

(0.41)

0.09

(0.14)

0.09

(0.12)

0.02

(0.04)

0.01

(0.03)

0.00

(0.00)

la36 – la40 15×15
9.10

(9.88)

8.99

(9.13)

8.82

(8.95)

4.85

(4.97)

3.97

(4.47)

3.86

(3.92)

0.00

(0.00)

0.00

(0.00)

0.00

(0.00)

MRE 2.32

(2.78)

2.17

(2.18)

2.13

(2.40)

1.34

(1.54)

1.24

(1.36)

1.19

(1.21)

0.12

(0.16)

0.095

(0.13)

0.082

(0.09)

CI-CPU
CDDS

5570

(1393)

TS
82840

(16568)

hGA
353725

(70745)

 24

We note that our algorithm is stronger with a higher degree of flexibility. Indeed, on Hurink

Vdata, it presents a tiny gap (equal to 0.12%).

If we considered all types of problems (Table 6), we note that



CDDS  N 4 and



CDDS  N2

outperform other strategies in terms of quality of solutions but they spend a little more time.

Indeed, they present a mean relative error of 7.46% within about 780 s. This result is not

surprising because of the use of the dynamic heuristic ECT which provides an additional time

to calculate new starting times and new assignments.

Table 6. Summary results of the different variants of CDDS

Instances Nb
CDDS-N1 CDDS-N2 CDDS-N3 CDDS-N4

MRE CPU MRE CPU MRE CPU MRE CPU

BRdata 10 15.76 96 15.27 96 15.33 96 15.03 96

BCdata 21 22.65 253 22.62 253 22.58 253 22.58 253

DPdata 18 2.15 2891 2.20 2891 2.27 2891 2.13 2884

Hurink Edata 43 2.88 358 2.85 471 2.85 419 3.14 454

Hurink Rdata 43 1.53 428 1.59 481 1.59 472 1.73 483

Hurink Vdata 43 0.15 480 0.21 488 0.21 479 0.16 507

Average 7.52 751 7.46 780 7.47 768 7.46 780

Table 7 displays computational results of the several groups of problems in terms of MRE.

The first column reports the data set, the second column reports the number of instances for

each class, and the next four columns report the MRE of the best solution obtained by CDDS

among the four strategies, GA, TS, and by hGA, respectively, with respect to the best-known

lower bound. The last three columns report the deviation between CDDS, GA, TS, and hGA

respectively (denoted by dev.).

 25

Table 7. Summary results (MRE) of the different algorithms CDDS and (GA, TS, hGA)

Instances Nb CDDS GA TS hGA
dev.

(CDDS,GA)

dev.

 (CDDS,TS)

dev.

(CDDS, hGA)

BRdata 10 14.98 17.53 15.14 14.92 -2.55 -0.16 0.06

BCdata 21 22.54 29.56 22.53 22.61 -7.02 0.01 -0.07

DPdata 18 1.94 7.63 2.01 2.12 -5.69 -0.07 -0.18

Hurink Edata 43 2.32 6.00 2.17 2.13 -3.68 0.15 0.19

Hurink Rdata 43 1.34 4.42 1.24 1.19 -3.08 0.10 0.15

Hurink Vdata 43 0.12 2.04 0.095 0.082 -1.92 0.03 0.04

Results of Table 7 show that CDDS method outperforms GA of Pezzella et al. [3] for the

optimization of all types, TS of Mastrolilli and Gambardella [2] on BRdata and DPdata, and

hGA of Gao et al. [4] on BCdata and DPdata. But hGA and TS algorithms both worked better

than the proposed CDDS algorithm on the HUdata.

Relating to the results obtained from the computational study, it seems that the proposed

algorithm can be an effective approach for the flexible job-shop scheduling problem.

5. Conclusion

In this paper, a Climbing Depth-bounded Discrepancy Search (CDDS) method is presented to

solve a Flexible Job Shop Scheduling Problem with the objective of minimizing makespan.

Our CDDS approach is based on ordering heuristics, involves two types of discrepancies,

operation selection and resource allocation, and uses the block notion to build neighborhood

structures that define relevant variables on which discrepancies are applied. The test problems

are benchmarks used in the literature. Considering the quality of solutions, our results are

better than the genetic algorithm of Pezzella et al. [3] on all instances, the tabu search of

Mastrolilli and Gambardella [2] on BRdata and DPdata, and the hybrid genetic algorithm of

Gao et al. [4] on BCdata and DPdata. Relating to the results obtained from the computational

study, we conclude that CDDS is an effective approach that is comparable with the state of the

art.

 26

References

[1] Garey, M.R., Johnson, D.S., Sethi, R., (1976). The complexity of flow shop and job shop

scheduling. Mathematics of Operations Research, 1:117-129.

