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Laboratoire de Mécanique et d’Acoustique C.N.R.S., 31 chemin Joseph
Aiguier, 13402 Marseille Cedex 20 and Université de Provence, U.F.R. -
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Abstract

This paper deals with the mathematical and numerical analysis of

a class of abstract implicit evolution variational inequalities. The re-

sults obtained here can be applied to a large variety of quasistatic con-

tact problems in linear elasticity, including unilateral contact or nor-

mal compliance conditions with friction. In particular, a quasistatic

unilateral contact problem with nonlocal friction is considered. An

algorithm is derived and some numerical examples are presented.

1 Introduction

This paper is concerned with the mathematical analysis and the approxi-
mation of a class of abstract implicit evolution variational inequalities which
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constitutes a generalization of variational inequalities related to various qua-
sistatic contact problems and of some parabolic variational inequalities of
second kind, see, e.g., [1]-[5] and references therein.

The static contact problems have been extensively studied and their anal-
ysis has contributed to considerably developing the mathematical and numer-
ical analysis of elliptic variational inequalities. As is well known, in the case
of frictional contact, this static formulation does not have any mechanical
significance, except in some very special cases.

Nevertheless, the incremental formulation obtained by performing time
discretization of quasistatic or dynamic problems is similar to a sequence of
static problems, which facilitates the mathematical and numerical analysis.

In the present work, a new system of evolution variational inequalities,
representing a unified approach to quasistatic contact problems in elasticity,
is analyzed. In Section 2, using an implicit time discretization scheme and
some estimates, strong convergence is obtained and an existence result is
established.

In Section 3, numerical analysis is carried out on the general problem.
Convergence results are proved using a method based on an semi-discrete
internal approximation and an implicit time discretization scheme.

In Section 4, we apply the results of Sections 2 and 3 to a quasistatic
unilateral contact problem with nonlocal friction in linear elasticity.

This particular problem concerns the contact between an elastic body and
a rigid support but a large variety of contact conditions can be easily analyzed
using our general results, as, for example, the unilateral or bilateral contact
with nonlocal friction between two elastic bodies or the frictional contact
with normal compliance conditions as well as the corresponding frictionless
cases.

In Section 5, some algorithms and numerical results are presented and
the effects of space and time discretizations are described on a test example.

2 A general system of evolution inequalities

Let (V, (·, ·)) be a real Hilbert space with the associated norm ‖ · ‖ and
let (H, (·, ·)H) be a real Hilbert space with the associated norm ‖ · ‖H . Let
a : V × V → R be a bilinear and symmetric form on V . We assume that a
is V-elliptic and continuous i.e.

a(v, v) ≥ α‖v‖2, |a(v, w)| ≤ M‖v‖‖w‖ ∀ v, w ∈ V, (2.1)

where α,M are positive constants. Let K be a closed convex cone contained
in V with its vertex at 0 and let (K(g))g∈V be a family of nonempty closed
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convex subsets of K satisfying the following conditions: 0 ∈ K(0) and

if gn → g in V, vn ∈ K(gn) and vn ⇀ v in V then v ∈ K(g). (2.2)

We assume that for all g ∈ V there exists an operator β(g, ·) : K(g) → H
such that

if gn → g in V, vn ∈ K(gn) and vn ⇀ v in V

then β(gn, vn) → β(g, v) in H
(2.3)

and for all g ∈ V , v ∈ K(g),

‖β(g, v)‖H ≤ k1(‖g‖+ ‖v‖), (2.4)

where k1 is a positive constant.
For all g ∈ V , let j(g, ·, ·) : K(g)× V → R be a functional satisfying the

following conditions:

j(g, v, ·) is sub-additive for all g ∈ V, v ∈ K(g), that is (2.5)

j(g, v, w1 + w2) ≤ j(g, v, w1) + j(g, v, w2) ∀ g, w1,2 ∈ V, v ∈ K(g),

j(g, v, ·) is positively homogeneous for all g ∈ V, v ∈ K(g), (2.6)

that is j(g, v, θw) = θj(g, v, w) ∀ g, w ∈ V, v ∈ K(g), θ ≥ 0,

j(0, 0, w) = 0 ∀w ∈ V, (2.7)

and

|j(g1, v1, w2) + j(g2, v2, w1)− j(g1, v1, w1)− j(g2, v2, w2)|
≤ k2(‖g1 − g2‖+ ‖β(g1 − g2, v1 − v2)‖H)‖w1 − w2‖

∀ gi, wi ∈ V, vi ∈ K(gi), i = 1, 2,

(2.8)

where k2 is a positive constant.
We assume that k1 and k2 satisfy the following condition:

k1k2 < α. (2.9)

For all g ∈ V , we consider a functional b(g, ·, ·) : K(g)× V → R which
satisfies the following conditions:

∀ g ∈ V, v ∈ K(g), b(g, v, ·) is linear on V, (2.10)

if gn → g in V, vn ∈ K(gn), vn ⇀ v in V and wn → w in V

then b(gn, vn, wn) → b(g, v, w),
(2.11)

3



and

|b(g1, v1, w)− b(g2, v2, w)| ≤ k3(‖g1 − g2‖+ ‖v1 − v2‖)‖w‖
∀ gi, w ∈ V, vi ∈ K(gi), i = 1, 2,

(2.12)

where k3 is a positive constant. From the above properties of a, j and K
and by a classical argument, it follows that for all g ∈ V, d ∈ K, w ∈ K(g)
the elliptic variational inequality

u ∈ K a(u, v − u) + j(g, w, v − d)− j(g, w, u− d) ≥ 0 ∀ v ∈ K

has a unique solution, so that we can define the mapping Sg,d : K(g) → K
as Sg,d(w) = u. We assume that for all g ∈ V, d ∈ K

K(g) is stable under Sg,d i.e. Sg,d(K(g)) ⊂ K(g). (2.13)

For all g ∈ V, d ∈ K, we consider the following problems:

(P̃ )















u ∈ K(g) a(u, v − u) + j(g, u, v − d)− j(g, u, u− d)

≥ b(g, u, v − u) ∀ v ∈ V,

b(g, u, z − u) ≥ 0 ∀ z ∈ K,

and

(Q̃) u ∈ K(g) a(u, v − u) + j(g, u, v − d)− j(g, u, u− d) ≥ 0 ∀ v ∈ K.

