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SYMMETRIC MONOIDAL STRUCTURE ON

NON-COMMUTATIVE MOTIVES

by

Denis-Charles Cisinski & Gonçalo Tabuada

Abstract. — In this article we further the study of non-commutative motives, ini-
tiated in [11, 42]. Our main result is the construction of a symmetric monoidal

structure on the localizing motivator Motloc
dg of dg categories. As an application, we

obtain : (1) a computation of the spectra of morphisms in Motloc
dg in terms of non-

connective algebraic K-theory; (2) a fully-faithful embedding of Kontsevich’s category
KMMk of non-commutative mixed motives into the base category Motloc

dg (e) of the
localizing motivator; (3) a simple construction of the Chern character maps from
non-connective algebraic K-theory to negative and periodic cyclic homology; (4) a
precise connection between Toën’s secondary K-theory and the Grothendieck ring of

KMMk; (5) a description of the Euler characteristic in KMMk in terms of Hochschild
homology.
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Introduction

Dg categories. — A differential graded (=dg) category, over a commutative base
ring k, is a category enriched over complexes of k-modules (morphisms sets are such
complexes) in such a way that composition fulfills the Leibniz rule : d(f ◦ g) = (df) ◦
g+(−1)deg(f)f ◦(dg). Dg categories enhance and solve many of the technical problems
inherent to triangulated categories; see Keller’s ICM adress [30]. In non-commutative
algebraic geometry in the sense of Bondal, Drinfeld, Kapranov, Kontsevich, Toën, Van
den Bergh, . . . [3, 4, 16, 17, 33, 34, 35, 48], they are considered as dg-enhancements
of derived categories of (quasi-)coherent sheaves on a hypothetic non-commutative
space.

Localizing invariants. — All the classical (functorial) invariants, such as Hochschild
homology, cyclic homology and its variants (periodic, negative, . . .), algebraic K-
theory, and even topological Hochschild homology and topological cyclic homology
(see [45]), extend naturally from k-algebras to dg categories. In order to study all
these classical invariants simultaneously, the second named author introduced in [42]
the notion of localizing invariant. This notion, that we now recall, makes use of the
language of Grothendieck derivators [28], a formalism which allows us to state and
prove precise universal properties; consult Appendix A. Let L : HO(dgcat) → D be
a morphism of derivators, from the derivator associated to the Morita model struc-
ture of dg categories (see §2.3), to a triangulated derivator (in practice, D will be the
derivator associated to a stable model category M, and L will come from a functor
dgcat → M which sends derived Morita equivalences to weak equivalences in M).
We say that L is a localizing invariant (see Definition 7.3) if it preserves filtered ho-
motopy colimits as well as the terminal object, and sends Drinfeld exact sequences of
dg categories

A −→ B −→ C 7→ L(A) −→ L(B) −→ L(C) −→ L(A)[1]

to distinguished triangles in the base category D(e) of D. Thanks to the work of
Keller [31, 32], Schlichting [41], Thomason-Trobaugh [47], and Blumberg-Mandell [2],
all the mentioned invariants satisfy localization(1), and so give rise to localizing invari-
ants. In [42], the second named author proved that there exists a localizing invariant

U loc
dg : HO(dgcat) −→ Motloc

dg ,

with values in a strong triangulated derivator (see §A.3), such that given any strong
triangulated derivator D, we have an induced equivalence of categories

(U loc
dg )∗ : Hom!(Motloc

dg , D)
∼−→ Homloc(HO(dgcat), D) .

(1)In the case of algebraic K-theory we consider its non-connective version.
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The left-hand side denotes the category of homotopy colimit preserving morphisms
of derivators, and the right-hand side the category of localizing invariants.

Because of this universality property, which is a reminiscence of motives, U loc
dg

is called the universal localizing invariant, Motloc
dg the localizing motivator, and the

base category Motloc
dg (e) of the localizing motivator the category of non-commutative

motives over k.

Symmetric monoidal structure. — The purpose of this article is to develop a new
ingredient in the theory of non-commutative motives: symmetric monoidal structures.
The tensor product extends naturally from k-algebras to dg categories, giving rise to
a symmetric monoidal structure on HO(dgcat); see Theorem 2.23. Therefore, it is
natural to consider localizing invariants which are symmetric monoidal. Examples
include Hochschild homology and the mixed and periodic complex constructions; see
Examples 7.9-7.11. The main result of this article is the following.

Theorem 0.1. — (see Theorem 7.5) The localizing motivator Motloc
dg carries a canon-

ical symmetric monoidal structure −⊗L −, making the universal localizing invariant
U loc

dg symmetric monoidal. Moreover, this tensor product preserves homotopy colimits
in each variable and is characterized by the following universal property: given any
strong triangulated derivator D, endowed with a monoidal structure which preserves
homotopy colimits, we have an induced equivalence of categories

(U loc
dg )∗ : Hom⊗

! (Motloc
dg , D)

∼−→ Hom⊗
loc(HO(dgcat), D) ,

where the left-hand side stands for the category of symmetric monoidal homotopy
colimit preserving morphisms of derivators, while the right-hand side stands for the
category symmetric monoidal morphisms of derivators which are also localizing invari-
ants; see §A.5. Furthermore, Motloc

dg admits an explicit symmetric monoidal Quillen
model.

The proof of Theorem 0.1 is based on an alternative description of Motloc
dg , with two

complementary aspects: a constructive one, and another given by universal properties.
The constructive aspect, i.e. the construction of an explicit symmetric monoidal

Quillen model for Motloc
dg , is described in the main body of the text. The key start-

ing point is the fact that homotopically finitely presented dg categories are stable
under derived tensor product; see Theorem 3.4. This allows us to obtain a small
symmetric monoidal category which “generates” the entire Morita homotopy cate-
gory of dg categories. Starting from this small monoidal category, we then construct
a specific symmetric monoidal Quillen model for each one of the derivators used in
the construction of Motloc

dg ; see §7.1.

The characterization of Motloc
dg by its universal property (as stated in Theorem 0.1),

relies on general results and constructions in the theory of Grothendieck derivators,
and is described in the appendix. We develop some general results concerning the
behavior of monoidal structures under classical operations : Kan extension (see The-
orem A.3), left Bousfield localization (see Proposition A.9) and stabilization (see
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Theorem A.15). Using these general results, we then characterize by a precise uni-
versal property each one of the Quillen models used in the construction of the new
symmetric monoidal Quillen model for Motloc

dg ; see §7.1.
Let us now describe some applications of Theorem 0.1.

Non-connective K-theory. — As mentioned above, non-connective algebraic K-
theory IK(−) is an example of a localizing invariant. In [11] the authors proved that

this invariant becomes co-representable in Motloc
dg (e) by the unit object U loc

dg (k) (where

k corresponds to k, seen as a dg category with one object). In other words, given any
dg category A, we have a natural isomorphism in the stable homotopy category of
spectra :

(0.0.1) RHom(U loc
dg (k), U loc

dg (A) ) ≃ IK(A) .

A fundamental problem of the theory of non-commutative motives is the computation
of the (spectra of) morphisms in the category of non-commutative motives between
any two objects. Using the monoidal structure of Theorem 0.1 we extend the above
natural isomorphism (0.0.1), and thus obtain a partial solution to this problem.

Theorem 0.2. — (see Theorem 8.2) Let B be a saturated dg category in the sense of
Kontsevich, i.e. its complexes of morphisms are perfect and B is perfect as a bimodule
over itself; see Definition 4.1. Then, for every small dg category A, we have a natural
isomorphism in the stable homotopy category of spectra

RHom(U loc
dg (B), U loc

dg (A) ) ≃ IK(rep(B,A)) ,

where rep(−,−) denotes the internal Hom-functor in the Morita homotopy category
of dg categories; see §2.4.

Given a quasi-compact and separated k-scheme X, there is a natural dg category
perf(X) which enhances the category of perfect complexes (i.e. of compact objects)
in the (unbounded) derived category Dqcoh(X) of quasi-coherent sheaves on X; see
Example 4.5. Moreover, when X is smooth and proper, the dg category perf(X) is a
saturated dg category. In this geometrical situation, we have the following computa-
tion.

Proposition 0.3. — (see Proposition 8.3) Given smooth and proper k-schemes X
and Y , we have a natural isomorphism in the stable homotopy category of spectra

RHom(U loc
dg (perf(X)),U loc

dg (perf(Y )) ) ≃ IK(X × Y ) ,

where IK(X × Y ) denotes the non-connective algebraic K-theory spectrum of X × Y .

Kontsevich’s category of non-commutative mixed motives. — In his non-
commutative algebraic geometry program [33, 34, 35], Kontsevich introduced the
category KMMk of non-commutative mixed motives; see §8.2. Roughly, KMMk is
obtained by taking a formal Karoubian triangulated envelope of the category of satu-
rated dg categories (with algebraic K-theory of bimodules as morphism sets). Using
Theorem 0.2, we prove the following result.
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Proposition 0.4. — (see Proposition 8.5) There is a natural fully-faithful embedding
(enriched over spectra) of Kontsevich’s category KMMk of non-commutative mixed

motives into the base category Motloc
dg (e) of the localizing motivator. The essential im-

age is the thick triangulated subcategory spanned by motives of saturated dg categories.

Note that, in contrast with Kontsevich’s ad hoc definition, the category Motloc
dg (e)

of non-commutative motives is defined purely in terms of precise universal properties.

Chern characters. — Let

E : HO(dgcat) −→ D

be a symmetric monoidal localizing invariant. Thanks to Theorem 0.1 there is a
(unique) symmetric monoidal homotopy colimit preserving morphism of derivators
Egm which makes the diagram

HO(dgcat)
E //

U loc
dg

��

D

Motloc
dg

Egm

;;wwwwwwwwww

commute (up to unique 2-isomorphism). We call Egm the geometric realization of E .
If E (k) ≃ 1 denotes the unit of D, we can also associate to E its absolute realization

Eabs := RHomD(1,Egm(−)) (see Definition 8.6)

Proposition 0.5. — (see Proposition 8.7) The geometric realization of E induces a
canonical Chern character

IK(−)⇒ RHom(1, E(−)) ≃ Eabs(U loc
dg (−)) .

Here, IK(−) and Eabs(U loc
dg (−)) are two morphisms of derivators defined on HO(dgcat).

Let A be a small dg category. When E is given by the mixed complex construction
(see Example 7.10), the absolute realization of U loc

dg (A) identifies with the negative

cyclic homology complex HC−(A) of A. Therefore by Proposition 0.5, we obtain a
canonical Chern character

IK(−)⇒ HC−(−)

from non-connective K-theory to negative cyclic homology; see Example 8.10. When
E is given by the composition of the mixed complex construction with the periodiza-
tion procedure (see Example 7.11), the absolute realization of U loc

dg (A) identifies with

the periodic cyclic homology complex HP(A) of A. Therefore by Proposition 0.5, we
obtain a canonical Chern character

IK(−)⇒ HP(−)

from non-connective K-theory to periodic cyclic homology; see Example 8.11.
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Toën’s secondary K-theory. — In his sheaf categorification program [50, 52],
Toën introduced a “categorified” version of algebraic K-theory, named secondary K-

theory. Given a commutative ring k, the secondary K-theory ring K
(2)
0 (k) of k is

roughly the quotient of the free abelian group on derived Morita isomorphism classes
of saturated dg categories, by the relations [B] = [A] + [C] coming from Drinfeld
exact sequences A → B → C. The multiplication is induced from the derived tensor
product; see §8.4. As Toën pointed out in [50], one of the motivations for the study of
this secondary K-theory is its expected connection with an hypothetical Grothendieck
ring of motives in the non-commutative setting. Thanks to the monoidal structure of
Theorem 0.1 we are now able to make this connection precise.

Definition 0.6. — (see Definition 8.16) Given a commutative ring k, the Grothendieck
ring K0(k) of non-commutative motives over k is the Grothendieck ring of Kontsevich

mixed motives (i.e. of the thick triangulated subcategory of Motloc
dg (e) generated by

the objects U loc
dg (A), where A runs over the family of saturated dg categories).

Kontsevich’s saturated dg categories can be characterized conceptually as the du-
alizable objects in the Morita homotopy category; see Theorem 4.8. Therefore, since
the universal localizing invariant U loc

dg is symmetric monoidal we obtain a ring homo-
morphism

Φ(k) : K
(2)
0 (k) −→ K0(k) .

Moreover, the Grothendieck ring of Definition 0.6 is non-trivial (see Remark 8.17),
functorial in k (see Remark 8.18), and the ring homomorphism Φ(k) is functorial in
k and surjective “up to cofinality” (see Remark 8.19). Furthermore, any realization

of K
(2)
0 (k) (i.e. ring homomorphism K

(2)
0 (k) → R), which is induced from a sym-

metric monoidal localizing invariant, factors through Φ(k). An interesting example is
provided by Toën’s rank map

rk0 : K
(2)
0 (k) −→ K0(k) (see Remark 8.19).

Euler characteristic. — Recall that, in any symmetric monoidal category, we have
the notion of Euler characteristic χ(X) of a dualizable object X (see Definition 8.20).
In the symmetric monoidal category of non-commutative motives we have the follow-
ing computation.

Proposition 0.7. — (see Proposition 8.24) Let A be a saturated dg category. Then,
χ(U loc

dg (A)) is the element of the Grothendieck group K0(k) which is associated to the

(perfect) Hochschild homology complex HH (A) of A.

When k is the field of complex numbers, the Grothendieck ring K0(C) is naturally
isomorphic to Z and the Hochschild homology of a smooth and proper k-scheme X
agrees with the Hodge cohomology H∗(X, Ω∗

X) of X. Therefore, when we work over
C, and if perf(X) denotes the (saturated) dg category of perfect complexes over X,
the Euler characteristic of U loc

dg (perf(X)) is the classical Euler characteristic of X.
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1. Preliminaries

1.1. Notations. — Throughout the article we will work over a fixed commutative

and unital base ring k.

We will denote by C(k) be the category of (unbounded) complexes of k-modules;

see [24, §2.3]. We will use co-homological notation, i.e. the differential increases the

degree. The category C(k) is a symmetric monoidal model category (see [24, Defini-

tion 4.2.6]), where one uses the projective model structure for which weak equivalences

are quasi-isomorphisms and fibrations are surjections; see [24, Proposition 4.2.13].

The category of sets will be denoted by Set, the category of simplicial sets by sSet,

and the category of pointed simplicial sets by sSet•; see [20, §I]. The categories sSet

and sSet• are symmetric monoidal model categories; see [20, Proposition 4.2.8]. The

weak equivalences are the maps whose geometric realization is a weak equivalence of

topological spaces, the fibrations are the Kan-fibrations, and the cofibrations are the

inclusion maps.

We will denote by SpN the category of spectra and by SpΣ the category of symmetric

spectra (of pointed simplicial sets); see [27].

Finally, the adjunctions will be displayed vertically with the left (resp. right)

adjoint on the left- (resp. right-) hand side.

1.2. Triangulated categories. — Throughout the article we will use the language

of triangulated categories. The reader unfamiliar with this language is invited to

consult Neeman’s book [39] or Verdier’s original monograph [53]. Recall from [39,

Definition 4.2.7] that given a triangulated category T admitting arbitrary small co-

products, an object G in T is called compact if for each family {Yi}i∈I of objects in

T , the canonical morphism
⊕

i∈I

HomT (G, Yi)
∼−→ HomT (G,

⊕

i∈I

Yi)

is invertible. We will denote by Tc the category of compact objects in T .

1.3. Quillen model categories. — Throughout the article we will use freely the

language of Quillen model categories. The reader unfamiliar with this language is

invited to consult Goerss & Jardine [20], Hirschhorn [23], Hovey [24], or Quillen’s
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original monograph [40]. Given a model category M, we will denote by Ho(M) its

homotopy category and by

Map(−,−) : Ho(M)op × Ho(M) −→ Ho(sSet)

its homotopy function complex; see [23, Definition 17.4.1].