[2] Mastrolilli M., Gambardella L.M., (2000). “Effective neighbourhood functions for the

flexible job shop problem”. Journal of Scheduling, 3:3–20.

[3] Pezzella F., Morganti G., Ciaschetti G., (2008). “A genetic algorithm for the flexible job-

shop scheduling problem”. Computers & Operations Research, 35(10):3202–3212.

[4] Gao J., Sun L., Gen M., (2008). “A hybrid genetic and variable neighborhood descent

algorithm for flexible job shop scheduling problems”. Computers & Operations

Research, 35(9):2892–2907.

[5] Ben Hmida A., Huguet M.-J., Lopez P., Haouari M., (2007). “Climbing Discrepancy

Search for solving the hybrid Flow shop”. European Journal of Industrial Engineering,

1(2):223–243.

[6] Jurisch B., (1992). “Scheduling jobs in shops with multi-purpose machines”. PhD

dissertation, Fachbereich Mathematik/Informatik, Universitat Osnabruck.

[7] Brucker P., Schlie R., (1990). “Job shop scheduling with multi-purpose machines”.

Computing, 45:369–375.

[8] Brandimarte P., (1993). “Routing and scheduling in a flexible job shop by tabu search”.

Annals of Operations Research, 41:157–183.

[9] Hurink E., Jurisch B., Thole M., (1994). “Tabu search for the job shop scheduling

problem with multi-purpose machines”. Operations Research-Spektrum, 15:205–215.

[10] Barnes J.W., Chambers J.B., (1996). “Flexible job shop scheduling by tabu search”.

Graduate Program in Operations and Industrial Engineering, The University of Texas at

Austin, Technical Report Series, ORP96-09.

[11] Dauzère-Pérès S., Paulli J., (1997). “An integrated approach for modelling and solving

the general multiprocessor job-shop scheduling problem using tabu search”. Annals of

Operations Research, 70:281–306.

[12] Yang J-B, (2001). “GA-based discrete dynamic programming approach for scheduling in

FMS environments”. IEEE Transactions on Systems, Man, Cybernetics—Part B;

31(5):824–835.

[13] Kacem, I., Hammadi, S., Borne, P., 2002. Approach by localization and multiobjective

evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions

on Systems, Man, and Cybernetics—Part C; 32(1):1–13.

 27

[14] Zhang H-P, Gen M., (2005). “Multistage-based genetic algorithm for flexible job-shop

scheduling problem”. Journal of Complexity International, 11:223–232.

[15] Xia W, Wu Z., (2005). “An effective hybrid optimization approach for multi-objective

flexible job-shop scheduling problem”. Computers & Industrial Engineering, 48:409–25.

[16] Fattahi P., Saidi Mehrabad M., Jolai F., (2007). “Mathematical modeling and heuristic

approaches to flexible job shop scheduling problems”. Journal of Intelligent

Manufacturing, 18(3):331–342.

[17] Tay J.C., Ho N.B., (2008). “Evolving dispatching rules using genetic programming for

solving multi-objective flexible job-shop problems”. Computers & Industrial

Engineering, 54(3):453–473.

[18] Harvey W.D., (1995). “Nonsystematic backtracking search”. PhD thesis, CIRL,

University of Oregon.

[19] Gacias B., Artigues C., Lopez P., (2009). “Parallel machine scheduling with precedence

constraints and setup times”. LAAS Research report 09104.

[20] Korf R.E., (1996). “Improved Limited Discrepancy Search”. Proceedings AAAI-96,

p.286–291.

[21] Walsh T., (1997). “Depth-bounded Discrepancy Search”. Proceedings IJCAI-97, p.1388–

1395, Nagoya, Japan.

[22] Milano M., Roli A., (2002). “On the relation between complete and incomplete search: an

informal discussion”. Proceedings CPAIOR’02, p.237–250, Le Croisic, France.

[23] Hansen P., Mladenovic N., (2001). “Variable neighborhood search: principles and

applications”. European Journal of Operational Research, 130:449–467.

[24] Fisher H., Thompson G.L., (1963). “Probabilistic learning combinations of local job shop

scheduling rules”. In Industrial Scheduling, J.F. Muth and G.L. Thompson (Eds),

Englewood Cliffs, NJ: Prentice-Hall. p.225–251.

[25] Lawrence S., (1984). “Supplement to resource constrained project scheduling: an

experimental investigation of heuristic scheduling techniques”. GSIA, Carnegie Mellon

University, Pittsburgh, PA.

[26] Dongarra J., (1998). “Performance of various computers using standard linear equations

software”. Computer Science Department, University of Tennessee, Knoxville,

Tennessee.