We assume that

if u is a solution of (Q̃), then u is a solution of (P̃ ). (2.14)

Remark 2.1 If u satisfies (P̃ ), then u obviously satisfies (Q̃).

Let f ∈ W 1,2(0, T ;V ) be given and u0 ∈ K(f(0)) be the unique solution
of the following implicit elliptic variational inequality (see, e.g., [6]):

a(u0, w − u0) + j(f(0), u0, w)− j(f(0), u0, u0) ≥ 0 ∀w ∈ K. (2.15)

Indeed, using the hypotheses (2.1), (2.4), (2.8) and (2.13), it follows that
Sf(0),0 : K(f(0)) → K(f(0)) is a contraction if the condition (2.9) holds.
Therefore the variational inequality (2.15) has a unique solution.
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Remark 2.2 i) Since, by (2.6) j(·, ·, 0) = 0, from (2.8) for w2 = 0, w1 = w
and from (2.4) it follows that

|j(g2, v2, w)− j(g1, v1, w)|
≤ k2(‖g1 − g2‖+ ‖β(g1 − g2, v1 − v2)‖H)‖w‖
≤ ((k1 + 1)k2‖g1 − g2‖+ k1k2‖v1 − v2‖)‖w‖

∀ gi, w ∈ V, vi ∈ K(gi), i = 1, 2.

(2.16)

ii) As j satisfies (2.5), (2.6), j(g, v, ·) is convex and from (2.5), (2.7),
(2.16) for g2 = g, v2 = v, g1 = v1 = 0, it results that j(g, v, ·) is Lipschitz
continuous on V for all g ∈ V and for all v ∈ K(g).

iii) Using (2.3) and (2.16), as by (2.4) β(0, 0) = 0, we have the following
property

if gn → g in V, vn ∈ K(gn) and vn ⇀ v in V

then j(gn, vn, w) → j(g, v, w) ∀w ∈ V.
(2.17)

We consider the following evolution system of coupled variational inequalities.
Problem P: Find u ∈ W 1,2(0, T ;V ) such that

(P )



























u(0) = u0, u(t) ∈ K(f(t)) ∀ t ∈] 0, T [,

a(u(t), v − u̇(t)) + j(f(t), u(t), v)− j(f(t), u(t), u̇(t))

≥ b(f(t), u(t), v − u̇(t)) ∀ v ∈ V a.e. on ]0, T [,

b(f(t), u(t), z − u(t)) ≥ 0 ∀ z ∈ K, ∀ t ∈] 0, T [.

In order to prove that there exists a solution to problem P, we consider an
incremental formulation obtained by using an implicit time discretization
scheme.

For n ∈ N∗, we set ∆t := T/n and ti := i∆t, i = 0, 1, ..., n. If θ is a
continuous function of t ∈ [ 0, T ] valued in some vector space, we use the
notations θi := θ(ti) unless θ = u, and if ηi, ∀ i ∈ {0, 1, ..., n}, are elements
of some vector space, then we set

∂ηi :=
ηi+1 − ηi

∆t
∀ i ∈ {0, 1, ..., n− 1}.

Let us also denote Ki := K(f(ti)), ∀ i ∈ {0, 1, ..., n}, and u0 := u0. We
then approximate (P ) using the following sequence of incremental problems
(P i

n)i=0,1,...,n−1 .
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Problem Pi

n
: Find ui+1 ∈ Ki+1 such that

(P i
n)















a(ui+1, v − ∂ui) + j(f i+1, ui+1, v)− j(f i+1, ui+1, ∂ui)

≥ b(f i+1, ui+1, v − ∂ui) ∀ v ∈ V,

b(f i+1, ui+1, z − ui+1) ≥ 0 ∀ z ∈ K.

Remark 2.3 i) Since K is a cone, the solutions u of (P ) and ui+1 of (P i
n)

obviously satisfy
b(f(t), u(t), u(t)) = 0 on [ 0, T ]

and
b(f i+1, ui+1, ui+1) = 0, ∀ i ∈ {0, 1, ..., n− 1}.

ii) It follows also that

b(f(t), u(t), u̇(t)) = 0 a.e. on [ 0, T ], (2.18)

which can be obtained simply by the fact that since u satisfies the second
inequality of (P ) we have, for all t ∈] 0, T [ and for all ∆t > 0, sufficiently
small,

b(f(t), u(t),
u(t+∆t)− u(t)

∆t
) ≥ 0,

and

b(f(t), u(t),
u(t−∆t)− u(t)

−∆t
) ≤ 0.

From (2.14) and Remark 2.1 for g = f i+1 and d = ui, it follows that
the problem P i

n is equivalent to the following variational inequality: find
ui+1 ∈ Ki+1 such that

(Qi
n)

{

a(ui+1, w − ui+1) + j(f i+1, ui+1, w − ui)

−j(f i+1, ui+1, ui+1 − ui) ≥ 0 ∀w ∈ K.

From the hypotheses (2.1), (2.4), (2.8), (2.9) and (2.13), it follows that
Sf i+1,ui : Ki+1 → Ki+1 is a contraction. Therefore (Qi

n) has a unique so-
lution.

A straightforward computation and the fact that f is absolutely contin-
uous give us the following estimates.

Lemma 2.1 Let ui+1 ∈ Ki+1 be the solution of (Qi
n), i ∈ {0, 1, ..., n − 1}.

Then
‖u0‖ ≤ C0, ‖ui+1‖ ≤ C0, (2.19)
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‖ui+1 − ui‖ ≤ C1

ti+1
∫

ti

‖ḟ(τ)‖ dτ, (2.20)

n−1
∑

i=0

‖ui+1 − ui‖2 ≤ C2
1∆t

T
∫

0

‖ḟ(τ)‖2 dτ, (2.21)

where

C0 =
(k1 + 1)k2‖f‖C([ 0,T ];V )

α− k1k2
, C1 =

(k1 + 1)k2
α− k1k2

. (2.22)

Now, if we define


































un(0) = ûn(0) = u0, fn(0) = f 0 and

∀ i ∈ {0, 1, ..., n− 1}, ∀ t ∈]ti, ti+1],

un(t) = ui+1,

ûn(t) = ui + (t− ti)∂u
i,

fn(t) = f i+1,

(2.23)

then the functions un, fn ∈ L2(0, T ;V ) and ûn ∈ W 1,2(0, T ;V ) satisfy the
following incremental formulation for all t ∈ [ 0, T ]:

(Pn)























un(t) ∈ K(fn(t)), a(un(t), v −
d

dt
ûn(t)) + j(fn(t), un(t), v)

−j(fn(t), un(t),
d

dt
ûn(t)) ≥ b(fn(t), un(t), v −

d

dt
ûn(t)) ∀ v ∈ V,

b(fn(t), un(t), z − un(t)) ≥ 0 ∀ z ∈ K.