1.4. Grothendieck derivators. — Throughout the article we will use the lan-

guage of Grothendieck derivators. Derivators allow us to state and prove precise

universal properties and to dispense with many of the technical problems one faces

in using Quillen model categories. Since this language may be less familiar to the

reader, we revise it in the appendix. Given a model category M, we will denote by

HO(M) its associated derivator; see §A.2. Any triangulated derivator D is canonically

enriched over spectra; see §A.9. We will denote by RHomD(X, Y ) the spectrum of

maps from X to Y in D. When there is no ambiguity, we will write RHom(X, Y )

instead of RHomD(X, Y ).

2. Background on dg categories

In this section we collect and recall the notions and results on the (homotopy)

theory of dg categories which will be used throughout the article; see [43, 44, 48].

At the end of the section we prove a new result: the derivator associated to the

Morita model structure carries a symmetric monoidal structure; see Theorem 2.23.

This result is the starting point of the article, since it allow us to define symmetric

monoidal localizing invariants; see Definition 7.6.

Definition 2.1. — A small dg category A is a C(k)-category; see [5, Definition 6.2.1].

Recall that this consists of the following data :

- a set of objects obj(A) (usually denoted by A itself);

- for each ordered pair of objects (x, y) in A, a complex of k-modules A(x, y);

- for each ordered triple of objects (x, y, z) in A, a composition morphism in C(k)

A(y, z)⊗A(x, y) −→ A(x, z) ,

satisfying the usual associativity condition;

- for each object x in A, a morphism k → A(x, x), satisfying the usual unit

condition with respect to the above composition.

Definition 2.2. — A dg functor F : A → B is a C(k)-functor; see [5, Defini-

tion 6.2.3]. Recall that this consists of the following data :

- a map of sets F : obj(A) −→ obj(B);

- for each ordered pair of objects (x, y) in A, a morphism in C(k)

F (x, y) : A(x, y) −→ B(Fx, Fy) ,

satisfying the usual unit and associativity conditions.
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Notation 2.3. — We denote by dgcat the category of small dg categories.

2.1. Dg cells. —

(i) Let k be the dg category with one object ∗ and such that k(∗, ∗) := k (in degree

zero). Note that given a small dg category B, there is a bijection between the

set of dg functors from k to B and the set of objects of B.

(ii) For n ∈ Z, let Sn be the complex k[n] (with k concentrated in degree n) and Dn

the mapping cone on the identity of Sn−1. We denote by S(n) the dg category

with two objects 1 and 2 such that S(n)(1, 1) = k , S(n)(2, 2) = k , S(n)(2, 1) =

0, S(n)(1, 2) = Sn and composition given by multiplication. We denote by D(n)

the dg category with two objects 3 and 4 such that D(n)(3, 3) = k, D(n)(4, 4) =

k , D(n)(4, 3) = 0 , D(n)(3, 4) = Dn and composition given by multiplication.

(iii) For n ∈ Z, let ι(n) : S(n− 1)→ D(n) be the dg functor that sends 1 to 3, 2 to

4 and Sn−1 to Dn by the identity on k in degree n− 1 :

S(n− 1)
ι(n)

// D(n)

1

k

��

Sn−1

��

� // 3

k

��

Dn

��

incl //

2

k

EE
� // 4

k

EE

where

Sn−1 incl // Dn

0 //

��

0

��
0 //

��
k

id��
k

id //

��
k

��

(degree n−1)

0 // 0

Notation 2.4. — Let I be the set consisting of the dg functors {ι(n)}n∈Z and the

dg functor ∅ → k (where the empty dg category ∅ is the initial object in dgcat).

Definition 2.5. — A dg category A is called a dg cell (resp. a finite dg cell) if the

unique dg functor ∅ → A can be expressed as a transfinite (resp. finite) composition

of pushouts of dg functors in I; see [23, Definition 10.5.8(2)].

2.2. Dg modules. — Let A be a small (fixed) dg category.

Definition 2.6. — - The category H0(A) has the same objects as A and mor-

phisms given by H0(A)(x, y) := H0(A(x, y)), where H0(−) denotes the 0-th

co-homology group functor.

- The opposite dg category Aop of A has the same objects as A and complexes of

morphisms given by Aop(x, y) := A(y, x).

- A right dg A-module M (or simply aA-module) is a dg functor M : Aop → Cdg(k)

with values in the dg category Cdg(k) of complexes of k-modules.



10 D.-C. CISINSKI & G. TABUADA

We denote by C(A) the category of right dg A-modules. Its objects are the right

dg A-modules and its morphisms are the natural transformations of dg functors; see

[30, §2.3]. The differential graded structure of Cdg(k) makes C(A) naturally into a

dg category; see [30, §3.1] for details. We denote by Cdg(A) this dg category of

right dg A-modules. Recall from [30, Theorem 3.2] that C(A) carries a standard

projective model structure. A morphism M → M ′ in C(A) is a weak equivalence,

resp. a fibration, if for any object x in A, the induced morphism M(x) → M ′(x) is

a weak equivalence, resp. a fibration, in the projective model structure on C(k). In

particular, every object is fibrant. Moreover, the dg category Cdg(A) endowed with

this model structure is a C(k)-model category in the sense of [24, Definition 4.2.18].

Notation 2.7. — - We denote by Ddg(A) the full dg subcategory of fibrant and

cofibrant objects in Cdg(A).

- We denote by D(A) the derived category of A, i.e. the localization of C(A) with

respect to the class of weak equivalences. Note that D(A) is a triangulated

category with arbitrary small coproducts. Recall from §1.2 that we denote by

Dc(A) the category of compact objects in D(A).

Since Cdg(A) is a C(k)-model category, [48, Proposition 3.5] implies that we have

a natural equivalence of (triangulated) categories

(2.2.1) H0(Ddg(A)) ≃ D(A) .

We denote by

h : A −→ Cdg(A) x 7→ A(−, x) ,

the classical Yoneda dg functor; see [5, §6.3]. Since the A-modules A(−, x), x in A,

are fibrant and cofibrant in the projective model structure, the Yoneda functor factors

through the inclusion Ddg(A) ⊂ Cdg(A). Thanks to the above equivalence (2.2.1), we

obtain an induced fully-faithful functor

h : H0(A) →֒ D(A) x 7→ A(−, x) .

Finally, let F : A → B be a dg functor. As shown in [48, §3] it induces a restric-

tion/extension of scalars Quillen adjunction (on the left-hand side)

C(B)

F∗

��

D(B)

F∗

��
C(A)

F!

OO

D(A) ,

LF!

OO

which can be naturally derived (on the right-hand side).
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2.3. Morita model structure. —

Definition 2.8. — A dg functor F : A → B is a called a derived Morita equivalence

if the restriction of scalars functor F ∗ : D(B)
∼→ D(A) is an equivalence of triangulated

categories. Equivalently, F is a derived Morita equivalence if the extension of scalars

functor LF! : D(A)
∼→ D(B) is an equivalence of triangulated categories.

Theorem 2.9. — The category dgcat carries a cofibrantly generated Quillen model

structure (called the Morita model structure), whose weak equivalences are the de-

rived Morita equivalences. Moreover, its set of generating cofibrations is the set I of

Notation 2.4.

Proof. — See [43, Théorème 5.3].
√

Notation 2.10. — We denote by Hmo the homotopy category hence obtained.

Recall from [43, Remarque 5.4] that the fibrant objects of the Morita model struc-

ture (called the Morita fibrant dg categories) are the dg categories A for which the

image of the induced functor

h : H0(A) →֒ D(A) x 7→ A(−, x)

is stable under (co-)suspensions, cones and direct factors.

2.4. Monoidal structure. —

Definition 2.11. — Let A1 and A2 be small dg categories. The tensor product

A1⊗A2 of A1 with A2 is defined as follows: the set of objects of A1⊗A2 is obj(A1)×
obj(A2) and given objects (x, x′) and (y, y′) in A1 ⊗A2, we set

(A1 ⊗A2)((x, x′), (y, y′)) = A1(x, y)⊗A2(x
′, y′) .

Remark 2.12. — The tensor product of dg categories gives rise to a symmetric

monoidal structure on dgcat, with unit object the dg category k (see §2.1). Moreover,

this model structure is easily seen to be closed. However, the model structure of

Theorem 2.9 endowed with this symmetric monoidal structure is not a symmetric

monoidal model category, as the tensor product of two cofibrant objects in dgcat is

not cofibrant in general; see [48, §4]. Nevertheless, the tensor product can be derived

into a bifunctor

−⊗L − : Hmo× Hmo −→ Hmo (A1,A2) 7→ Q(A1)⊗A2 =: A1 ⊗L A2 ,

where Q(A1) is a Morita cofibrant resolution of A1.

Now, let B and A be small dg categories. For any object x in B, we have a dg

functor A → Bop⊗A. It sends an object y in A to (x, y) and for each ordered pair of

objects (y, z) in A, the morphism in C(k)

A(y, z) −→ (Bop ⊗A)((x, y), (x, z)) = Bop(x, x)⊗A(y, z)
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is given by the tensor product of the unit morphism k → Bop(x, x) with the identity

morphism on A(y, z). Take a Morita cofibrant resolution Q(Bop) of Bop with the same

set of objects; see [48, Proposition 2.3(2)]. Since Bop and Q(Bop) have the same set

of objects, one sees that for any object x in B, we have a dg functor

(2.4.1) ix : A −→ Q(Bop)⊗A =: Bop ⊗L A .

Definition 2.13. — Let A be a small dg category. A A-module M is called perfect

if it is compact as an object in the derived category D(A). We denote by Cdg(A)pe

the dg category of perfect A-modules, and put

perf(A) = Cdg(A)pe ∩ Ddg(A) .

We thus have an equivalence of triangulated categories

H0(perf(A)) ≃ Dc(A) .

Let B andA be small dg categories. A (Bop⊗LA)-module X is said to be locally perfect

over B if, for any object x in B, the A-module i∗x(X) (see (2.4.1) and §2.2) is perfect.

We denote by Cdg(Bop ⊗LA)lpe the dg category of locally perfect (Bop ⊗LA)-modules

over B, and put

rep(B,A) = Cdg(Bop ⊗L A)lpe ∩ Ddg(Bop ⊗L A) .

Note that H0(rep(B,A)) is canonically equivalent to the full triangulated subcategory

of D(Bop ⊗L A) spanned by the locally perfect (Bop ⊗L A)-modules over B.

Remark 2.14. — For any dg category A, the Yoneda embedding h : A → perf(A)

is a derived Morita equivalence, and perf(A) is Morita fibrant. This construction thus

provides us a canonical fibrant replacement functor for the Morita model structure.

Theorem 2.15 (Toën). — Given small dg categories B and A, we have a natural

bijection

HomHmo(B,A) ≃ Iso H0(rep(B,A))

(where Iso C stands for the set of isomorphism classes of objects in C). Moreover,

given small dg categories A1, A2, and A3, the composition in Hmo corresponds to the

derived tensor product of bimodules :

Iso H0(rep(A1,A2))× Iso H0(rep(A2,A3)) −→ Iso H0(rep(A1,A3))

([X], [Y ]) 7−→ [X ⊗L

A2
Y ] .

Proof. — See [48, Corollary 4.8] and [43, Remarque 5.11].
√

Theorem 2.16 (Toën). — The derived tensor product −⊗L − on Hmo admits the

bifunctor

rep(−,−) : Hmoop × Hmo −→ Hmo

as an internal Hom-functor.

Proof. — See [48, Theorem 6.1] and [43, Remarque 5.11].
√
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Corollary 2.17. — Given small dg categories A1, A2 and A3, we have a natural

isomorphism in Ho(sSet)

(2.4.2) Map(A1 ⊗L A2,A3) ≃ Map(A1, rep(A2,A3)) .

Proof. — See [48, Corollary 6.4] and [43, Remarque 5.11].
√

Remark 2.18. — Observe that, when B = k, the dg category Bop ⊗L A identifies

with A, which gives a natural isomorphism in Hmo :

(2.4.3) rep(k,A) ≃ perf(A) .

We finish this section by showing how to endow the derivator associated to the

Morita model structure on dg categories with a symmetric monoidal structure; see

Theorem 2.23. Recall from §2.4 that the Morita model structure is not a monoidal

model structure and so we cannot apply the general Proposition A.2. We sidestep

this difficulty by introducing the notion of k-flat dg category.

Definition 2.19. — A complex of k-modules is called k-flat if for any acyclic com-

plex N , the complex M ⊗N is acyclic.

A dg category is called k-flat if for each ordered pair of objects (x, y) in A, the

complex A(x, y) is k-flat.

Notation 2.20. — We denote by dgcatflat the category of k-flat dg categories.

Remark 2.21. — Clearly dgcatflat is a full subcategory of dgcat. Since complexes of

k-flat modules are stable under tensor product, the category dgcatflat is a symmetric

monoidal full subcategory of dgcat (see §2.4). Moreover, the tensor product

−⊗− : dgcatflat × dgcatflat −→ dgcatflat

preserves derived Morita equivalences (in both variables).

Notation 2.22. — We denote by HO(dgcat) the derivator associated to the Morita

model structure on dg categories; see Theorem 2.9.

Theorem 2.23. — The derivator HO(dgcat) carries a symmetric monoidal struc-

ture − ⊗L −; see §A.5. Moreover, the induced symmetric monoidal structure on

HO(dgcat)(e) = Hmo coincides with the one described in Remark 2.12.

Proof. — Let HO(dgcatflat) = dgcatflat[Mor−1] be the prederivator associated to the

class Mor of derived Morita equivalences in dgcatflat; see §A.1. Since dgcatflat is

a symmetric monoidal category, and the tensor product preserves the class Mor,

i.e. Mor ⊗Mor ⊂ Mor, the prederivator HO(dgcatflat) carries a natural symmetric

monoidal structure; see §A.5. Now, choose a functorial Morita cofibrant resolution

functor

Q : dgcat −→ dgcat Q⇒ Id .
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Thanks to [48, Proposition 2.3(3)] every cofibrant dg category is k-flat, and so we

obtain functors

i : dgcatflat →֒ dgcat Q : dgcat −→ dgcatflat

and natural transformations

i ◦Q⇒ Id Q ◦ i⇒ Id .(2.4.4)

Since the functors i and Q preserve derived Morita equivalences and the above natural

transformations (2.4.4) are objectwise derived Morita equivalences, we obtain by 2-

functoriality (see §A.1) morphisms of derivators

i : HO(dgcatflat) −→ HO(dgcat) Q : HO(dgcat) −→ HO(dgcatflat)

which are quasi-inverse to each other. Using this equivalence of derivators, we trans-

port the monoidal structure from HO(dgcatflat) to HO(dgcat). The fact that the

induced monoidal structure on HO(dgcat)(e) = Hmo coincides with the one described

in Remark 2.12 is now clear.
√

Proposition 2.24. — The tensor product on HO(dgcat) of Theorem 2.23 preserves

homotopy colimits in each variable.

Proof. — This follows immediately from Corollary 2.17.
√

3. Homotopically finitely presented dg categories

In this section we give a new characterization of homotopically finitely presented

dg categories; see Theorem 3.3(3). Using this new characterization we show that

homotopically finitely presented dg categories are stable under derived tensor product;

see Theorem 3.4. This stability result will play a key role in the construction of a

symmetric monoidal model structure on the category of non-commutative motives;

see Section 7.

Proposition 3.1. — For any small dg category A and n ∈ Z, we have natural iso-

morphisms in Hmo

S(n)op ⊗A ≃ S(n)op ⊗L A ≃ rep(S(n),A) .