Remark 2.4 From (2.23) and Remark 2.3 i), it follows that

b(fn(t), un(t), v −
d

dt
ûn(t)) = b(f i+1, ui+1, v − ∂ui)

≥ b(fn(t), un(t), v) ∀ t ∈]ti, ti+1[ , ∀ v ∈ V.

Lemma 2.2 For all t ∈ [ 0, T ] we have

‖un(t)‖ ≤ C0, (2.24)

and for all s, t ∈ [ 0, T ], s < t we have

‖un(s)− un(t)‖ ≤ C1

min{t+∆t,T}
∫

s

‖ḟ(τ)‖ dτ, (2.25)
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‖un − ûn‖L2(0,T ;V ) ≤ C1‖ḟ‖L2(0,T ;V )

∆t√
3
, (2.26)

‖ d

dt
ûn‖L2(0,T ;V ) ≤ C1‖ḟ‖L2(0,T ;V ) . (2.27)

Proof.
Inequalities (2.24), (2.25) follow from definitions (2.23) and estimates (2.19),
(2.20). In order to obtain (2.26) and (2.27), we use the relations

‖un − ûn‖L2(0,T ;V ) =
∆t√
3
‖ d

dt
ûn‖L2(0,T ;V ) =

√

√

√

√

∆t

3

n−1
∑

i=0

‖ui+1 − ui‖2

and estimate (2.21). �

Lemma 2.3 There exists a subsequence of (un)n, denoted by (unp
)p, and an

element u ∈ W 1,2(0, T ;V ) such that

unp
(t) ⇀ u(t) in V ∀ t ∈ [ 0, T ], (2.28)

ûnp
⇀ u in W 1,2(0, T ;V ). (2.29)

In addition, for all s ∈ [ 0, T ], we have

lim inf
p→∞

s
∫

0

a(unp
(t),

d

dt
ûnp

(t)) dt ≥
s

∫

0

a(u(t), u̇(t)) dt, (2.30)

lim inf
p→∞

s
∫

0

j(fnp
(t), unp

(t),
d

dt
ûnp

(t)) dt ≥
s

∫

0

j(f(t), u(t), u̇(t)) dt. (2.31)

Proof.
Applying a diagonal process (see, e.g., [5]), it follows from (2.24) and (2.25)
that we can extract a subsequence (unk

)k of (un)n such that unk
(t) ⇀ u(t)

in V ∀ t ∈ [ 0, T ], hence unk
⇀ u in L2(0, T ;V ). Thus from (2.26) and

(2.27) we deduce that u ∈ W 1,2(0, T ;V ) and there exists a subsequence of
(ûn)n such that (2.29) holds. Since f, u ∈ W 1,2(0, T ;V ) ⊂ C([ 0, T ];V )
and fn(t) → f(t) in V ∀ t ∈ [ 0, T ], from (2.2) it results that u(t) ∈
K(f(t)) ∀ t ∈ [ 0, T ].

We shall omit the subscript p from now on. In order to prove (2.30) and
(2.31), let s ∈] 0, T ]. Using the definitions (2.23) and the properties of a, we
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obtain

s
∫

0

a(un(t),
d

dt
ûn(t)) dt ≥

1

2
a(un(s), un(s))−

1

2
a(u0, u0)

−
∫ ti+1

s

a(un(t),
d

dt
ûn(t)) dt,

(2.32)

where i ∈ {0, 1, ..., n − 1} is such that s ∈]ti, ti+1]. Therefore, by going to
the limit, one obtains (2.30).

Next, since by Remark 2.2 ii) j(f(t), u(t), ·) is convex lower semicon-

tinuous for all t ∈ [ 0, T ], the mapping v 7→
s

∫

0

j(f(t), u(t), v(t)) dt is convex

and lower semicontinuous on L2(0, T ;V ) (see, e.g., [7]). Thus

lim inf
n→∞

s
∫

0

j(f(t), u(t),
d

dt
ûn(t)) dt ≥

s
∫

0

j(f(t), u(t), u̇(t)) dt. (2.33)

Using (2.16) and (2.27) we have

|
s

∫

0

(j(fn(t), un(t),
d

dt
ûn(t))− j(f(t), u(t),

d

dt
ûn(t))) dt|

≤ C1‖ḟ‖L2(0,T ;V ) (

s
∫

0

(k2‖β(fn(t)− f(t), un(t)− u(t))‖H

+k2‖fn(t)− f(t)‖)2 dt) 1

2 ,

from which by using (2.3) it follows that

lim
n→∞

s
∫

0

(j(fn(t), un(t),
d

dt
ûn(t))− j(f(t), u(t),

d

dt
ûn(t))) dt = 0. (2.34)

Relations (2.33) and (2.34) imply (2.31). �
We now prove the following strong convergence and existence result.

Theorem 2.1 Under the assumptions (2.1)-(2.15) there exists a subsequence
of (un)n such that

un(t) → u(t) in V ∀ t ∈ [ 0, T ], (2.35)

ûn → u in L2(0, T ;V ), (2.36)
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d

dt
ûn ⇀ u̇ in L2(0, T ;V ), (2.37)

where u ∈ W 1,2(0, T ;V ) is a solution of problem P.

Proof.
Let (un)n be the subsequence given by lemma 2.3. We shall prove that its
limit u is a solution of problem P. Let s ∈ [ 0, T ]. Integrating both sides in the
first inequality of (Pn) over [ 0, s ] and passing to the limit, by the relations
(2.1), (2.17), Remark 2.4 and lemma 2.3 it follows that for all v ∈ L2(0, T ;V )

s
∫

0

a(u(t), v(t)− u̇(t)) dt+

s
∫

0

j(f(t), u(t), v(t))dt

−
s

∫

0

j(f(t), u(t), u̇(t))dt ≥
s

∫

0

b(f(t), u(t), v(t))dt.

(2.38)

Now, by writing the inequality corresponding to (Qi
n) satisfied by un and

passing to the limit, we obtain that for all t ∈ [ 0, T ]

a(u(t), v − u(t)) + j(f(t), u(t), v − u(t)) ≥ 0 ∀ v ∈ K, (2.39)

where we have used that un(t−∆t) ⇀ u(t) in V ∀ t ∈] 0, T ] and (2.15).
From (2.14), taking d = u, it follows that u satisfies

b(f(t), u(t), z − u(t)) ≥ 0 ∀ z ∈ K, ∀ t ∈ [ 0, T ]. (2.40)

Finally, by Remark 2.3 and Lebesgue’s theorem, we obtain that u is a solution
of problem P.

In order to show the strong convergences (2.35), (2.36) (see also [8]), we
first prove that

lim
n→∞

s
∫

0

a(un(t),
d

dt
ûn(t)) dt =

s
∫

0

a(u(t), u̇(t)) dt ∀ s ∈ [ 0, T ]. (2.41)

On one hand, taking v = 0 in (Pn), v = 0, v = 2u̇(t) in (2.38) and using
(2.17), (2.11) and (2.18), we obtain

lim inf
n→∞

s
∫

0

a(un(t),
d

dt
ûn(t)) dt =

s
∫

0

a(u(t), u̇(t)) dt (2.42)
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and

lim inf
n→∞

s
∫

0

j(fn(t), un(t),
d

dt
ûn(t)) dt =

s
∫

0

j(f(t), u(t), u̇(t)) dt. (2.43)

On the other hand, taking v = u̇(t) in (Pn) we get

lim sup
n→∞

s
∫

0

a(un(t),
d

dt
ûn(t)) dt ≤ lim

n→∞

s
∫

0

a(un(t), u̇(t)) dt

+ lim
n→∞

s
∫

0

j(fn(t), un(t), u̇(t)) dt− lim inf
n→∞

s
∫

0

j(fn(t), un(t),
d

dt
ûn(t)) dt

− lim
n→∞

s
∫

0

b(fn(t), un(t), u̇(t)) dt =

s
∫

0

a(u(t), u̇(t)) dt,

so that from (2.42), (2.43) the convergence (2.41) follows, which implies that

lim
n→∞

a(un(s), un(s)) = a(u(s), u(s)) ∀ s ∈ [ 0, T ].

Therefore, using the V-ellipticity of a and (2.26), we obtain the strong con-
vergences (2.35), (2.36) and the theorem is proved. �

3 Approximation and numerical analysis

This section deals with the discretization of problem P. We shall prove a
convergence result for a method based on an internal approximation and a
backward difference scheme.

First we consider a semi-discrete approximation of (P ). For a positive
parameter h converging to 0, let (Vh)h be a family of finite-dimensional sub-
spaces of V and let (Kh)h be a family of closed convex cones with their
vertices at 0 such that Kh ⊂ K and (Kh)h is an internal approximation of K
(see, e.g., [1]), i.e.

∀ v ∈ K, ∃ vh ∈ Kh such that vh → v in V. (3.1)

From the properties of a, j and Kh, it follows that for all g ∈ V, dh ∈
Kh, wh ∈ Kh ∩K(g), the elliptic variational inequality uh ∈ Kh

a(uh, vh − uh) + j(g, wh, vh − dh)− j(g, wh, uh − dh) ≥ 0 ∀ vh ∈ Kh
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has a unique solution. Hence we can define a mapping Sh
g,dh

: Kh∩K(g) → Kh

by Sh
g,dh

(wh) = uh. We suppose that for all g ∈ V, dh ∈ Kh

Sh
g,dh

(Kh ∩K(g)) ⊂ Kh ∩K(g). (3.2)

For all g ∈ V, dh ∈ Kh, we consider the following problems:

(P̃h)















uh ∈ Kh ∩K(g), a(uh, vh − uh) + j(g, uh, vh − dh)

−j(g, uh, uh − dh) ≥ b(g, uh, vh − uh) ∀ vh ∈ Vh,

b(g, uh, zh − uh) ≥ 0 ∀ zh ∈ Kh,

and

(Q̃h)

{

uh ∈ Kh ∩K(g), a(uh, vh − uh) + j(g, uh, vh − dh)

−j(g, uh, uh − dh) ≥ 0 ∀ vh ∈ Kh.

We assume that

if uh is a solution of (Q̃h), then uh is a solution of (P̃h). (3.3)

Remark 3.1 If uh satisfies (P̃h), then uh obviously satisfies (Q̃h).

Let us now consider the following semi-discrete problem.
Problem Ph: Find uh ∈ W 1,2(0, T ;Vh) such that

(Ph)



























uh(0) = rhu0, uh(t) ∈ Kh ∩K(f(t)) ∀ t ∈] 0, T [,

a(uh(t), vh − u̇h(t)) + j(f(t), uh(t), vh)− j(f(t), uh(t), u̇h(t))

≥ b(f(t), uh(t), vh − u̇h(t)) ∀ vh ∈ Vh a.e. on ] 0, T [,

b(f(t), uh(t), zh − uh(t)) ≥ 0 ∀ zh ∈ Kh, ∀ t ∈] 0, T [,

where rhu0 ∈ Kh∩K(f(0)) is the unique solution of the variational inequality

a(rhu0, wh − rhu0) + j(f(0), rhu0, wh)

−j(f(0), rhu0, rhu0) ≥ 0 ∀wh ∈ Kh.
(3.4)

The full discretization of (Ph) is obtained by using an implicit scheme as in
Section 2 for (P ). For u0

h := rhu0 and i ∈ {0, 1, ..., n − 1}, we define ui+1
h

as the solution of the following problem.
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Problem Pi

hn
: Find ui+1

h ∈ Ki+1
h such that

(P i
hn)















a(ui+1
h , vh − ∂ui

h) + j(f i+1, ui+1
h , vh)− j(f i+1, ui+1

h , ∂ui
h)

≥ b(f i+1, ui+1
h , vh − ∂ui

h) ∀ vh ∈ Vh,

b(f i+1, ui+1
h , zh − ui+1

h ) ≥ 0 ∀ zh ∈ Kh,

where Ki+1
h := Kh ∩K(f i+1).