Proof. — Since S(n) ≃ S(n)op is cofibrant, we obtain the following isomorphism in

Hmo

S(n)op ⊗L A ≃ S(n)op ⊗A .

By construction, the dg category S(n) is also locally perfect, i.e. its complexes of

morphisms are perfect complexes of k-modules; see [51, Definition 2.4(1)]. We obtain

then by [51, Lemma 2.8] the following inclusion

S(n)op ⊗A ≃ perf(S(n)op ⊗L A) ⊂ rep(S(n),A) .
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Let us now prove the converse inclusion. Observe that we have two natural dg functors

i1 : A −→ S(n)op ⊗A
x 7−→ (1, x)

i2 : A −→ S(n)op ⊗A
x 7−→ (2, x)

,

and the category of (S(n)op ⊗A)-modules identifies with the category of morphisms

of degree n in C(A), i.e. to the category of triples (M, M ′, f), where M and M ′ are A-

modules, and f : M −→M ′[n] is a morphism of A-modules. Under this identification,

we obtain the following extension of scalars functors (see §2.2) :

(i1)! : C(A) −→ C(S(n)op ⊗A) M 7−→ (M,M [−n], 1M )

(i2)! : C(A) −→ C(S(n)op ⊗A) M 7−→ (0, M, 0) .

Now, let X be an object in rep(S(n),A). Note that X corresponds to a cofibration

f : M // // M ′[n]

in C(A) between cofibrant and perfect A-modules (see Definition 2.13). Consider the

following short exact sequence of morphisms of A-modules

(3.0.5)

(M [−n])[n] = M // f // M ′[n] // coker(f) = (coker(f)[−n])[n]

M

1M

OO

M
OO
f

OO

// 0

OO

where coker(f) denotes the cokernel of f in the category C(A). Since M and M ′[n]

are cofibrant and perfect A-modules, and f is a cofibration, the A-module coker(f)

is also cofibrant and perfect. Perfect modules are stable under suspension, and so

coker(f)[−n] is a perfect (and cofibrant) A-module. We have natural isomorphisms :

(i1)!(M) ≃ (M,M [−n], 1M ) and (i2)!(coker(f)[−n]) ≃ (0, coker(f)[−n], 0) .

Since the extension of scalars functors L(i1)! and L(i2)! preserve perfect modules,

these two objects are perfect. Finally, since perf(S(n)op⊗A) is stable under extensions

in Ddg(S(n)op ⊗A), and in the above short exact sequence (3.0.5) the left and right

vertical morphisms belong to perf(S(n)op ⊗ A), we conclude that the object X also

belongs to perf(S(n)op ⊗A).
√

Definition 3.2 ([51, Definition 2.1(3)]). — Let M be a Quillen model category.

An object X inM is called homotopically finitely presented if for any filtered system

of objects {Yj}j∈J inM, the induced map

hocolim
j∈J

Map(X, Yj) −→ Map(X, hocolim
j∈J

Yj)

is an isomorphism in Ho(sSet).

Theorem 3.3. — Let B be a small dg category. In the Morita model structure (see

Theorem 2.9) the following conditions are equivalent :
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(1) The dg category B is homotopically finitely presented;

(2) The dg category B is a retract in Hmo of a finite dg cell (see Definition 2.5);

(3) For any filtered system {Aj}j∈J of dg categories, the induced morphism

(3.0.6) hocolim
j∈J

rep(B,Aj)
∼−→ rep(B,hocolim

j∈J
Aj)

is an isomorphism in Hmo.

Proof. — (1) ⇔ (2) : This equivalence follows from [42, Proposition 5.2] and [42,

Example 5.1].

(3) ⇒ (1) : Let {Aj}j∈J be a filtered system of dg categories. By hypothesis, we

have an induced isomorphism in Hmo

(3.0.7) hocolim
j∈J

rep(B,Aj)
∼−→ rep(B,hocolim

j∈J
Aj) .

Thanks to Corollary 2.17 we have, for any dg category A, natural isomorphisms in

Ho(sSet) :

Map(B,A) ≃ Map(k ⊗L B,A) ≃ Map(k, rep(B,A)) .

The dg category k is a finite dg cell, and so using equivalence (1)⇔ (2) we conclude

that k is homotopically finitely presented. Therefore, by applying the functor

Map(k,−) : Hmo −→ Ho(sSet)

to the above isomorphism (3.0.7), we obtain an induced isomorphism in Ho(sSet)

hocolim
j∈J

Map(B,Aj)
∼−→ Map(B,hocolim

j∈J
Aj) .

This shows that B is homotopically finitely presented.

(2)⇒ (3) : The class of objects in Hmo which satisfy condition (3) is clearly stable

under retracts. Moreover, given a small dg category A, the functor

rep(−,A) : Hmoop −→ Hmo

sends homotopy colimits to homotopy limits. Since by construction homotopy pull-

backs in Hmo commute with filtered homotopy colimits, we conclude that the class of

objects in Hmo which satisfy condition (3) is also stable under homotopy pushouts.

Therefore, it is enough to verify condition (3) for the domains and codomains of the

elements of the set I; see Notation 2.4. If B = ∅ this is clear. The case where B = k

was proved in [51, Lemma 2.10]. If B = D(n), n ∈ Z, we have a natural derived

Morita equivalence

k ∐L

∅ k ≃ k ∐ k
∼−→ D(n) .

Therefore, it remains to prove the case where B = S(n), n ∈ Z. Since by Proposi-

tion 2.24 the derived tensor product preserves homotopy colimits, this case follows

automatically from Proposition 3.1.
√
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Theorem 3.4. — Let B1 and B2 be homotopically finitely presented dg categories.

Then B1 ⊗L B2 is a homotopically finitely presented dg category.

Proof. — Let {Aj}j∈J be a filtered system of dg categories. The proof is a conse-

quence of the following weak equivalences :

Map(B1 ⊗L B2,hocolim
j∈J

Aj) ≃ Map(B1, rep(B2,hocolim
j∈J

Aj))(3.0.8)

≃ Map(B1,hocolim
j∈J

rep(B2,Aj))(3.0.9)

≃ hocolim
j∈J

Map(B1, rep(B2,Aj))(3.0.10)

≃ hocolim
j∈J

Map(B1 ⊗L B2,Aj) .(3.0.11)

Equivalences (3.0.8) and (3.0.11) follow from Corollary 2.17, Equivalence (3.0.9) fol-

lows from Theorem 3.3, and Equivalence (3.0.10) follows from Definition 3.2.
√

4. Saturated dg categories

In this section we introduce Kontsevich’s notion of saturated dg category. Following

Toën’s work, we characterize these dg categories as the dualizable objects in the Morita

homotopy category; see Theorem 4.8. This conceptual characterization will play an

important role in our applications; see Section 8.

Definition 4.1 (Kontsevich). — ([33, 35, 36])

- A small dg category A is called smooth if the right dg (Aop ⊗L A)-module

A(−,−) : A⊗L Aop −→ Cdg(k) (x, y) 7→ A(y, x)(4.0.12)

is perfect; see Definition 2.13.

- A small dg category A is called proper if for each ordered pair of objects (x, y)

in A, the complex of k-modules A(x, y) is perfect.

- A small dg category A is called saturated if it is smooth and proper.

Remark 4.2. — Given a dg functor F : B → A, we have a natural (Bop ⊗L A)-

module

B ⊗L Aop −→ Cdg(k) (x, y) 7→ A(y, Fx) ,

which belongs to rep(B,A) (see Definition 2.13). The above (Aop ⊗L A)-module

A(−,−) (4.0.12) is obtained by taking B = A and F the identity dg functor.

Notation 4.3. — Note that the class of smooth (resp. proper) dg categories is

invariant under derived Morita equivalences (see Definition 2.8). We denote by Hmosat

the full subcategory of Hmo (see Notation 2.10) whose objects are the saturated dg

categories.
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Example 4.4. — Consider the dg categories S(n), n ≥ 0, from §2.1(ii). By construc-

tion these dg categories are proper. Thanks to Proposition 3.1, we have a natural

isomorphism S(n)op ⊗L S(n) ≃ rep(S(n),S(n)) in Hmo. Since the (S(n)op ⊗L S(n))-

module S(n)(−,−) belongs to rep(S(n),S(n)) (see Remark 4.2) and we have a natural

derived Morita equivalence S(n)op⊗LS(n)→ perf(S(n)op⊗LS(n)) (see Remark 2.14),

we conclude that the dg categories S(n) are also smooth. Therefore, they are satu-

rated.

Example 4.5. — (i) Let X be a quasi-compact and separated k-scheme. Consider

the category C(QCoh(X)) of (unbounded) complexes of quasi-coherent sheaves

on X. Thanks to [26], C(QCoh(X)) is a model category with monomorphisms

as cofibrations and quasi-isomorphisms as weak equivalences. Moreover, when

endowed with its natural C(k)-enrichment, C(QCoh(X)) becomes a C(k)-model

category in the sense of [24, Definition 4.2.18]. Let Lqcoh(X) be the dg category

of fibrant objects in C(QCoh(X)). Note that H0(Lqcoh(X)) is naturally equiva-

lent to the (unbounded) derived category Dqcoh(X) of quasi-coherent sheaves on

X. Finally, let perf(X) be the full dg subcategory of Lqcoh(X) whose objects are

the perfect complexes. Note that H0(perf(X)) is naturally equivalent to the cat-

egory of compact objects in Dqcoh(X). Thanks to Toën (see [51, Lemma 3.27]),

when X is a smooth and proper k-scheme, perf(X) is a saturated dg category.

(ii) Let A be a k-algebra, which is projective of finite rank as a k-module, and of

finite global cohomological dimension. Then, the dg category of perfect com-

plexes of A-modules is a saturated dg category.

(iii) For examples coming from deformation quantization, we invite the reader to

consult [33].

Definition 4.6. — Let C be a symmetric monoidal category with monoidal product

⊗ and unit object 1. An object X in C is called dualizable (or rigid) if there exists

an object X∨ in C, and maps ev : X ⊗X∨ → 1 and δ : 1 → X∨ ⊗X such that the

composites

(4.0.13) X ≃ X ⊗ 1
id⊗δ−→ X ⊗X∨ ⊗X

ev⊗id−→ 1⊗X ≃ X

and

(4.0.14) X∨ ≃ 1⊗X∨ δ⊗id−→ X∨ ⊗X ⊗X∨ id⊗ev−→ X∨ ⊗ 1 ≃ X∨

are identities. The object X∨ is called the dual of X, the map ev is called the

evaluation map, and the map δ is called the co-evaluation map.

Remark 4.7. — (i) Given ((X∨)1, ev1, δ1) and ((X∨)2, ev2, δ2) as in Definition 4.6,

there is a unique isomorphism (X∨)1
∼→ (X∨)2 making the natural diagrams

commute. Therefore, the dual of X, together with the evaluation and the co-

evaluation maps, is well-defined up to unique isomorphism.
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(ii) Let X be a dualizable object in C. Thanks to Equations (4.0.13) and (4.0.14),

the evaluation and co-evaluation maps give rise to an adjunction :

(4.0.15) C
X∨⊗−

��
C

−⊗X

OO

In fact, an object X of C is dualizable if and only if there exists an object X ′,

together with a functorial isomorphism

HomC(Y ⊗X, Z) ≃ HomC(Y,X ′ ⊗ Z)

for any objects Y and Z in C (and of course such an X ′ is a dual of X). In

other words, X is dualizable with dual X∨ if and only if, for any object Z of C,
X∨ ⊗ Z is the internal Hom object from X to Z.

(iii) Let X and Y be dualizable objects in C. Then X⊗Y is also a dualizable object

with dual Y ∨ ⊗X∨.

(iv) Let F : C → C′ be a symmetric monoidal functor. Then, if X is a dualizable

object in C, F (X) is a dualizable object in C′ with dual F (X∨).

We are now ready to state the following folklore result:

Theorem 4.8. — The dualizable objects in the Morita homotopy category Hmo (see

§2.4) are the saturated dg categories. Moreover, the dual of a saturated dg category A
is its opposite dg category Aop.

Proof. — Let us start by introducing the category DGCAT. Its objects are the small

dg categories. Given small dg categories B and A, the set of morphisms from B to A
is the set of isomorphism classes in D(Bop ⊗L A). Given small dg categories A1, A2,

and A3, the composition corresponds to the derived tensor product of bimodules :

IsoD(Aop
1 ⊗L A2)× IsoD(Aop

2 ⊗L A3) −→ IsoD(Aop
1 ⊗L A3)

([X], [Y ]) 7→ [X ⊗L

A2
Y ] .

As in the case of Hmo, the derived tensor product of dg categories gives rise to a

symmetric monoidal structure on DGCAT, with unit object the dg category k. The

key property of DGCAT is that all its objects are dualizable: given a small dg category

A, take for dual its opposite dg category Aop, for evaluation map the isomorphism

class in D((A⊗L Aop)op ⊗L k) ≃ D(Aop ⊗A) of the (Aop ⊗L A)-module

A(−,−) : A⊗L Aop −→ Cdg(k) (x, y) 7→ A(y, x) ,(4.0.16)

and for co-evaluation map the isomorphism class in D(kop⊗L (Aop⊗LA)) ≃ D(Aop⊗
A) of the same (Aop ⊗L A)-module (4.0.16). With this choices, both composites

(4.0.13) and (4.0.14) are identities. Note also that, by construction of DGCAT, and

by Theorem 2.15, we have a natural symmetric monoidal functor

Hmo −→ DGCAT A 7→ A ,(4.0.17)
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which is faithful but not full.

Let A be a dualizable object in Hmo, with dual A∨, evaluation map ev : A⊗LA∨ →
k and co-evaluation map δ : k → A∨ ⊗L A. Since the above functor (4.0.17) is

symmetric monoidal, Remark 4.7(iv) implies that A is dualizable in DGCAT. By

unicity of duals (see Remark 4.7(i)), A∨ is the opposite dg category Aop, and ev and

δ are the isomorphism class in D(Aop⊗LA) of the above (Aop⊗LA)-module A(−,−)

(see 4.0.16). The morphism ev belongs to Hmo, and so A(−,−) takes values in perfect

complexes of k-modules. We conclude then that A is proper. Similarly, since δ is a

morphism in Hmo, A(−,−) belongs to perf(Aop ⊗LA). In this case we conclude that

A is smooth. In sum, we have shown that A is saturated and that A∨ = Aop.

Now, let A be a saturated dg category. Since A is proper A(−,−) takes values

in perfect complexes of k-modules. Similarly, since A is smooth A(−,−) belongs

to perf(Aop ⊗L A). We conclude that the evaluation and co-evaluation maps of A in

DGCAT belong to the subcategory Hmo. This implies that A is dualizable in Hmo.
√

We finish this section with a comparison between saturated and homotopically finitely

presented dg categories (see §3).

Lemma 4.9. — Let B be a saturated dg category. Then, for every dg category A,

we have a functorial isomorphism in Hmo

Bop ⊗L A ≃ rep(B,A) .

Proof. — Since B∨ = Bop, the general theory of dualizable objects implies the claim;

see Remark 4.7 (iii).
√

Proposition 4.10. — Every saturated dg category is homotopically finitely presented.

Proof. — Let B be a saturated dg category. Since the derived tensor product of

dg categories preserves homotopy colimits in each variable (see Proposition 2.24),

Lemma 4.9 implies that the functor rep(B,−) commutes with homotopy colimits.

Using Theorem 3.3(3) the proof is achieved.
√

5. Simplicial presheaves

In this section we present a general theory of symmetric monoidal structures on

simplicial presheaves. These general results will be used in the construction of an

explicit symmetric monoidal structure on the category of non-commutative motives;

see Section 7.