By (3.3) and Remark 3.1 it is easily seen that (P i
hn) is equivalent to the

following implicit variational inequality: find ui+1
h ∈ Ki+1

h such that

(Qi
hn)

{

a(ui+1
h , wh − ui+1

h ) + j(f i+1, ui+1
h , wh − ui

h)

−j(f i+1, ui+1
h , ui+1

h − ui
h) ≥ 0 ∀wh ∈ Kh.

From (2.1), (2.4), (2.8), (2.9) and (3.2) it follows that Sh
f i+1,ui

h

: Ki+1
h → Ki+1

h

is a contraction, so that (Qi
hn) has a unique solution.

If we define the functions






















uhn(0) = ûhn(0) = rhu0 and

∀ i ∈ {0, 1, ..., n− 1}, ∀ t ∈]ti, ti+1],

uhn(t) = ui+1
h ,

ûhn(t) = ui
h + (t− ti)∂u

i
h,

(3.5)

then we have the analogue to theorem 2.1 in the finite-dimensional case.

Theorem 3.1 Assume that (2.1)-(2.12), (3.2)-(3.4) hold. Then there exists
a subsequence of (uhn)n, still denoted by (uhn)n, such that

uhn(t) → uh(t) in V ∀ t ∈ [ 0, T ], (3.6)

ûhn ⇀ uh in W 1,2(0, T ;V ), (3.7)

where uh ∈ W 1,2(0, T ;Vh) is a solution of (Ph).

We now proceed to find a priori estimates for the solutions of (Ph) which
are limits of subsequences of (uhn)n.

Lemma 3.1 Let uh be a solution of (Ph) given by theorem 3.1. Then

‖uh(t)‖ ≤ C0 ∀ t ∈ [ 0, T ], (3.8)

‖uh(s)− uh(t)‖ ≤ C1

t
∫

s

‖ḟ(τ)‖dτ ∀ s, t ∈ [ 0, T ], s < t, (3.9)

‖uh‖W 1,2(0,T ;V ) ≤
√

C2
0T + C2

1‖ḟ‖2L2(0,T ;V ), (3.10)

C0, C1 being defined by (2.22).
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Proof.
Using the same argument as in the proof of lemma 2.2, we obtain

‖uhn(t)‖ ≤ C0 ∀ t ∈ [ 0, T ],

‖uhn(s)− uhn(t)‖ ≤ C1

min{t+∆t, T}
∫

s

‖ḟ(τ)‖dτ ∀ s, t ∈ [ 0, T ], s < t,

‖ûhn‖2W 1,2(0,T ;V ) ≤ C2
0T + C2

1‖ḟ‖2L2(0,T ;V ).

Combining these results with (3.6) and (3.7), the estimates (3.8)-(3.10) fol-
low. �

We have the following convergence and existence result.

Theorem 3.2 Under the assumptions (2.1)-(2.15), (3.1)-(3.4), there exists
a subsequence of (uh)h such that

uh(t) → u(t) in V ∀ t ∈ [ 0, T ], (3.11)

u̇h ⇀ u̇ in L2(0, T ;V ), (3.12)

where u ∈ W 1,2(0, T ;V ) is a solution of (P ).

Proof.
From lemma 3.1 it follows that there exists a subsequence of (uh)h and an
element u ∈ W 1,2(0, T ;V ) such that

uh(t) ⇀ u(t) in V ∀ t ∈ [ 0, T ], (3.13)

uh ⇀ u in W 1,2(0, T ;V ). (3.14)

As one can prove that
rhu0 → u0 in V, (3.15)

from (3.13) we obtain

lim inf
h→0

s
∫

0

a(uh(t), u̇h(t)) dt ≥
1

2
(lim inf

h→0
a(uh(s), uh(s))

− lim
h→0

a(rhu0, rhu0)) ≥
1

2
(a(u(s), u(s))− a(u0, u0))

=

s
∫

0

a(u(t), u̇(t)) dt ∀ s ∈ [ 0, T ].

(3.16)
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Following the argument in the proof of lemma 2.3, by (3.13) and (3.14) we
have that for all s ∈ [ 0, T ]

lim inf
h→0

s
∫

0

j(f(t), uh(t), u̇h(t)) dt ≥
s

∫

0

j(f(t), u(t), u̇(t)) dt. (3.17)

Next we prove that u satisfies (2.38). In order to pass to the limit in
(Ph), for v ∈ V we set vh = πhv, where πhv is the projection of v on Vh

defined by a(πhv, wh) = a(v, wh) ∀wh ∈ Vh. Thus if v ∈ L2(0, T ;V ) then
πhv ∈ L2(0, T ;Vh) and πhv(t) → v(t) in V a.e. on [ 0, T ], which imply

lim
h→0

s
∫

0

j(f(t), uh(t), πhv(t)) dt =

s
∫

0

j(f(t), u(t), v(t)) dt ∀ s ∈ [ 0, T ]

and

lim
h→0

s
∫

0

b(f(t), uh(t), πhv(t)) dt =

s
∫

0

b(f(t), u(t), v(t)) dt ∀ s ∈ [ 0, T ].

Since b(f(t), uh(t), u̇h(t)) = 0 a.e. on [ 0, T ], by integrating (Ph) over [ 0, s ]
for vh = πhv and passing to the limit, we obtain that u satisfies (2.38).

Now, we prove the strong convergence (3.11). Using the same argument
in the proof of theorem 2.1, by taking v = 0, v = 2u̇ in (2.38), vh = 0,
vh = 2u̇h(t) in (Ph) and using (3.16), (3.17), we have that for all s ∈ [ 0, T ]

lim inf
h→0

s
∫

0

a(uh(t), u̇h(t)) dt =

s
∫

0

a(u(t), u̇(t)) dt, (3.18)

lim inf
h→0

s
∫

0

j(f(t), uh(t), u̇h(t))dt =

s
∫

0

j(f(t), u(t), u̇(t))dt. (3.19)

and, by taking vh = πhu̇(t) in (Ph), we obtain

lim sup
h→0

s
∫

0

a(uh(t), u̇h(t)) dt ≤
s

∫

0

a(u(t), u̇(t)) dt ∀ s ∈ [ 0, T ].

From the last relation, (3.15) and (3.18), the convergence (3.11) follows.
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Finally we prove that u satisfies (2.40). From (Ph) we deduce that for all
t ∈ [ 0, T ]

a(uh(t), vh − uh(t)) + j(f(t), uh(t), vh − uh(t)) ≥ 0 ∀ vh ∈ Kh. (3.20)

Let v ∈ K and, by (3.1), let vh ∈ Kh be such that vh → v in V . By passing
to the limit in (3.20) and using (3.11), (2.14) we obtain that u ∈ K(f) and
satisfies (2.40). �

Using theorems 3.1 and 3.2, we obtain the following main approximation
result.

Theorem 3.3 Under the assumptions of theorem 3.2, there exists a subse-
quence of (uhn)hn such that

uhn(t) → u(t) in V ∀ t ∈ [ 0, T ], (3.21)

u̇hn ⇀ u̇ in L2(0, T ;V ), (3.22)

where u ∈ W 1,2(0, T ;V ) is a solution of (P ).

4 Applications to contact mechanics

4.1 Nonlocal friction laws and regularizations: a short
overview

The classical formulation of the unilateral contact problem in linear elas-
ticity, in the static frictionless case, was given by A. Signorini, who proved
also the uniqueness of solution, and the existence of solutions was studied by
G. Fichera, J.L. Lions and G. Stampacchia.

If the unilateral (or Signorini) contact conditions with local Coulomb’s
friction law are considered, some serious physical and mathematical difficul-
ties appear. From the physical point of view, the application of Coulomb’s
law to continuum mechanics is not obvious, see, e.g., [9]-[12] and references
therein. Also, the static formulation is not realistic even if it can be useful in
solving some intermediate problems like, for example, the incremental ones.
Hence the evolution problem, in the quasistatic or the dynamic case, should
be considered. From the mathematical point of view, as the normal com-
ponent of the stress vector on the contact boundary is generally defined in
the dual space H− 1

2 , this lack of smoothness does not guarantee good con-
vergence properties for the friction functional that appears in the variational
formulation of the problem.
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Thus, there were physical and mathematical arguments for considering
nonlocal friction laws by using appropriate regularizations of the pointwise
Coulomb friction conditions that preserve the multivalued character of the
unilateral contact conditions and of the friction law.

In elastostatics, for a class of frictional contact problems, G. Duvaut [13],
L. Demkowicz, J.T. Oden [14] and M. Cocou [15] considered a mollification
of the normal stresses on the contact boundary that enable to prove the
existence, and uniqueness if the coefficient of friction is sufficiently small, of
the variational solutions.

For the quasistatic unilateral contact problem, the same regularization
technique was extended by M. Cocou et al. [5] in order to prove, for a
sufficiently small coefficient of friction, the existence of a solution. In that
case, the simultaneous presence of the displacement and of the velocity fields
is necessary to describe both the Signorini conditions and the physically
consistent friction law. As was shown by P. Ballard [16], the uniqueness
of the quasistatic solution does not hold, in general, even for an arbitrarily
small coefficient of friction.

Another classical approach consisted in a regularization of the unilateral
contact conditions by using a normal compliance model, see [11], [12] for
its description and [8], [2] for existence results in the quasistatic case. The
contact law is there described by a single-valued mapping instead a multi-
valued one and small penetrations are allowed.

4.2 A quasistatic contact problem with nonlocal fric-
tion

Let us consider a linearly elastic body occupying a bounded domain Ω ⊂
R

d, d = 2, 3 with a Lipschitz boundary Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γ1, Γ2, Γ3

are open and disjoint parts of Γ with meas(Γ1) > 0.
We assume that in Ω a body force ϕ1 is prescribed, on Γ1 the displace-

ment vector equals zero, a traction ϕ2 is applied on Γ2 and that the inertial
effects are negligible.

The body is in contact with a rigid fixed support on Γ3 and the displace-
ments on this part of the boundary satisfy Signorini’s contact conditions and
are subjected to nonlocal friction when contact occurs.

Let us denote by σ the stress tensor, with the components σ = (σij) , by
ε the infinitesimal strain tensor, with the components ε = (εij) , by u the
displacement field, with the components u = (ui) , and by E the elasticity
tensor, with the components E = (aijkl) satisfying the usual properties of
symmetry and ellipticity.
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We shall use the classical decomposition into the normal and tangential
components of the displacement vector and stress vector u = uNn + uT

with uN = u · n, σn = σNn + σT with σN = (σn) · n, where n is the
outward normal unit vector to Γ with the components n = (ni).

The classical formulation of the quasistatic problem is as follows.
Problem Pc: Find a displacement field u = u(x, t) which satisfies the ini-
tial condition u(0) = u0 in Ω and for all t ∈] 0, T [, the following equations
and boundary conditions:

(Pc)







































































div σ(u) = −ϕ1 in Ω,

σ(u) = E ε(u) in Ω,

u = 0 on Γ1,

σn = ϕ2 on Γ2,

uN ≤ 0, σN ≤ 0, uNσN = 0 on Γ3,

|σT | ≤ µ|RσN | on Γ3

and

{

|σT | < µ|RσN | ⇒ u̇T = 0,

|σT | = µ|RσN | ⇒ ∃λ ≥ 0, u̇T = −λσT ,

where µ is the coefficient of friction andRσN is a regularization of the normal
contact force.

In order to obtain a variational formulation for this problem, we adopt
the following hypotheses:

ϕ1 ∈ W 1,2(0, T ; [L2(Ω)]d), ϕ2 ∈ W 1,2(0, T ; [L2(Γ2)]
d),

aijkl ∈ L∞(Ω), i, j, k, l = 1, ..., d, µ ∈ L∞(Γ3), µ ≥ 0 a.e. on Γ3.