Starting from a small symmetric monoidal category C, we recall that the tensor

product of C extends to simplicial presheaves on C; see §5.4. Then, we prove that

this symmetric monoidal structure is compatible with the projective model structure;

see Theorem 5.2. Finally, we study its behavior under left Bousfield localizations.
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We describe in particular a “minimal” compatibility condition between the tensor

product and a localizing set; see Theorem 5.7.

5.1. Notations. — Throughout this section C will denote a (fixed) small category.

(i) We denote by Ĉ the category of presheaves of sets on C, i.e. the category of

contravariant functors from C to Set.

(ii) Given an object α in C, we still denote by α the presheaf represented by α

α : Cop −→ Set , β 7→ HomC(β, α)

(i.e. we consider the Yoneda embedding as a full inclusion).

(iii) Let ∆ be the category of simplices, i.e. the full subcategory of the category of

ordered sets spanned by the sets ∆[n] = {0, . . . , n} for n ≥ 0. We set

sSet = ∆̂ .

(iv) We denote by s Ĉ ≃ ∆̂× C the category of simplicial objects in Ĉ, i.e. the category

of contravariant functors from ∆ to Ĉ.
(v) Finally, we consider Ĉ as a full subcategory of s Ĉ. A presheaf of sets on C is

identified with a simplicially constant object of s Ĉ.

5.2. Simplicial structure. — Recall that we have a bifunctor

−⊗− : Ĉ × Set −→ Ĉ
defined by

X ⊗K =
∐

k∈K

X .

This defines an action of the category Set on Ĉ. This construction extends to simplicial

objects

s Ĉ × sSet −→ s Ĉ (F,K) 7→ F ⊗K ,

where for n ≥ 0 :

(F ⊗K)n = Fn ⊗Kn .

This makes s Ĉ into a simplicial category; see for instance [20, §II Definition 2.1].

5.3. Quillen Model structure. — The generating cofibrations of the classical

cofibrantly generated Quillen model structure on sSet are the boundary inclusions

in : ∂∆[n] −→ ∆[n] n ≥ 0

and the generating trivial cofibrations are the horn inclusions

jk
n : Λ[k, n] −→ ∆[n] 0 ≤ k ≤ n, n ≥ 1 .

We have the projective model structure on s Ĉ: the weak equivalences are the termwise

simplicial weak equivalences, and the fibrations are the termwise Kan fibrations; see

for instance [6, page 314] or [23, Theorem 11.6.1]. The projective model structure
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is proper and cellular/combinatorial. In particular, it is cofibrantly generated, with

generating cofibrations

1α ⊗ in : α⊗ ∂∆[n] −→ α⊗∆[n] , α ∈ C, n ≥ 0 ,

and generating trivial cofibrations

1α ⊗ jk
n : α⊗ Λ[k, n] −→ α⊗∆[n] , α ∈ C, 0 ≤ k ≤ n, n ≥ 1 .

In particular, observe that representable presheaves are cofibrant in s Ĉ.

5.4. Day’s convolution product. — Throughout this subsection, and until the

end of Section 5, we will assume that our (fixed) small category C carries a symmetric

monoidal structure, with tensor product ⊗ and unit object 1. Under this assumption,

the general theory of left Kan extensions in categories of presheaves implies formally

that Ĉ is endowed with a unique closed symmetric monoidal structure which makes

the Yoneda embedding a symmetric monoidal functor. We will also denote by ⊗ the

corresponding tensor product on Ĉ; the reader who enjoys explicit formulas is invited

to consult [13, §3].

This monoidal structure extends to the category s Ĉ in an obvious way: given two

simplicial presheaves F and G on C, we define F ⊗G by the formula

(F ⊗G)n = Fn ⊗Gn , n ≥ 0 .

The functor

sSet −→ s Ĉ , K 7−→ 1⊗K

is naturally endowed with a structure of symmetric monoidal functor (where sSet is

considered as a symmetric monoidal category with the cartesian product as tensor

product).

Definition 5.1 ([24, Definition 4.2.1] ). — Given maps f : X → Y and g : A→ B

in a symmetric monoidal category (with tensor product ⊗), the pushout product map

f�g of f and g is given by :

f�g : X ⊗B
∐

X⊗A

Y ⊗A −→ Y ⊗B .

Theorem 5.2. — The category s Ĉ, endowed with the projective model category struc-

ture is a symmetric monoidal model category (see [24, Definition 4.2.6]).

Proof. — As the model category of simplicial sets is a symmetric monoidal model

category (with the cartesian product as tensor product), the result follows from the

explicit description of the generating cofibrations and generating trivial cofibrations

of s Ĉ: given two objects α and α′ in C and two maps i : K → L and i′ : K ′ → L′ in

sSet, we have

(1α ⊗ i)�(1α′ ⊗ i′) ≃ 1α⊗α′ ⊗ (i�i′) .
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Since for any object α in C, the functor K 7→ α ⊗ K is a left Quillen functor from

sSet to s Ĉ, the proof is finished.
√

Let s Ĉ• be the category of pointed simplicial presheaves on C. The forgetful functor

U : s Ĉ• → s Ĉ has a left adjoint

(5.4.1) s Ĉ −→ s Ĉ• , F 7−→ F+ ,

where F+ denotes the pointed simplicial presheaf F ∐⋆, with ⋆ the terminal object of

s Ĉ. The category s Ĉ• is then canonically a cofibrantly generated model category, in

such a way that the functor (5.4.1) is a left Quillen functor; see [24, Proposition 1.1.8

and Lemma 2.1.21].

Furthermore, there is a unique symmetric monoidal structure on s Ĉ• making the

functor (5.4.1) symmetric monoidal. The unit object is 1+, and the tensor product

⊗• is defined as follows: for two pointed simplicial presheaves F and G, their tensor

product is given by the following pushout in the category s Ĉ of unpointed simplicial

presheaves :

(F ⊗ ⋆)∐ (⋆⊗G) //

��

F ⊗G

��
⋆ // F ⊗• G

In particular, for two simplicial presheaves F and G, we have

(5.4.2) (F ⊗G)+ ≃ F+ ⊗• G+ .

Proposition 5.3. — With the above definition, the model category s Ĉ• is a symmet-

ric monoidal model category.

Proof. — The generating cofibrations (resp. generating trivial cofibrations) of s Ĉ•
are the maps of shape A+ → B+ for A→ B a generating cofibration (resp. generating

trivial cofibration) of s Ĉ. As the functor (5.4.1) is a left Quillen functor, the result

follows immediately from Formula (5.4.2) and from Theorem 5.2.
√

Remark 5.4. — In practice, we shall refer to the pointed tensor product ⊗• as the

canonical tensor product on s Ĉ• associated to the monoidal structure on C. Whenever

there is no ambiguity, we denote the pointed tensor product simply by ⊗.

5.5. Left Bousfield localization. —

Definition 5.5. — ([23, Definition 3.1.4]) Let M be a model category and S a set

of morphisms in M. An object X in M is called S-local if it is fibrant and for every

element s : A→ B of the set S, the induced map of homotopy function complexes

s∗ : Map(B, X) −→ Map(A, X)
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is a weak equivalence. A map g : X → Y in M is called a S-local equivalence if for

every S-local object W , the induced map of homotopy function complexes

g∗ : Map(Y,W ) −→ Map(X, W )

is a weak equivalence

Recall that, if M is cellular (or combinatorial) and left proper, the left Bousfield

localization ofM is the model category LSM whose underlying category isM, whose

cofibrations are those ofM, and whose weak equivalences are the S-local weak equiv-

alences; see [23, Definition 9.3.1(1)]. The fibrant objects of LSM are then the objects

of M which are both fibrant and S-local, and the fibrations between fibrant objects

in LSM are the fibrations ofM.

Proposition 5.6. — Let M be a left proper, cellular (or combinatorial), symmetric

monoidal model category (with tensor product ⊗), and S a set of morphisms in M.

Assume that the following conditions hold :

(i) M admits generating sets of cofibrations and of trivial cofibrations consisting of

maps between cofibrant objects;

(ii) every element of S is a map between cofibrant objects;

(iii) given a cofibrant object X, the functor X⊗(−) sends the element of S to S-local

weak equivalences.

(iv) the unit object of the monoidal structure on M is cofibrant.

Then the left Bousfield localization LSM ofM with respect to the set S is a symmetric

monoidal model category.

Proof. — The left Bousfield localization LSM of M with respect to the set S is

cofibrantly generated (see [23, Theorem 4.1.1(3)]) and thanks to condition (iv) the

unit object is cofibrant. Therefore, by [24, Lemma4.2.7] it is enough to verify the

pushout product axiom on the sets of generating (trivial) cofibrations. The class of

cofibrations in LSM and inM is the same, and so half of the pushout product axiom

is automatically verified. Now, let g : A // // B be a generating cofibration in

LSM and f : X // ∼ // Y a generating trivial cofibration in LSM. By condition (i),

we may assume, that the objects X, Y , A and B are cofibrant. Moreover, condition

(iii) implies that tensoring by a cofibrant object preserves S-local weak equivalences.

Consider the following commutative diagram :

A⊗X

��

g⊗idX

��

idA ⊗f // A⊗ Y

��

g⊗idY

��

i(A⊗Y )

uulllllll

B ⊗X ∐
A⊗X

A⊗ Y
** f�g

**UUUU

B ⊗X

i(B⊗X) 44iiiiii

idB ⊗f
// B ⊗ Y .
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Using the two-out-of-three property for S-local weak equivalences, we conclude that

f�g is an S-local equivalence.
√

Theorem 5.7. — Let S be a set of morphisms between cofibrant objects in s Ĉ. As-

sume that the following condition holds :

(C) given an object α in C and a map G→ H in S, the morphism α⊗G→ α⊗H

is an S-local equivalence.

Then the left Bousfield localization LS s Ĉ of s Ĉ with respect to the set S, is a symmetric

monoidal model category.

Proof. — We shall apply Proposition 5.6. It is sufficient to prove condition (iii) of

loc. cit. In other words, we need to prove that for any object F of s Ĉ and any map

G→ H in S, the map

F ⊗L G −→ F ⊗L H

in Ho(s Ĉ) is sent to an isomorphism in Ho(LS s Ĉ). Thanks to Condition (C) this is

the case when F is representable. As the functors (−)⊗L F commute with homotopy

colimits, the general case follows from the fact that the functor Ho(s Ĉ)→ Ho(LS s Ĉ)
commutes with homotopy colimits, and that any simplicial presheaf is a homotopy

colimit of representable presheaves (see for instance [15, Proposition 2.9] or [8, Propo-

sition 3.4.34]).
√

Corollary 5.8. — Assume that S is a set of maps in C which is closed under tensor

product in C (up to isomorphism). Then, by considering S as a set of maps in s Ĉ via

the Yoneda embedding, the left Bousfield localization LS s Ĉ is a symmetric monoidal

model category.

Proof. — Condition (C) of the Theorem 5.7 is trivially satisfied.
√

6. Monoidal stabilization

In this section we relate the general theory of spectra with the general theory of

symmetric spectra; see Theorem 6.1. This will be used in the construction of an

explicit symmetric monoidal structure on the category of non-commutative motives;

see Section 7.

Let M be a cellular (or combinatorial) pointed simplicial left proper model cate-

gory. There is then a natural action of the category of pointed simplicial sets

M× sSet• −→M , (X, K) 7−→ X ⊗K

(in the literature, X ⊗K is usually denoted by X ∧K). We denote by SpN(M) the

stable model category of S1-spectra on M, where S1 = ∆[1]/∂∆[1] is the simplicial

circle, seen as endofunctor X 7→ X ⊗ S1 ofM; see [25, §1].

Assume thatM is a symmetric monoidal model category with cofibrant unit object

1. We write SpΣ(M) for the stable symmetric monoidal model category of symmetric
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S1 ⊗ 1-spectra on M; see [25, §7]. In this situation we have a symmetric monoidal

left Quillen functor

Σ∞ :M−→ SpΣ(M) .

Theorem 6.1. — Under the above assumptions, the model categories SpN(M) and

SpΣ(M) are canonically Quillen equivalent.

Proof. — By applying [25, Theorem 10.3 and Corollary 10.4], it is sufficient to prove

that S1⊗1 is symmetric in Ho(M), i.e. that the permutation (1, 2, 3) acts trivially on

(S1⊗1)⊗3. Using [9, Corollaire 6.8], we see that (S1⊗1)⊗3 ≃ S3⊗1 in Ho(M), and

that it is sufficient to check this condition in the case whereM is the model category

of pointed simplicial sets. Finally, in this particular case, the result is well known; see

for instance [24, Lemma 6.6.2].
√

7. Symmetric monoidal structure

In this section we motivate, state and prove our main result: the localizing moti-

vator carries a canonical symmetric monoidal structure; see Theorem 7.5.

Definition 7.1. — A sequence of triangulated categories

R I−→ S P−→ T

is called exact if the composition is zero, the functor I is fully-faithful and the induced

functor from the Verdier quotient S/R to T is cofinal, i.e. it is fully-faithful and every

object in T is a direct summand of an object of S/R; see [39, §2] for details. A

sequence of dg categories

A F−→ B G−→ C
is called exact if the induced sequence of triangulated categories (see §2.2)

D(A)
LF!−→ D(B)

LG!−→ D(C)

is exact.

Recall from [42, §10] the construction of the universal localizing invariant.

Theorem 7.2. — ([42, Theorem 10.5]) There exists a morphism of derivators

U loc
dg : HO(dgcat) −→ Motloc

dg ,

with values in a strong triangulated derivator (see §A.3), which has the following

properties :

flt) U loc
dg preserves filtered homotopy colimits;

p) U loc
dg preserves the terminal object;
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loc) U loc
dg satisfies localization, i.e. sends exact sequence of dg categories

A −→ B −→ C
to distinguished triangles in Motloc

dg (e)

U loc
dg (A) −→ U loc

dg (B) −→ U loc
dg (C) −→ U loc

dg (A)[1] .

Moreover, U loc
dg is universal with respect to these properties, i.e. given any strong

triangulated derivator D, we have an induced equivalence of categories

(U loc
dg )∗ : Hom!(Motloc

dg , D)
∼−→ Homloc(HO(dgcat), D) ,

where the left-hand side stands for the category of homotopy colimit preserving mor-

phisms of derivators, while the right-hand side stands for the full subcategory of

Hom(HO(dgcat), D) spanned by the morphisms of derivators which verify the three

conditions above.

Definition 7.3. — The objects of the category Homloc(HO(dgcat), D) are called lo-

calizing invariants and U loc
dg is called the universal localizing invariant. Because of its

universal property, which is a reminiscence of motives, Motloc
dg is called the localizing

motivator. Its base category Motloc
dg (e) is a triangulated category and is morally what

we would like to consider as the category of non-commutative motives.

Example 7.4. — Examples of localizing invariants include Hochschild homology

and cyclic homology (see [42, Theorem 10.7]), non-connective algebraic K-theory

(see [42, Theorem 10.9]), and even topological Hochschild homology and topological

cyclic homology (see [2, Theorem 6.1] and [45, §8]).

In this section we introduce a new ingredient in Theorem 7.2: symmetric monoidal

structures. As shown in Theorem 2.23 the derivator HO(dgcat) carries a symmetric

monoidal structure. It is therefore natural to consider localizing invariants which are

symmetric monoidal; see Examples 7.9-7.11. Our main result is the following.

Theorem 7.5. — The localizing motivator Motloc
dg carries a canonical symmetric mo-

noidal structure − ⊗L −, making the universal localizing invariant U loc
dg symmetric

monoidal (see §A.5). Moreover, this tensor product preserves homotopy colimits in

each variable, and is characterized by the following universal property: given any

strong triangulated derivator D (see §A.3), endowed with a symmetric monoidal struc-

ture which preserves homotopy colimits in each variable, we have an induced equiva-

lence of categories

(U loc
dg )∗ : Hom⊗

! (Motloc
dg , D)

∼−→ Hom⊗
loc(HO(dgcat), D) ,

where the left-hand side stands for the category of symmetric monoidal homotopy

colimit preserving morphisms of derivators, while the right-hand side stands for the

category of symmetric monoidal morphisms of derivators which belong to the category
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Homloc(HO(dgcat), D). Furthermore, Motloc
dg admits an explicit symmetric monoidal

Quillen model.

Definition 7.6. — The objects of the category Hom⊗
loc(HO(dgcat), D) are called

symmetric monoidal localizing invariants.

Corollary 7.7. — Any dualizable object of Motloc
dg (e) is compact; see Definition 4.6

and §1.2. In particular, given any saturated dg category A (see Definition 4.1), the

object U loc
dg (A) is compact.

Proof. — Let M be a dualizable object of Motloc
dg (e). We need to prove that the

functor Hom(M,−) commutes with arbitrary sums. Since M is dualizable, this functor

is isomorphic to Hom(U loc
dg (k), M∨ ⊗L −). The unit object U loc

dg (k) is known to be

compact (see [11, Theorem 7.16]), and so the first assertion is proven. The second

assertion follows from the fact that U loc
dg is symmetric monoidal, and that U loc

dg (A)

is dualizable for any saturated dg category A (see Remark 4.7 (iv) and Theorem

4.8).
√

Remark 7.8. — Although we do not know if the triangulated category Motloc
dg (e) is

compactly generated, Corollary 7.7 implies that the localizing triangulated subcate-

gory of Motloc
dg (e) generated by dualizable objects is compactly generated.

Before proving Theorem 7.5, let us give some examples of symmetric monoidal

localizing invariants.

Example 7.9 (Hochschild homology). — LetA be a small k-flat dg category; see

Definition 2.19. We can associate to A a simplicial object in C(k), i.e. a contravariant

functor from ∆ to C(k) : its n-th term is given by
⊕

(x0,...,xn)

A(xn, x0)⊗A(xn−1, xn)⊗ · · · ⊗ A(x0, x1) ,

where (x0, . . . , xn) is an ordered sequence of objects in A. The face maps are given

by

di(fn, . . . , fi, fi−1, . . . , f0) =

{
(fn, . . . , fi ◦ fi−1, . . . , f0) if i > 0

(−1)(n+σ)(f0 ◦ fn, . . . , f1) if i = 0

where σ = (degf0)(degf1 + . . . + degfn−1), and the degenerancies maps are given by

sj(fn, . . . , fj , fj−1, . . . , f0) = (fn, . . . , fj , idxj
, fj−1, . . . , f0) .

Associated to this simplicial object we have a chain complex in C(k) (by the Dold-

Kan equivalence), and so a bicomplex of k-modules. The Hochschild complex HH (A)

of A is the sum-total complex associated to this bicomplex. If A is an arbitrary dg

category, its Hochschild complex is obtained by first taking a k-flat (e.g. cofibrant)

resolution of A; see Definition 2.19. This construction furnishes us a functor

HH : dgcat −→ C(k) ,



SYMMETRIC MONOIDAL STRUCTURE ON NON-COMMUTATIVE MOTIVES 29

which by [42, Theorem 10.7] gives rise to a localizing invariant

(7.0.1) HH : HO(dgcat) −→ HO(C(k)) .

Given small dg categories A and B, we have a functorial quasi-isomorphism

sh : HH (A)⊗HH (B) −→ HH (A⊗ B)

given by the shuffle product map; see [38, §4.2.3]. The localizing invariant (7.0.1),

endowed with the shuffle product map, becomes then a symmetric monoidal localizing

invariant.

Example 7.10 (Mixed complexes). — Following Kassel [29, §1] we denote by Λ

the dg algebra k[ǫ]/ǫ2, where ǫ is of degree −1 and d(ǫ) = 0. Under this notation, a

mixed complex is a right dg Λ-module (see Definition 2.6).

Let A be a small dg category. The Hochschild complex HH (A) of A (see Exam-

ple 7.9), endowed with the cyclic operator

tn(fn−1, . . . , f0) = (−1)n+σ(f0, fn−1, fn−2, . . . , f1) ,

gives rise to a mixed complex C (A); see [31, §1.3]. The assignment A 7→ C (A) yields

a localizing invariant

(7.0.2) C : HO(dgcat) −→ HO(C(Λ))

with values in the derivator associated to right dg Λ-modules; see [42, Theorem 10.7].

Recall from [29, §1] that the category C(Λ) carries a natural symmetric monoidal

structure whose unit object is k: given two mixed complexes there is a canonical mixed

complex structure on the tensor product of the underlying complexes. Moreover, this

symmetric monoidal structure is compatible with the projective model structure (see

§2.2). Thanks to [29, Theorem 2.4] the localizing invariant (7.0.2) becomes then a

symmetric monoidal localizing invariant.

This example will be used in the construction of a canonical Chern character

map from non-connective algebraic K-theory to negative cyclic homology; see Ex-

ample 8.10.

Example 7.11 (Periodic complexes). — In this example we assume that our base

ring k is a field. Let k[u] be the cocommutative Hopf algebra of polynomials in one

variable u of degree 2; see [29, §1]. Consider the symmetric monoidal model category

k[u]-Comod of k[u]-comodules; see [24, Theorem 2.5.17]. The monoidal structure is

given by the cotensor product −�k[u]− of comodules, with unit k[u].

Given a mixed complex M (see Example 7.10) we denote by P(M) the k[u]-

comodule, whose underlying complex is M ⊗L

Λ k, obtained by iteration of the map

(M ⊗L

Λ k)[−2]
S−→M ⊗L

Λ k ,
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see [29, Proposition 1.4]. Using [29, Theorem 1.7] and [19, Proposition 9.2], we

conclude that we have a symmetric monoidal morphism of derivators

P : HO(C(Λ)) −→ HO(k[u]-Comod) .

By composing P with the localizing invariant (7.0.2) we obtain then a symmetric

monoidal localizing invariant

(P ◦ C ) : HO(dgcat) −→ HO(k[u]-Comod) .

This example will be used in the construction of a canonical Chern character map from

non-connective algebraic K-theory to periodic cyclic homology; see Example 8.11.

7.1. Proof of Theorem 7.5. — We will use freely the theory of derivators which

is recalled and developed in the appendix. Recall from [42, §10] that U loc
dg is obtained

by the following composition :

HO(dgcat)
Rh−→ LΣHotdgcatf

Φ−→ LΣ,P Hotdgcatf

stab−→ St(LΣ,P Hotdgcatf
)

γ−→ Motloc
dg .

The morphism stab corresponds to a stabilization procedure (see §A.8) and the mor-

phism γ to a left Bousfield localization procedure (see §A.7). Since these procedures

commute (see Proposition A.12), we can also obtain U loc
dg by the following composition

(7.1.1) HO(dgcat)
Rh−→ LΣHotdgcatf

Φ−→ LΣ,P Hotdgcatf

γ−→ Motuloc
dg

stab−→ Motloc
dg ,

where Motuloc
dg is the unstable analogue of the localizing motivator.

The proof of Theorem 7.5 will consist on the concatenation of Propositions 7.12-

7.16 followed by Remark 7.18. In each one of these propositions we construct an ex-

plicit symmetric monoidal Quillen model for the corresponding (intermediate) deriva-

tor of the composition (7.1.1).

We start by fixing on dgcat a fibrant resolution functor R, a cofibrant resolution

functor Q, a left framing Γ∗ (i.e. a well-behaved cosimplicial resolution functor; see

[24, Definition 5.2.7 and Theorem 5.2.8]), as well as a small full subcategory dgcatf
of dgcat, satisfying the following properties :

(a) any finite dg cell (see Definition 2.5) is in dgcatf ;

(b) any object in dgcatf is homotopically finitely presentated (see Definition 3.2);

(c) given any object A in dgcatf , Q(R(A)) and Q(A) belong to dgcatf ;

(d) for any cofibrant object A of dgcatf , if Γ∗(A) denotes the given cosimplicial

frame of A, then Γn(A) belongs to dgcatf for all n ≥ 0.

We let Σ be the set of derived Morita equivalences in dgcatf . The derivator LΣHotdgcatf

is simply the derivator HO(LΣ s d̂gcatf) associated to the left Bousfield localization of

the projective model structure on s d̂gcatf (see §5.3), with respect to the set Σ. Note

that, up to Quillen equivalence, this construction does not depend on the choice of

the category dgcatf but only on the Dwyer-Kan localization of dgcatf by Σ (see [18]).

The above stability properties imply that the Dwyer-Kan localization of dgcatf by Σ
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is simply (equivalent to) the full simplicial subcategory of the Dwyer-Kan localization

of the model category dgcat spanned by the homotopically finitely presented dg cate-

gories. In order to obtain a symmetric monoidal structure, we have then the freedom

to add the following properties to dgcatf :

(e) any dg category in dgcatf is k-flat (see Definition 2.19);

(f) given any dg categories A and B in dgcatf , A⊗B belongs to dgcatf (this makes

sense because of Theorem 3.4).

In the sequel, we assume that a small full subcategory dgcatf of dgcat satisfying all

the above properties (a)–(f) has been chosen; for instance, one might consider the

smallest one relatively to R, Q and Γ∗. The morphism

Rh : HO(dgcat) −→ LΣHotdgcatf
= HO(LΣs d̂gcatf)

is induced by the functor

h : dgcat −→ s d̂gcatf ,

which associates to any dg category A the simplicial presheaf on dgcatf :

Rh(A) : B 7−→ Map(B,A) = Hom(Γ∗(Q(B)), R(A)) .

Proposition 7.12. — The tensor product of dg categories in dgcatf extends uniquelly

to a closed symmetric monoidal structure on the category of simplicial presheaves on

dgcatf , making LΣ s d̂gcatf into a symmetric monoidal model category. As a conse-

quence, the derivator LΣHotdgcatf
carries a symmetric monoidal structure, making the

morphism Rh symmetric monoidal. Moreover, given any derivator D, the category of

filtered homotopy colimit preserving symmetric monoidal morphisms from HO(dgcat)

to D is canonically equivalent to the category of homotopy colimit preserving symmet-

ric monoidal morphisms from LΣHotdgcatf
to D.

Proof. — As derived Morita equivalences are stable under derived tensor product,

it follows immediately from Corollary 5.8 that LΣ s d̂gcatf is a symmetric monoidal

model category.

Let us now show that the morphism Rh is symmetric monoidal. Recall from [42,

§5] that the morphism Rh preserves filtered homotopy colimits and that we have a

commutative diagram

(7.1.2) dgcatf [Σ
−1]

��

i // HO(dgcat)

Rhxxppppppppppp

LΣHotdgcatf
,

where dgcatf stands for the prederivator represented by dgcatf , and dgcatf [Σ
−1] for

its formal localization by Σ. By construction, the left vertical morphism in the

above diagram (7.1.2) is symmetric monoidal and the symmetric monoidal struc-

ture on LΣHotdgcatf
preserves homotopy colimits in each variable. Moreover, thanks
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to Lemma 2.24, the symmetric monoidal structure on HO(dgcat) preserves filtered

homotopy colimits.

Now, recall the universal property of HO(dgcat) : it is the free completion of

the prederivator dgcatf [Σ
−1] by filtered homotopy colimits. In other words, given

any derivator D, the category of filtered homotopy colimit preserving morphisms

from HO(dgcat) to D is canonically equivalent to the category of morphisms from

dgcatf [Σ
−1] to D; see [42, §5]. Replacing D by the derivator of filtered homotopy col-

imit preserving morphisms from HO(dgcat) to D, we deduce that the category of mor-

phisms from HO(dgcat)×HO(dgcat) to D which preserve filtered homotopy colimits in

each variable is equivalent to the category of morphisms from dgcatf [Σ
−1]×dgcatf [Σ

−1]

to D. By induction, we prove similarly that, for any n ≥ 0, the category of morphisms

from HO(dgcat)n to D which preserve filtered homotopy colimits in each variable is

equivalent to the category of morphisms from dgcatf [Σ
−1]n to D. As the morphism i

in the above diagram (7.1.2) is symmetric monoidal, this implies that the morphism

Rh is symmetric monoidal as well. Similarly, we see that, given any derivator D, the

category of symmetric monoidal morphisms from dgcatf [Σ
−1] to D is equivalent to the

category of filtered homotopy colimit preserving symmetric monoidal morphisms from

HO(dgcat) to D. The last assertion of this proposition thus follows from Theorem A.3

and Proposition A.9.
√

Let h : dgcatf −→ s d̂gcatf be the Yoneda embedding. We denote by P : ∅ −→ h(∅)

the canonical map. Then, the derivator LΣ,P Hotdgcatf
is simply the left Bousfield

localization of LΣHotdgcatf
by P . Thus, it can be described as

LΣ,P Hotdgcatf
= HO(LΣ,P s d̂gcatf) ,

where LΣ,P s d̂gcatf is the left Bousfield localization of the model category LΣs d̂gcatf

by the map P .

Proposition 7.13. — The model category LΣ,P s d̂gcatf is symmetric monoidal, and

the localization functor

LΣ s d̂gcatf −→ LΣ,P s d̂gcatf

is a symmetric monoidal left Quillen functor. In particular, the derivator LΣ,P Hotdgcatf

is symmetric monoidal, and the localization morphism

Φ : LΣHotdgcatf
−→ LΣ,P Hotdgcatf

is symmetric monoidal.

Proof. — For any dg category A, we have A ⊗ ∅ ≃ ∅. We deduce easily from this

formula that condition (C) of Theorem 5.7 (with M = LΣ s d̂gcatf) is satisfied, and

so the proof is finished.
√



SYMMETRIC MONOIDAL STRUCTURE ON NON-COMMUTATIVE MOTIVES 33

Let s d̂gcatf,• be the model category of pointed simplicial presheaves on s d̂gcatf .

By virtue of Proposition 5.3, this is a symmetric monoidal model category, and the

functor

s d̂gcatf −→ s d̂gcatf,• , F 7−→ F+

is a symmetric monoidal left Quillen functor. We define the pointed model category

LΣ,P s d̂gcatf,• as the left Bousfield localization of s d̂gcatf,• with respect to the set of

maps Σ+ ∪ {P+}.

Proposition 7.14. — The model category LΣ,P s d̂gcatf,• is symmetric monoidal,

and the symmetric monoidal left Quillen functor

LΣ,P s d̂gcatf −→ LΣ,P s d̂gcatf,•

is a Quillen equivalence. In particular, we have a canonical equivalence of symmetric

monoidal derivators

LΣ,P Hotdgcatf
≃ HO(LΣ,P s d̂gcatf,•) .

Proof. — The first assertion is a direct application of Theorem 5.7, while the second

one follows from [42, Remark 8.2].
√

Note that the initial and terminal dg categories are Morita equivalent. This implies

that the dg category 0 is sent to the point (up to weak equivalence) in LΣ,P s d̂gcatf,•.

Let E be the set of morphisms of LΣ,P s d̂gcatf,• of shape

cone[Rh(A) −→ Rh(B)] −→ Rh(C) ,

associated to each exact sequence of dg categories

A −→ B −→ C ,

with B in dgcatf (where cone means homotopy cofiber). We defineMotuloc
dg as the left

Bousfield localization of LΣ,P s d̂gcatf,• by E . The derivator Motuloc
dg is defined as

Motuloc
dg = HO(Motuloc

dg ) .