We use the following notations:

V0 := {v ∈ [H1(Ω)]d ; v = 0 a.e. on Γ1}, K0 := {v ∈ V0 ; vN ≤ 0 a.e. on Γ3},

H
1

2 (Γ3) := {w : Γ3 → R; w ∈ H
1

2 (Γ), w = 0 a.e. on Γ1}, (· , ·) = (· , ·)[H1(Ω)]d ,

∀L ∈ V0 SL := {w ∈ V0;

∫

Ω

σ(w) · ε(ψ)dx = (L,ψ) ∀ψ ∈ V0 such

that ψ = 0 a.e. on Γ3}.

For all L ∈ V0 and v ∈ SL we define the stress vector σ(v)n ∈ ([H
1

2 (Γ3)]
d)′

by

∀w ∈ [H
1

2 (Γ3)]
d 〈σ(v)n,w〉 =

∫

Ω

σ(v) · ε(w̄)dx− (L, w̄), (4.1)
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where 〈· , ·〉 denotes the duality pairing on ([H
1

2 (Γ3)]
d)′× [H

1

2 (Γ3)]
d, w̄ ∈ V0

satisfies w̄ = w a.e. on Γ3, and we define the normal component of the stress
vector σN(v) ∈ (H

1

2 (Γ3))
′ by

∀w ∈ H
1

2 (Γ3) 〈σN(v), w〉 =
∫

Ω

σ(v) · ε(w̄)dx− (L, w̄), (4.2)

where 〈· , ·〉 denotes also the duality pairing on (H
1

2 (Γ3))
′ × H

1

2 (Γ3), w̄ ∈
V0 satisfies w̄T = 0 a.e. on Γ3, w̄N = w a.e. on Γ3.

It is easy to verify that for all v ∈ SL the definitions of σ(v)n and
of σN(v) do not depend on the choices of w̄ having the above properties,
respectively.

For all L ∈ V0 we introduce the functional JL : SL × V0 → R by

JL(v,w) =

∫

Γ3

µ|RσN(v)||wT |ds ∀v ∈ SL, w ∈ V0, (4.3)

where R : (H
1

2 (Γ3))
′ → L2(Γ3) is a linear and compact mapping.

Now, let L ∈ V0 be given by the relation

(L,v) = (ϕ1,v)[L2(Ω)]d + (ϕ2,v)[L2(Γ2)]d ∀v ∈ V0 (4.4)

and let u0 ∈ K0 satisfying the following compatibility condition:

∫

Ω

σ(u0) · ε(w − u0)dx+ JL(0)(u0,w)− JL(0)(u0,u0)

≥ (L(0),w − u0) ∀w ∈ K0.
(4.5)

A primal variational formulation of Pc is as follows, see, e.g., [5].
Problem P0: Find u ∈ W 1,2(0, T ;V0) such that

(P0)































u(0) = u0, u(t) ∈ K0 ∀ t ∈] 0, T [,
∫

Ω

σ(u(t)) · ε(v − u̇(t))dx+ JL(t)(u(t),v)− JL(t)(u(t), u̇(t))

≥ (L(t),v − u̇(t)) + 〈σN(u(t)), vN − u̇N(t)〉 ∀v ∈ V0 a.e. on ] 0, T [,

〈σN(u(t)), zN − uN(t)〉 ≥ 0 ∀ z ∈ K0, ∀ t ∈] 0, T [.

Let us define a : V0 × V0 → R by

a(v,w) =

∫

Ω

aijklεij(v)εkl(w)dx =

∫

Ω

σ(v) · ε(w)dx ∀v,w ∈ V0. (4.6)
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The bilinear form a(· , ·) is continuous on V0 × V0 and since meas(Γ1) > 0,
by Korn’s inequality is also V0-elliptic i.e. satisfies

∃M > 0 such that |a(v,w)| ≤ M‖v‖‖w‖ ∀v,w ∈ V0,

∃α > 0 such that a(v,v) ≥ α‖v‖2 ∀v ∈ V0,

where ‖ · ‖ = ‖ · ‖[H1(Ω)]d .
Let G1, G2 ∈ V0 and v1,v2 be such that v1 ∈ SG1

, v2 ∈ SG2
. Then

from the properties of σN , R and a it follows that the mapping J has the
following property: ∃C,C ′ > 0 such that

|JG1
(v1,w2) + JG2

(v2,w1)− JG1
(v1,w1)− JG2

(v2,w2)|

≤ Cµ̄

∫

Γ3

|RσN(v1)−RσN(v2)||w1 −w2|ds

≤ C ′µ̄(‖G1 −G2‖+M‖v1 − v2‖)‖w1 −w2‖

(4.7)

for all Gi, wi ∈ V0, vi ∈ SGi
, i = 1, 2, where µ̄ = ‖µ‖L∞(Γ3).

An incremental formulation can be written by using a time discretiza-
tion of (P0) as in Section 2. Therefore we obtain the following sequence of
incremental problems (P i

0,n)i=0,1,...,n−1.
Problem Pi

0,n: Find u
i+1 ∈ K0 such that

(P i
0,n)















a(ui+1,v − ∂ui) + JLi+1(ui+1,v)− JLi+1(ui+1, ∂ui)

≥ (Li+1,v − ∂ui) + 〈σN(u
i+1), vN − ∂ui

N〉 ∀v ∈ V0,

〈σN(u
i+1), zN − ui+1

N 〉 ≥ 0 ∀ z ∈ K0.

Let us now use similar notations to (2.23). Then un ∈ L2(0, T ;V0) and
ûn ∈ W 1,2(0, T ;V0) satisfy the following incremental problem:

(P0,n)







































a(un(t),v − d

dt
ûn(t)) + JLn(t)(un(t),v)

−JLn(t)(un(t),
d

dt
ûn(t)) ≥ (Ln(t),v − d

dt
ûn(t))

+〈σN(un(t)), vN − d

dt
ûnN(t)〉 ∀v ∈ V0, ∀ t ∈ [ 0, T ],

〈σN(un(t)), zN − unN(t)〉 ≥ 0 ∀ z ∈ K0, ∀ t ∈ [ 0, T ].

We have the following existence and approximation result.

Theorem 4.1 Under the above assumptions and if µ̄ <
α

C ′
there exists a

subsequence (unp
)p of (un)n such that unp

(t) → u(t) in V0 ∀ t ∈ [ 0, T ],
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ûnp
→ u in L2(0, T ;V0) and

d

dt
ûnp

⇀ u̇ in L2(0, T ;V0), as p → ∞, where

u is a solution of (P0).