Proposition 7.15. — The model category Motuloc
dg is symmetric monoidal, in such

a way that the left Quillen functor

LΣ,P s d̂gcatf,• −→Motuloc
dg

is symmetric monoidal. Under the identification of Proposition 7.13, the induced

morphism of derivators

γ : LΣ,P Hotdgcatf
−→ Motuloc

dg

is symmetric monoidal.

Proof. — As tensoring by a k-flat dg category preserves exact sequences of dg cate-

gories (see [16, Proposition 1.6.3]), and as Rh is symmetric monoidal (see Proposition

7.12), the proof follows from Theorem 5.7.
√



34 D.-C. CISINSKI & G. TABUADA

Finally, since by construction the model category Motuloc
dg is symmetric monoidal

and simplicially enriched, we can consider its stabilization Motloc
dg , i.e. the stable

model category of symmetric spectra in Motuloc
dg (see §6) :

Motloc
dg = SpΣ(Motuloc

dg ) .

The derivator Motloc
dg is defined as

Motloc
dg = HO(Motloc

dg ) .

Proposition 7.16. — The model category Motloc
dg is symmetric monoidal, and the

left Quillen functor

Σ∞ :Motuloc
dg −→Motloc

dg

is symmetric monoidal. The induced morphism of derivators

stab = LΣ∞ : Motuloc
dg −→ Motloc

dg

is symmetric monoidal.

Proof. — This is true by construction (see Proposition A.2).
√

Remark 7.17. — In the construction of Motloc
dg given in [42], the definition of Motloc

dg

was HO(SpN(Motuloc
dg )), i.e. it used non-symmetric spectra. However, thanks to The-

orem 6.1, both definitions agree up to a canonical equivalence of derivators.

Remark 7.18. — The concatenation of Propositions 7.12-7.16 show us that the lo-

calizing motivator Motloc
dg carries a symmetric monoidal structure − ⊗L −, making

the universal localizing invariant U loc
dg symmetric monoidal. By Proposition A.2 the

associated symmetric monoidal structure preserves homotopy colimits. Therefore, in

order to conclude the proof of Theorem 7.5, it remains to show the universal property.

Let D be a strong triangulated derivator endowed with a symmetric monoidal struc-

ture which preserves homotopy colimits in each variable. Thanks to Theorem 7.2, we

have an induced equivalence of categories

(U loc
dg )∗ : Hom!(Motloc

dg , D)
∼−→ Homloc(HO(dgcat), D) .

This implies that the induced functor

(7.1.3) (U loc
dg )∗ : Hom⊗

! (Motloc
dg , D) −→ Hom⊗

loc(HO(dgcat), D) .

is faithful. More precisely, by Proposition 7.12, the category of filtered homotopy

colimit preserving symmetric monoidal morphisms from HO(dgcat) to D is equivalent

to the category of homotopy colimit preserving symmetric monoidal morphisms from

LΣs d̂gcatf to D. Using the universal properties of Bousfield localization and stabi-

lization in the setting of derivators (see Theorem A.4 and Corollary A.13), we can

apply Proposition A.9, and Theorem A.15 to conclude, by construction of Motloc
dg ,

that (7.1.3) is an equivalence of categories. This ends the proof of Theorem 7.5.
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8. Applications

In this section we describe several applications of Theorem 7.5.

8.1. Non-connective K-theory. — Recall from Example 7.4 that non-connective

algebraic K-theory is an example of a localizing invariant of dg categories. In [11] the

authors proved that this localizing invariant becomes co-representable in the category

Motloc
dg (e) of non-commutative motives (see Definition 7.3).

Theorem 8.1. — ([11, Theorem 7.16]) For every small dg category A, we have a

natural isomorphism in the stable homotopy category of spectra

RHom(U loc
dg (k), U loc

dg (A) ) ≃ IK(A) .

Here, k denotes the dg category with one object ∗ such that k(∗, ∗) = k in degree zero

(see §2.1(i)), and IK(A) the non-connective algebraic K-theory spectrum of A. In

particular, we obtain isomorphisms of abelian groups

Hom(U loc
dg (k)[n], U loc

dg (A) ) ≃ IKn(A) n ∈ Z .

A fundamental problem of the theory of non-commutatives motives is the compu-

tation of the (spectra of) morphisms between two object in the localizing motivator.

Using Theorem 7.5 we give a partial solution to this fundamental problem.

Theorem 8.2. — Let B be a saturated dg category; see Definition 4.1. For every

small dg category A, we have a natural isomorphism in the stable homotopy category

of spectra

RHom(U loc
dg (B), U loc

dg (A) ) ≃ IK(rep(B,A)) .

Here rep(−,−) denotes the internal Hom-functor in Hmo; see Theorem 2.16. In

particular, we obtain isomorphisms of abelian groups

Hom(U loc
dg (B)[n], U loc

dg (A) ) ≃ IKn(rep(B,A)) n ∈ Z .

Proof. — The proof is a consequence of the following weak equivalences :

RHom(U loc
dg (B), U loc

dg (A) ) ≃ RHom(U loc
dg (k)⊗L U loc

dg (B), U loc
dg (A))(8.1.1)

≃ RHom(U loc
dg (k), U loc

dg (B)∨ ⊗L U loc
dg (A))(8.1.2)

≃ RHom(U loc
dg (k), U loc

dg (Bop ⊗L A))(8.1.3)

≃ RHom(U loc
dg (k), U loc

dg (rep(B,A)))(8.1.4)

≃ IK(rep(B,A)) .(8.1.5)

Equivalence (8.1.1) follows from the fact that U loc
dg (k) is the unit object in Motloc

dg (e);

see Remark 2.12 and Theorems 2.23 and 7.5. Since B is a saturated dg category,

Theorem 4.8 implies that B is a dualizable object in Hmo. Therefore, Equivalence
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(8.1.2) follows from the fact that U loc
dg (B) is a dualizable object in Motloc

dg (e) (see Re-

mark 4.7(iv) and Theorem 7.5) and from the adjunction (4.0.15) of Remark 4.7(ii) (see

§A.9 for its spectral enrichment). Equivalence (8.1.3) follows from Remark 4.7(iv),

from Theorem 4.8, and from the fact that the universal localizing invariant is sym-

metric monoidal. Equivalence (8.1.4) follows from Lemma 4.9. Finally, Equivalence

(8.1.5) follows from Theorem 8.1.
√

Proposition 8.3. — Let X and Y be smooth and proper k-schemes. Then, we have

a natural isomorphism in the stable homotopy category of spectra

RHom(U loc
dg (perf(X)),U loc

dg (perf(Y )) ) ≃ IK(X × Y ) .

Here, IK(X×Y ) denotes the non-connective algebraic K-theory spectrum of X×Y (see

[41, §8]), and perf(−) the dg category constructed in Example 4.5(i). In particular,

we obtain isomorphisms of abelian groups

Hom(U loc
dg (perf(X))[n], U loc

dg (perf(Y )) ) ≃ IKn(X × Y ) n ∈ Z .

Proof. — Since X and Y are smooth and proper k-schemes, [51, Lemma 3.27] implies

that perf(X) and perf(Y ) are saturated dg categories. Therefore, by Theorem 8.2 we

have a natural isomorphism in the stable homotopy category of spectra

RHom(U loc
dg (perf(X)),U loc

dg (perf(Y )) ) ≃ IK(rep(perf(X), perf(Y ))) .

Moreover, by [48, Theorem 8.9] we have a natural isomorphism

perf(X × Y ) ≃ rep(perf(X), perf(Y ))

in Hmo. Finally, thanks to [41, §8 Theorem 5] we have a natural isomorphism

IK(perf(X × Y )) ≃ IK(X × Y )

and so the proof is finished.
√

Remark 8.4. — Let Z be a noetherian regular scheme. By virtue of [1, Exp. I,

Cor. 5.9 and Exp. II, Cor. 2.2.2.1], we then have a derived Morita equivalence

perf(Z)
∼−→ Db

dg(Coh(Z)) .

Here, the left-hand side is the saturated dg category of Example 4.5(i), and the

right-hand side is the bounded derived (dg) category of coherent sheaves on Z.

Since Coh(Z) is a noetherian abelian category (see [41, §10.1]), we conclude by [41,

§10.1 Theorem 7] that

IKn(Z) = IKn(perf(Z)) = 0 n < 0 .

In particular, if in Proposition 8.3 the base ring k is regular and noetherian, the

negative stable homotopy groups of the spectrum IK(X × Y ) vanish.
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8.2. Kontsevich’s non-commutative mixed motives. — Kontsevich introduced

in [33, 34, 35] the category of non-commutative mixed motives. His construction

decomposes in three steps :

(1) First, consider the following category KPMk, enriched over symmetric spectra:

the objects are the dualizable dg categories (see Definition 4.1); given saturated

dg categories A and B, the symmetric spectrum of morphisms from A to B is the

non-connective K-theory spectrum IK(Aop ⊗L B); the composition corresponds

to the derived tensor product of bimodules(2).

(2) Then, take the formal triangulated envelope tri(KPMk) of KPMk. Objects in

this new category are formal finite extensions of formal shifts of objects in

KPMk.

(3) Finally, add formal direct summands for projectors in tri(KPMk). The resulting

category KMMk is what Kontsevich named the category of non-commutative

mixed motives(3).

A precise way to perform these constructions consists on seeing KMMk as the spectral

category of perfect KPMk-modules (KMMk is the Morita completion of KPMk; see

[46, §5.2] for a precise exposition of these constructions).

Thanks to Theorem 8.2, we are now able to construct a fully-faithful embedding of

KMMk into our category Motloc
dg (e) of non-commutative motives, i.e. the base category

of the localizing motivator. Note that, in contrast with Kontsevich’s ad hoc defini-

tion, our category of non-commutative motives is defined purely in terms of precise

universal properties.

LetMotloc
dg be the model category underlying the derivator Motloc

dg . As, by construc-

tion, Motloc
dg is a left Bousfield localization of a category of presheaves of symmetric

spectra over some small category, this model category is canonically enriched over

symmetric spectra. We can thus consider the category Motloc
dg (e) as a category en-

riched over symmetric spectra (by considering fibrant and cofibrant objects inMotloc
dg ).

Proposition 8.5. — There is a natural fully-faithful embedding (enriched over sym-

metric spectra) of Kontsevich’s category of non-commutative motives KMMk into the

category Motloc
dg (e). The essential image is the thick triangulated subcategory spanned

by motives of saturated dg categories.

Proof. — Given saturated dg categories A and B, Lemma 4.9 implies that we have a

natural isomorphism in Hmo

Aop ⊗L B ≃ rep(A,B) .

(2)This category is the non-commutative (and derived) analogue of Grothendieck’s category of pure

motives : PM stands for Pure Motives, while K stands for both Kontsevich and K-theory.
(3)MM stands for Mixed Motives, while K stands for both Kontsevich and K-theory.
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Therefore, using Theorem 8.2 we obtain a natural fully-faithful spectral functor

KPMk −→ Motloc
dg (e) A 7→ U loc

dg (A) .

By construction of KMMk, [46, Proposition 5.3.1] implies that this functor extends

(uniquely) to a spectral functor

KMMk −→ Motloc
dg (e) .

In order to show that this functor is (homotopically) fully-faithful, it is sufficient to

prove that its restriction to a generating family of KMMk is fully faithful, which holds

by construction.
√

8.3. Chern characters. — In [11] the authors used the co-representability Theo-

rem 8.1 to classify all natural transformations out of non-connective K-theory. More

precisely, they proved in [11, Theorem 8.1] that given a localizing invariant L, with val-

ues in the derivators of spectra, the data of a natural transformation IK(−)⇒ L(−)

is equivalent to the datum of a single class in the stable homotopy group π0L(k).

From this result they obtained higher Chern characters (resp. higher trace maps),

from non-connective K-theory to (topological) cyclic homology (resp. to (topological)

Hochschild homology); see [11, Theorem 8.4].

However, negative cyclic homology HC− and periodic cyclic homology HP do not

preserve filtered homotopy colimits since they are defined using infinite products; see

[38, §5.1]. Therefore, they are not examples of localizing invariants and so the theory

developed in [11] is not directly applicable in these cases. Nevertheless, we shall

explain below why and how negative cyclic homology and periodic cyclic homology

fit naturally in our framework; see Examples 8.10 and 8.11.

Let D be a strong triangulated derivator endowed with a symmetric monoidal

structure (with unit 1) which preserves homotopy colimits in each variable (see §A.5),

and

E : HO(dgcat) −→ D

a symmetric monoidal localizing invariant (see Definition 7.6). Thanks to Theorem 7.5

there is a (unique) symmetric monoidal homotopy colimit preserving morphism of

derivators Egm which makes the diagram

HO(dgcat)
E //

U loc
dg

��

D

Motloc
dg

Egm

;;wwwwwwwwww

commute (up to unique 2-isomorphism).
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Definition 8.6. — The morphism Egm is called the geometric realization of E . Since

by hypothesis D is triangulated, we have a natural morphism of derivators

RHom(1,−) : D −→ HO(SpN) (see §A.9) .

The composed morphism

Eabs := RHom(1,Egm(−)) : Motloc
dg −→ HO(SpN)

is called the absolute realization of E .

Given a symmetric monoidal localizing invariant E , we have two objects associated

to a non-commutative motive M ∈ Motloc
dg (e) : its geometric realization Egm(M) and

its absolute realization Eabs(M). Although the morphism Egm always preserves ho-

motopy colimits, this is not always the case for the morphism Eabs; a sufficient (and

almost necessary) condition for Eabs to preserve homotopy colimits is that the unit 1

of D is a compact object.

Proposition 8.7. — The geometric realization of E induces a canonical Chern char-

acter

IK(−)⇒ RHom(1, E(−)) ≃ Eabs(U loc
dg (−)) .

Here, IK(−) and Eabs(U loc
dg (−)) are two morphisms of derivators defined on HO(dgcat).

Proof. — The geometric realization of E is symmetric monoidal and so it sends the

unit object U loc
dg (k) to 1 ∈ D. Therefore, given a small dg category A, we obtain an

induced map

IK(A) ≃ RHomMotloc
dg

(U loc
dg (k),U loc

dg (A)) −→ RHomD(1,Egm(U loc
dg (A))) = Eabs(U loc

dg (A)) ,

where the left-hand side equivalence follows from Theorem 8.1. Since this induced

map is functorial in A, the proof is finished.
√

Let us now give some examples which illustrate Proposition 8.7.

Example 8.8 (Non-connective K-theory). — The tautological version of the sit-

uation above is: for E = U loc
dg , Egm is by definition the identity of Motloc

dg (7.5), while

Eabs = IK is non-connective K-theory (8.1). The corresponding Chern character is

the identity, and this is in this precise sense that non-connective K-theory is initial

among absolute homology theories.

Example 8.9 (Hochschild homology). — Take for E the symmetric monoidal lo-

calizing invariant

HH : HO(dgcat) −→ HO(C(k))

of Example 7.9. In this case, there is no difference (up to the Dold-Kan correspondance

relating complexes of k-modules and spectra) between the geometric and the absolute

realization: if we consider HO(C(k)) as enriched over itself, then the morphism

RHom(k,−) : HO(C(k)) −→ HO(C(k))
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is (isomorphic to) the identity. Therefore by Proposition 8.7, we obtain a canonical

Chern character

IK(−)⇒ HH (−) .

Example 8.10 (Negative cyclic homology). — Take for E the symmetric monoidal

localizing invariant

C : HO(dgcat) −→ HO(C(Λ))

of Example 7.10. Given a small dg category A, we have an equivalence

Cabs(U loc
dg (A)) = RHom(k,C (A)) ≃ HC−(A) ,

where HC−(A) denotes the negative cyclic homology complex of A; see [32, §2.2].

Therefore by Proposition 8.7, we obtain a canonical Chern character

IK(−)⇒ HC−(−) .

Example 8.11 (Periodic cyclic homology). — Take for E the symmetric monoidal

localizing invariant

(P ◦ C ) : HO(dgcat) −→ HO(k[u]-Comod)

of Example 7.11. Assuming that the ground ring k is a field, for any small dg category

A, we have a natural identification

(P ◦ C )abs(U loc
dg (A)) = RHom(k[u], (P ◦ C )(A)) ≃ HP(A) ,

where HP(A) denotes the periodic cyclic homology complex of A. This can be seen

as follows. Given a mixed complex M (see Example 7.10), a map k[u] → P (M) in

k[u]-Comod corresponds to a collection of maps k → (M ⊗L

Λ k)[2n], n ≥ 0, in C(k)

which are compatible with the operator S. In other words, these data correspond to

a map in C(k) from k to the tower

· · · S−→ (M ⊗L

Λ k)[−2n]
S−→ (M ⊗L

Λ k)[−2n + 2]
S−→ · · · S−→ (M ⊗L

Λ k)[−2]
S−→M ⊗L

Λ k .

In other words, we have :

RHom(k[u], P (M)) ≃ holim
n

(M ⊗L

Λ k)[−2n] .

The Milnor short exact sequence [24, Proposition 7.3.2] applied to this homotopy

limit corresponds to the short exact sequence

0 −→ lim←−
n

1Hi+2n−1(M⊗L

Λk) −→ Hom(k[u], P (M)[−i]) −→ lim←−
n

Hi+2n(M⊗L

Λk) −→ 0 .

Now, let A be a small dg category. The above arguments, with M = C (A), allow us

to deduce the formula

RHom(k[u], (P ◦ C)(A)) ≃ holim
n

(C (A)⊗L

Λ k)[−2n] ≃ HP(A) .

Therefore, by Proposition 8.7, we obtain a canonical Chern character

IK(−)⇒ HP(−) .
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8.4. Toën’s secondary K-theory. — Toën introduced in [49, 50] a “categorified”

version of algebraic K-theory named secondary K-theory; see [52] for a survey article.

Definition 8.12 ([49, §5.4]). — Given a commutative ring k, let Z[Hmosat,k] be the

free abelian group on the isomorphism classes of objects in Hmosat,k (see Notation 4.3).

The secondary K-theory group K
(2)
0 (k) of k is the quotient of Z[Hmosat,k] by the

relations [B] = [A] + [C] associated to exact sequences (see Definition 7.1)

A −→ B −→ C
of saturated dg categories.

Remark 8.13. — (i) Thanks to Theorem 4.8 the category Hmosat,k coincides with

the category of dualizable objects in Hmok. Therefore, by Remark 4.7(iii), the

derived tensor product in Hmok restricts to a bifunctor

−⊗L − : Hmosat,k × Hmosat,k −→ Hmosat,k .

By [16, Proposition 1.6.3] the derived tensor product preserves exact sequences

(in both variables), and so we obtain a commutative ring structure on K
(2)
0 (k).

(ii) Given a ring homomorphism k → k′, we have a derived base change functor

−⊗L

k k′ : Hmok −→ Hmok′ A 7→ A⊗L

k k′ .

This functor preserves exact sequences and is symmetric monoidal. Therefore,

by Theorem 4.8 and Remark 4.7(iv), we obtain a ring homomorphism

K
(2)
0 (k) −→ K

(2)
0 (k′) .

In conclusion, secondary K-theory is a functor K
(2)
0 (−) from the category of com-

mutative rings to itself.

One of the motivations for the study of this secondary K-theory was its expected

connection with an hypothetical Grothendieck ring of motives in the non-commutative

setting; see [50, page 1]. Thanks to Theorem 7.5, we are now able to make this

connection precise; see Remarks 8.17-8.19. We shall use the following well known

property of dualizable objects in a triangulated category.

Proposition 8.14. — Let C be a closed symmetric monoidal triangulated category.

Then, the category C∨ of dualizable objects in C (see Definition 4.6) is a symmetric

monoidal thick triangulated subcategory of C.

Proof. — The fact that dualizable objects are stable under tensor product is clear;

see Remark 4.7(iii). For an object X in C, set X∨ = Hom(X,1). Given two objects

X and Y in C, we have a canonical map

uX,Y : X∨ ⊗ Y −→ Hom(X, Y )

which corresponds by adjunction to the map X∨⊗X⊗Y → Y obtained by tensoring

Y with the evaluation map X ⊗X∨ → 1. The object X is dualizable if and only if
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the map uX,Y is invertible for any object Y . Since for any fixed object Y the map

uX,Y is a natural transformation of triangulated functors, we conclude that C∨ is a

thick triangulated subcategory of C. √

Notation 8.15. — Thanks to Theorem 7.5 the localizing motivator carries a sym-

metric monoidal structure, and so its base category Motloc
dg,k(e) is a symmetric monoidal

triangulated category. Therefore by Proposition 8.14, the category Motloc
dg,k(e)∨ of du-

alizable objects is a symmetric monoidal thick triangulated subcategory of Motloc
dg,k(e).

Let KMMk be Kontsevich’s category of non-commutative mixed motives. Thanks

to Proposition 8.5, we can identify it with the thick triangulated subcategory of

Motloc
dg,k(e)∨ generated by objects of shape U loc

dg (A), where A runs over the family

of saturated dg categories over k. Therefore, KMMk is naturally a rigid symmetric

monoidal triangulated category.

Definition 8.16. — Let k be a commutative ring. The Grothendieck ring K0(k) of

non-commutative motives over k is the Grothendieck ring K0(KMMk).

Remark 8.17 (Non-triviality). — Recall from Example 7.9 the construction of

the symmetric monoidal localizing invariant

HH : HO(dgcat) −→ HO(C(k)) .

By restricting its geometric realization (see Definition 8.6) to the base category, we

obtain a symmetric monoidal triangulated functor

HH gm(e) : Motloc
dg,k(e) −→ HO(C(k))(e) = D(k) .

Recall that the dualizable objects in D(k) are precisely the perfect complexes of k-

modules. Therefore, by Remark 4.7 (iv), HH gm(e) sends dualizable objects to perfect

complexes and so it induces a ring homomorphism

(8.4.1) rK0 : K0(k) = K0(KMMk) −→ K0(Dc(k)) = K0(k) .

Finally, since K0(k) is non-trivial we conclude that K0(k) is also non-trivial.

Remark 8.18 (Functoriality). — Given a ring homomorphism k → k′, we have a

base change functor

−⊗k k′ : dgcatk −→ dgcatk′ A 7→ A⊗k k′ .

This functor gives rise to a morphism of derivators

−⊗L

k k′ : HO(dgcatk) −→ HO(dgcatk′) ,

which is symmetric monoidal, preserves homotopy colimits (and the point), and sat-

isfies localization; see Theorem 7.2. Therefore, the composition

HO(dgcatk)
−⊗L

kk′

−→ HO(dgcatk′)
U loc

dg−→ Motloc
dg,k′
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is a symmetric monoidal localizing invariant; see 7.6. Using Theorem 7.5, we obtain

a (unique) symmetric monoidal morphism, which we still denoted by −⊗L

k k′, making

the diagram

HO(dgcatk)

U loc
dg

��

−⊗L

kk′

// HO(dgcatk′)

U loc
dg

��
Motloc

dg,k
−⊗L

kk′

// Motloc
dg,k′

(8.4.2)

commute (up to 2-isomorphism). By restricting ourselves to the base categories, we

have a symmetric monoidal triangulated functor

−⊗L

k k′ : Motloc
dg,k(e) −→ Motloc

dg,k′(e) .

As the (derived) change of scalars functor preserves saturated dg categories, we obtain

then an induced ring homomorphism

K0(k) −→ K0(k
′) .

In conclusion, the Grothendieck ring of non-commutative motives is a functor K0(−)

from the category of commutative rings to itself.

Remark 8.19 (Connection). — Thanks to Theorem 7.5, the functor

U loc
dg : Hmok −→ Motloc

dg,k(e)

is symmetric monoidal. By construction it sends exact sequences to distinguished

triangles, and so it induces a ring homomorphism

(8.4.3) Φ(k) : K
(2)
0 (k) −→ K0(k) .

Note that this ring homomorphism is not necessarily surjective because of step (3)

in the construction of KMMk. However, the image of Φ(k) can be described as

the Grothendieck group of the triangulated category tri(KPMk) : by cofinality the

Grothendieck ring K0(tri(KPMk)) is a subring of K0(k) and by dévissage Φ(k) sur-

jects on K0(tri(KPMk)). Moreover, the above (up to 2-isomorphism) commutative

square (8.4.2) shows us that the ring homomorphism (8.4.3) gives rise to a natural

transformation of functors

K
(2)
0 (−)⇒ K0(−) , k 7→ Φ(k) .

Now, let R be a commutative ring and l : K
(2)
0 (k) → R a realization of K

(2)
0 (k),

i.e. a ring homomorphism. Note that if there exists a symmetric monoidal localizing

invariant

HO(dgcatk) −→ D ,

whose induced ring homomorphism (see Proposition 8.14)

K
(2)
0 (k) −→ K0(D(e)∨)



44 D.-C. CISINSKI & G. TABUADA

identifies with l, then l factors through Φ(k). An interesting example is proved by

Toën’s rank map (see [49, §5.4])

rk0 : K
(2)
0 −→ K0(k) .

Thanks to [49, §5.4 Lemma 3] this rank map is induced from the symmetric monoidal

localizing invariant

HH : HO(dgcatk) −→ HO(C(k))

of Example 7.9. Therefore, it corresponds to the following composition

K
(2)
0 (k)

Φ(k)−→ K0(k)
rK0−→ K0(k) ,

where rK0 is the ring homomorphism (8.4.1) of Remark 8.17.

8.5. Euler characteristic. —

Definition 8.20. — Let C be a symmetric monoidal category with monoidal prod-

uct ⊗ and unit object 1. Given a dualizable object X in C (see Definition 4.6) its

Euler characteristic χ(X) is the following composition

χ(X) : 1
δ−→ X∨ ⊗X

τ−→ X ⊗X∨ ev−→ 1 ,

where τ denotes the symmetry isomorphism.

Remark 8.21. — Let C is a well behaved symmetric monoidal triangulated category;

e.g. C = D(e) for some symmetric monoidal triangulated derivator D. Then, thanks

to [37, Theorem 1.9], the Euler characteristic gives rise to a ring homomorphism

χ : K0(C∨) −→ HomC(1,1) .

Proposition 8.22. — Let A be a saturated dg category. Then its Euler characteris-

tic χ(A) in Hmo is the isomorphism class of Dc(k) which is associated to the (perfect)

Hochschild homology complex HH (A) of A (see Example 7.9).

Proof. — From Theorem 4.8 (and its proof) we see that the dual of A is its opposite

dg category Aop, and that the following composition in Hmo

χ(A) : k
[A(−,−)]−→ Aop ⊗L A τ−→ A⊗L Aop [A(−,−)]−→ k

corresponds to the complex

A(−,−)

L⊗

Aop⊗LA

A(−,−) .

By [38, Proposition 1.1.13] this complex of k-modules computes Hochschild homology

of A (with coefficients in itself), which achieves the proof.
√
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Proposition 8.23. — Let F : C → C′ be a symmetric monoidal functor between

symmetric monoidal categories with unit objects 1 and 1′. Then, given a dualizable

object X in C, the Euler characteristic χ(F (X)) of F (X) agrees with F (χ(X)) on

1′ ≃ F (1).

Proof. — It is a straightforward consequence of the definitions. The details are left

as an exercise for the reader.
√

Proposition 8.24. — Let A be a saturated dg category. Then, χ(U loc
dg (A)) is the el-

ement of the Grothendieck group K0(k) which is associated to the (perfect) Hochschild

homology complex HH (A) of A.

Proof. — Thanks to Theorem 7.5, the universal localizing invariant U loc
dg is symmetric

monoidal. Using Theorem 8.1, we see that the map

U loc
dg (e) : IsoDc(k) ≃ HomHmo(k, k) −→ Hom(U loc

dg (k), U loc
dg (k)) ≃ K0(k)

sends an element in IsoDc(k) to the corresponding class in the Grothendieck group

K0(Dc(k)) ≃ K0(k). Hence, Theorem 4.8 and Proposition 8.23 achieve the proof.
√

Example 8.25. — Recall from Example 4.5 that, given a smooth and proper k-

scheme X, we have a saturated dg category perf(X) which enhances the category of

compact objects in Dqcoh(X). Thanks to Keller [31, 32] the Hochschild homology of

perf(X) (see Example 7.9) agrees with the Hochschild homology of X in the sense of

Weibel [54]. Therefore, by Proposition 8.24 the Euler characteristic of U loc
dg (perf(X))

is the element of the Grothendieck group K0(k) which is associated to the (perfect)

Hochschild homology complex HH (X) of X.

When k is the field of complex numbers, the Grothendieck ring K0(C) is naturally

isomorphic to Z and the Hochschild homology of X agrees with the Hodge cohomol-

ogy H∗(X, Ω∗
X) of X. Therefore, when we work over C, the Euler characteristic of

U loc
dg (perf(X)) is the classical Euler characteristic of X.

A

Grothendieck derivators

The original reference for the theory of derivators is Grothendieck’s manuscript [28]

and Heller’s monograph [21]. See also [7, 9, 12, 42].

A.1. Prederivators. — A prederivator D consists of a strict contravariant 2-functor

from the 2-category of small categories to the 2-category of categories

D : Catop −→ CAT.

Prederivators organize themselves naturally in a 2-category: the 1-morphisms (usually

called morphisms) are the pseudo natural transformations and the 2-morphisms are
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the modifications; see [12, §5] for details. Given prederivators D and D′, we denote

by Hom(D, D′) the category of morphisms.

Given a category M, we denote by M the prederivator defined for every small

category X by

M(X) := Fun(Xop,M),

where Fun(Xop,M) is the category of presheaves on X with values in M. If W is a

class of morphisms in M, we denote by M[W−1] the prederivator defined for every

small category X by

M[W−1](X) := Fun(Xop,M)[W−1].

Here Fun(Xop,M)[W−1] is the localization of Fun(Xop,M) with respect to the class

of morphism which belong termwise to W. Note that the assignment (M,W) 7→
M[W−1] is 2-functorial, i.e. given a natural transformation

(M,W)

F
**

G

44⇓ (N ,V)

between functors, such that F (W) ⊂ (V) and G(W) ⊂ (V), we obtain an induced

2-morphism

M[W−1]

F
**

G

44⇓ N [V−1]

of prederivators.

A.2. Derivators. — A derivator is a prederivator which is subject to certain con-

ditions, the main ones being that for any functor u : X → Y between small categories,

the inverse image functor

u∗ = D(u) : D(Y ) −→ D(X)

has a left adjoint, called the homological direct image functor,

u! : D(X) −→ D(Y ) ,

as well as right adjoint, called the cohomological direct image functor

u∗ : D(X) −→ D(Y ) .

See [7] for details. Similarly to the case of prederivators, derivators organize them-

selves in a 2-category. Given derivators D and D′, we denote by Homflt(D, D′) the

category of morphisms of derivators which preserve filtered homotopy colimits, and

by Hom!(D, D′) the category of morphisms of derivators which commute with all ho-

motopy colimits; see [7, 9].
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The essential example of a derivator to keep in mind is the derivator D = HO(M)

associated to a (complete and cocomplete) Quillen model categoryM (see [7, Theo-

rem 6.11]), which is defined for every small category X by

HO(M)(X) := Ho
(
Fun(Xop,M)

)
.

In this case, any colimit (resp. limit) preserving left (resp. right) Quillen functor

induces a morphism of derivators which preserves homotopy colimits (resp. limits);

see [7, Proposition 6.12].

Finally, we denote by e the 1-point category with one object and one (identity)

morphism. Heuristically, the category D(e) is the basic “derived” category under

consideration in the derivator D. For instance, if D = HO(M) then D(e) = Ho(M) is

the usual homotopy category ofM.

A.3. Properties. —

(i) A derivator D is called strong if for every finite free category X and every

small category Y , the natural functor D(X × Y ) → Fun(Xop, D(Y )) is full and

essentially surjective.

(ii) A derivator D is called regular if sequential homotopy colimits commute with

finite products and homotopy pullbacks.

(iii) A derivator D is called pointed if for any closed immersion i : Z → X in Cat

the cohomological direct image functor i∗ : D(Z) → D(X) has a right adjoint,

and if, dually, for any open immersion j : U → X the homological direct image

functor j! : D(U)→ D(X) has a left adjoint; see [12, Definition 1.13].

(iv) A derivator D is called triangulated or stable if it is pointed and if every global

commutative square is cartesian exactly when it is cocartesian; see [12, Defini-

tion 1.15].

A strong derivator is the same thing as a small homotopy theory in the sense of

Heller [22]. Thanks to [10, Proposition 2.15], if M is a Quillen model category

its associated derivator HO(M) is strong. Moreover, if sequential homotopy colimits

commute with finite products and homotopy pullbacks inM, the associated derivator

HO(M) is regular. Notice that ifM is pointed, then the derivator HO(M) is pointed.

Finally, a pointed Quillen model category M is stable if and only if its associated

derivator HO(M) is triangulated.

A.4. Kan extensions. — Given a small category A, we denote by HotA = HO(s Â)

the derivator associated to the projective model category structure on the category

of simplicial presehaves. We then have a Yoneda embedding

(A.4.1) h : A −→ HotA .

Let D be a derivator. A 2-functorial version of the Yoneda lemma gives a canonical

equivalence of categories

Hom(A, D) ≃ D(Aop) .
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Theorem A.1. — The morphism of prederivators (A.4.1) is the universal morphism

from A to a derivator. In other words, given any derivator D, the induced functor

h∗ : Hom!(HotA, D)
∼−→ Hom(A, D)

is an equivalence of categories.

Proof. — See [9, Corollaire 3.26].
√

A.5. Monoidal structures. — Thanks to [9, Proposition 5.2] the 2-category of

prederivators form a closed symmetric monoidal 2-category with respect to the carte-

sian product. Given two prederivators D and D′, we denote by Hom(D, D′) the

corresponding internal Hom; see [9, §5.1].

Given a prederivator D, by a symmetric monoidal structure on D we mean a struc-

ture of symmetric pseudo monoid on D. In other words, for every small category X,

D(X) is a symmetric monoidal category, and for every functor u : X → Y between

small categories, the inverse image functor

u∗ : D(u) : D(Y ) −→ D(X)

is symmetric monoidal; see [9, §5.4]. A symmetric monoidal prederivator is a pred-

erivator endowed with a symmetric monoidal structure. Given symmetric monoidal

prederivators D and D′, we denote by Hom⊗(D, D′) the category of symmetric monoidal

morphisms; see [9, §5.11] for details. A symmetric monoidal derivator is a symmetric

monoidal prederivator D which is also a derivator, and such that the tensor product

preserves homotopy colimits in each variable, i.e. sucht that, for any object X ∈ D(e)

the induced morphism

X ⊗− : D −→ D

preserves homotopy colimits.

Given symmetric monoidal derivators D and D′, we denote by Hom⊗
! (D, D′) the

category of symmetric monoidal morphisms which preserve homotopy colimits.

A basic example of a symmetric monoidal prederivator is given as follows : let M
be a symmetric monoidal category (with monoidal product − ⊗ −) and W a class

of morphisms in M. If the monoidal product preserves the class W, i.e. if we have

an inclusion W ⊗ W ⊆ W, then the prederivator M[W−1] of §A.1 is naturally a

symmetric monoidal prederivator. Moreover, if F : (M,W)→ (N ,V) is a symmetric

monoidal functor such that F (W) ⊂ V, then the induced morphism

M[W−1] −→ N [V−1]

is symmetric monoidal.

As for examples of symmetric monoidal derivators, most of them are obtained from

symmetric monoidal model categories [24, Definition 4.2.6].
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Proposition A.2. — LetM be a symmetric monoidal model category. Then its as-

sociated derivator HO(M) carries a symmetric monoidal structure. Moreover, any

symmetric monoidal left Quillen functor between symmetric monoidal model cate-

gories induces a symmetric monoidal morphism between the associated derivators.

Proof. — See [9, Proposition 6.1].
√

A.6. Derived Day convolution product. — Let A be a small symmetric monoidal

category. Then A is a symmetric monoidal prederivator. Moreover, as s Â is then a

symmetric monoidal model category (see Theorem 5.2), the derivator HotA is then

a symmetric monoidal derivator, in such a way that the Yoneda embedding (A.4.1)

is a symmetric monoidal morphism of prederivators. Given a symmetric monoidal

derivator D, we thus have an induced functor

(A.6.1) h∗ : Hom⊗
! (HotA, D) −→ Hom⊗(A, D) .

Theorem A.3. — The functor (A.6.1) is an equivalence of categories.

Proof. — This is simply a variation on Theorem A.1. Given two derivators D′ and

D′′, the derivator Hom!(D
′, D′′) is defined by

Hom!(D
′, D′′)(A) = Hom!(D

′, D′′
A) ,

where D′′
A is in turn the derivator of “presheaves on A with values in A”, i.e. the

derivator defined by

D′′
A(X) = D′′(A×X) .

For a third derivator D, the data of a morphism of prederivators

D× D′ −→ D′′

which preserves homotopy colimits in each variable is equivalent to the data of an

object in Hom!(D,Hom!(D
′, D′′)); see [9, Lemme 5.18]. Moreover, when D′ is of the

form HotB , with B a small category, it follows immediately from Theorem A.1 that

we have equivalences of derivators

Hom!(HotB , D′′) ≃ Hom(B, D′′) ≃ D′′
Bop .

Hence, if A is another small category, we obtain canonical equivalences of categories :

Hom!(HotA,Hom!(HotB , D′′)) ≃ Hom(A,Hom!(HotB , D′′))

≃ Hom(A,Hom(B, D′′))

≃ Hom(A×B, D′′) = D′′(Aop ×Bop) .

For A = B and D′′ = HotA, we note that the tensor product on HotA corresponds, un-

der these equivalences of categories, to the tensor product ⊗ : A×A −→ A composed

with the Yoneda embeding (A.4.1).

More generally, we obtain (by induction on n ≥ 0) that for any n-tuple of small

categories (A1, . . . , An), the category of morphisms HotA1
× · · · × HotAn

−→ D′′
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which preserve homotopy colimits in each variable is canonically equivalent to the

category of morphisms A1 × · · · × An −→ D′′. This fact implies that the symmetric

monoidal structure on A extends uniquely to a symmetric monoidal structure on the

derivator HotA. Moreover, the category of symmetric monoidal morphisms from HotA

to D′′, which preserve homotopy colimits, is canonically equivalent to the category of

symmetric monoidal morphisms from A to D′′.
√

A.7. Left Bousfield localization. — Let D be a derivator and S a class of mor-

phisms in the base category D(e). We say that the derivator D admits a left Bousfield

localization with respect to the class S, if there exists a morphism of derivators

γ : D −→ LSD ,

which commutes with homotopy colimits, sends the elements of S to isomorphisms

in LSD(e), and satisfies the following universal property : given any derivator D′, the

morphism γ induces an equivalence of categories

γ∗ : Hom!(LSD, D′)
∼−→ Hom!,S(D, D′) ,

where Hom!,S(D, D′) denotes the category of morphisms of derivators which commute

with homotopy colimits and send the elements of S to isomorphisms in D′(e).

Theorem A.4. — Let M be a left proper cellular model category and S a set of

maps in the homotopy category Ho(M) ofM. Consider the left Bousfield localization

LSM of M with respect to the set S, i.e. to perform the localization we choose in

M a representative for each element of S. Then, the induced morphism of derivators

HO(M) → HO(LSM) is a left Bousfield localization of the derivator HO(M) with

respect to the set S. Moreover, we have a natural adjunction of derivators :

HO(M)

��
HO(LSM) .

OO

Proof. — See [42, Theorem 4.4].
√

Remark A.5. — If the domains and codomains of the elements of the set S are

homotopically finitely presented (see Definition 3.2), the morphism HO(LSM) →
HO(M) (right adjoint to the localizing functor) preserves filtered homotopy colimits.

Therefore, under these hypothesis, if HO(M) is regular so it is HO(LSM).

By [42, Lemma 4.3], the Bousfield localization LSD of a triangulated derivator D

remains triangulated as long as S is stable under the loop space functor. For more

general S, to remain in the world of triangulated derivators, one has to localize with

respect to the set Ω(S) generated by S and loops, as follows.
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Proposition A.6. — Let D be a triangulated derivator and S a class of morphisms

in D(e). Let us denote by Ω(S) the smallest class of morphisms in D(e) which con-

tains S and is stable under the loop space functor Ω : D(e) → D(e). Then for any

triangulated derivator T, we have an equality of categories

Hom!,Ω(S)(D, T) = Hom!,S(D, T) .

As a consequence, whenever LΩ(S)D exists, this is the triangulated left Bousfied local-

ization of D with respect to S.

Proof. — For F an element of Hom!(D, T), the functor F (e) : D(e)→ T(e) commutes

with homotopy colimits, hence it commutes in particular with the suspension functor.

Since both D and T are triangulated, suspension and loop space functors are inverse

to each other. Hence F (e) also commutes with Ω. It is then obvious that F (e) sends

S to isomorphisms if and only if it does so with Ω(S).
√

Theorem A.7 (Dugger). — LetM be a combinatorial model category. Then, there

exists a small category A and a small set of maps S in HotA(e) = Ho(s Â), such that

HO(M) is equivalent to LSHotA.

Proof. — This follows from [14, Proposition 3.3] and from Theorem A.4 applied to

the projective model structure on the category of simplicial presheaves of a small

category.
√

Remark A.8. — It follows immediately from Theorem A.7 that the statement of

Theorem A.4 holds also for left proper combinatoriel model categories. In particular,

any derivator which is equivalent to a derivator associated to a combinatorial model

category admits a left Bousfield localization with respect to any small set of maps.

Proposition A.9. — Let D be a symmetric monoidal derivator, and S a class of

maps in D(e). Assume that S is closed under tensor product in D, and that the left

Bousfield localization of D by S exists. Then, LSD is symmetric monoidal, and the

localization morphism γ : D −→ LSD is symmetric monoidal. Moreover, given any

symmetric monoidal derivator D′, the induced functor

γ∗ : Hom⊗
! (LSD, D′) −→ Hom⊗

! (D, D′)

is fully-faithful, and its essential image consists of the symmetric monoidal homotopy

colimit preserving morphisms which send S to isomorphisms.

Proof. — This is an immediate consequence of the universal property of LSD. The

details are left as an exercise for the reader.
√
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A.8. Stabilization. — Let D be a derivator. Then there is a universal pointed

derivator D→ D• : given any pointed derivator D′, the induced functor

Hom!(D•, D
′)

∼−→ Hom!(D, D′)

is an equivalence of categories; see [9, Corollaire 4.19]. Using the explicit construction

of D• (see [9, §4.5]) it is easy to see that when D• is strong (resp. regular) so is D. If

D = HO(M) for some model category M, then D• is equivalent to HO(M•), where

M• denotes the model category of pointed objects inM; see [24, Proposition 1.1.8].

Let D be a pointed derivator. A stabilization of D is a homotopy colimit preserving

morphism stab : D → St(D), with St(D) a triangulated strong derivator, which is

universal for these properties : given any triangulated strong derivator T, the induced

functor

stab∗ : Hom!(St(D), T)
∼−→ Hom!(D, T) .

is an equivalence of categories.

Theorem A.10 (Heller [22]). — Any pointed regular strong derivator admits a sta-

bilization.

Given a pointed simplicial model categoryM, the second named author compared

in [42, §8] the derivator associated to the model category SpN(M) of S1-spectra on

M with the stabilization of the derivator associated to the model categoryM.

Proposition A.11. — Let M be a pointed, simplicial, left proper, cellular model

category. Assume that sequential homotopy colimits commute with finite products and

homotopy pullbacks. Then, the induced morphism of triangulated strong derivators

St(HO(M))
∼−→ HO(SpN(M))

is an equivalence.

Proof. — See [42, Theorem 8.7].
√

Let D be a pointed strong derivator (see §A.3) and S be a class of morphisms in

D(e). Assume that D admits a left Bousfield localization LSD with respect to S; see

§A.7. Assume also that the stablization St(D) of D exists.

We then have two homotopy colimit preserving morphisms :

LSD
γ←−− D

stab−−→ St(D) .

By examining the relevant universal properties, we obtain the following result.

Proposition A.12. — Under the above assumptions, the derivator LΩ(stab(S))St(D)

exists if and only if the derivator St(LSD) exists. Moreover, if this is the case, then

LΩ(stab(S))St(D) ≃ St(LSD) under D.
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Corollary A.13. — Let M be a pointed left proper combinatorial model category.

Then the stabilization St(HO(M)) of HO(M) exists and is equivalent to the derivator

associated to a stable combinatorial model category.

Proof. — Thanks to Theorem A.7 we may assume that HO(M) ≃ LSHotA,•. Using

Proposition A.12 and Theorem A.4, we see it is sufficient to treat the case where S is

the empty set. Proposition A.11 allow us then to conclude the proof.
√

Remark A.14. — A careful analysis of the proof of the Corollary A.13 will lead

to a proof of Proposition A.11 for any simplicial combinatorial model category M.

Note that since any combinatorial model category is equivalent to a simplicial one, we

conclude the existence of stabilizations for any derivator associated to a combinatorial

model category; however, we will not need this level of generality.

Theorem A.15. — Let A be a small symmetric monoidal category. Then there is a

unique symmetric monoidal structure on the triangulated derivator St(HotA,•) whose

tensor product preserves homotopy colimits in each variables, such that the composed

morphism

A −→ HotA −→ St(HotA,•)

is symmetric monoidal. Moreover, given any strong triangulated derivator D, the

induced functor

Hom⊗
! (St(HotA,•), D)

∼−→ Hom⊗(A, D)

is an equivalence of categories.

Proof. — It follows immediately from Theorem A.1 and from the universal property

of St(HotA,•) that, for any small category A and any strong triangulated derivator D,

we have canonical equivalences of categories:

Hom!(St(HotA,•), D) ≃ Hom(A, D) ≃ D(Aop) .

Starting from this point on, the proof of Theorem A.3 holds here mutatis mutandis.√

Remark A.16. — The derivator St(HotA,•) is equivalent to the derivator associ-

ated to the model category of symmetric spectra in the category of pointed simpli-

cial presheaves on A. This equivalence defines a symmetric monoidal structure on

St(HotA,•), making the morphism

A −→ HotA −→ St(HotA,•)

symmetric monoidal; see Proposition 5.3, Theorem 6.1, and Proposition A.11. This

monoidal structure coincides with the one of Theorem A.15, thanks to the uniqueness

of the latter.
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A.9. Spectral enrichment. — Recall from [11, Appendix A.3] that any triangu-

lated derivator D is canonically enriched over spectra, i.e. we have a morphism of

derivators

RHom(−,−) : Dop × D −→ HO(SpN) .

Moreover, this enrichment over spectra is compatible with adjunctions : given an

adjunction

D′

Ψ

��
D

Φ

OO

we have a canonical isomorphism in the stable homotopy category of spectra :

RHomD′(ΦX, Y ) ≃ RHomD(X, ΨY ) X ∈ D, Y ∈ D′ .
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