Proof.
Taking V = V0, K = K0, H = L2(Γ3) and

j(L,v,w) = JL(v,w)− (L,w), b(L,v,w) = 〈σN(v), wN〉,
K(L) = K0 ∩ SL, β(L,v) = µ|RσN(v)| ∀v ∈ SL, w ∈ V0,

we see that (P0) can be written in the form (P ) with f = L, where L is
defined by (4.4).

Using the properties of J and Green’s formula, it can be easily seen that
the hypotheses of theorem 2.1 are satisfied and the theorem therefore follows.
�

We can also apply theorems 3.1, 3.2 and 3.3 by choosing an internal
approximation as in [6].

Using a similar approach that will not be repeated here, one can study
the existence and approximation of solutions to the quasistatic unilateral
contact problem with nonlocal friction between two linearly elastic bodies.

Clearly, the results presented in Sections 2 and 3 can be equally applied to
frictional contact with normal compliance or to bilateral contact problems,
see, e.g., [2], [3] for various formulations of these problems. In particular,
the set of admissible displacement fields K is a whole vector subspace and
b = 0 in all these cases so that their variational formulation consists in a
single evolution implicit inequality.

5 Algorithms and numerical examples

5.1 Description of the algorithm

Let (Th)h be a set of regular triangulations of Ω such that Th = (Ωj)j∈Jh

satisfies the relation Ω = ∪j∈Jh
Ωj with Ωk ∩ Ωl = ∅ for all k, l ∈ Jh, k 6= l.

We introduce the following sets:

V0h := {vh ∈ [C(Ω)]d;vh|Ωj
∈ [P1(Ωj)]

d, ∀ j ∈ Jh, vh = 0 on Γ1},
K0h := {vh ∈ V0h; vhN ≤ 0 a.e. on Γ3},
S0h := {τh ∈ L2(Γ3); τh|Γ3,j

∈ P0(Γ3,j), ∀ j ∈ Jh such that Γ3,j 6= ∅},

where Pk(ω) denotes the space of polynomials of degree lower or equal to k
on ω and Γ3,j = Γ3 ∩ Ωj.
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When the classical finite element approximations (V0h, K0h) of (V0, K0)
are used for the problem (P i

0,n), it can be shown, by using a similar argu-
ment as in [5] and [17], where the continuous case was considered, that the
fully discrete problem can be set under the form of the following implicit
variational inequality: find ui+1

h ∈ Ki+1
0h such that

(Q̄i
hn)

{

a(ui+1
h ,wh − ui+1

h ) + JLi+1(ui+1
h ,wh − ui

h)

−JLi+1(ui+1
h ,ui+1

h − ui
h) ≥ (Li+1,wh − ui+1

h ) ∀wh ∈ K0h.

In the following µ is supposed to be constant. We choose as a regularization
mapping R the projection on the finite-dimensional space S0h0

for a given
h0 (see [18]). So within finite element formulation the regularization can
be considered as a natural consequence of the discretization. A fixed point
method is then introduced on the sliding threshold and (Q̄i

hn) is found to be
equivalent to the following problem:

(P 1
inc)

{

at each time step, find the fixed point of the mapping

Φ : S0h → S0h defined by Φ(g) = −µRσN(u
i+1
g ) ∀ g ∈ S0h,

where ui+1
g is the solution of the problem

(P 2
inc)















for a given g ∈ S0h, findu
i+1
g ∈ K0h such that

a(ui+1
g ,vh − ui+1

g ) + pg(vh − ui
h)− pg(u

i+1
g − ui

h)

≥ (Li+1,vh − ui+1
g ) ∀vh ∈ K0h

with

pg(w) :=

∫

Γ3

g|wT |ds ∀w ∈ V0.

Now, (P 2
inc) is equivalent to the following minimization problem under con-

straint:

(Popt)

{

For a given g ∈ S0h, find ui+1
g ∈ K0h such that

F (ui+1
g ) ≤ F (vh) ∀vh ∈ K0h

with
F (v) := 1

2
a(v,v) + pg(v − ui

h)− (Li+1,v) ∀v ∈ V0.

This problem is very similar to a static problem apart from the fact that the
known solution ui

h of the previous step is now present in the friction term.
The influence of the loading history, due to the velocity formulation of the
friction condition, is characterized by this extra term. The convex set K0h re-
mains unchanged from one step to the next. A minimization method is used
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to solve (Popt). We consider here the numerical solvers for two-dimensional
problems. A Gauss-Seidel method with projection is robust and very easy
to implement when dealing with the non differentiable part related to the
friction term. The convergence of the algorithm is improved by using an
Aitken acceleration procedure (see [17]) which is as efficient as an overelax-
ation method but does not require an optimum coefficient. Other methods
can be found in [17]: mathematical programming (using a complementarity
formulation of the problem), conjugate gradient method, etc. The Gauss-
Seidel algorithm with Aitken acceleration has been used in the following
computations illustrating the behaviour of the solution regarding the space
and time discretizations. For three-dimensional problems, the conjugate gra-
dient method with projection and preconditionning given in [17] can be used
but the friction law needs to be regularized in that case.

5.2 A test example: a block sliding on a plane

The previous algorithm has been succesfully used on many problems, in-
cluding industrial ones (like, e.g., pressure vessel, composite material, friction
and squeal). Here, our aim is to stress the points concerning the convergence
regarding the space and the time discretizations that can be observed nu-
merically. The influence of the coefficient of friction is presented and the
convergence of the fixed point method is studied. For that purpose, a very
simple example has been chosen, the solution of which is sufficiently complex
to illustrate this influence of the friction and of the fully discrete schemes on
the accuracy of the numerical solution.

5.2.1 The example

This example is a part of a study on the instability phenomena which
can be involved in friction problems [19]. A Polyurethane block (L = 80mm,
h = 40mm, E = 5daN/m2, ν = 0.48) is firstly pressed on a rigid plane with
a normal prescribed displacement ( u0

N = −0.5 mm) on the top of the block,
and a tangential displacement is then imposed on the plane at a constant
velocity (see Figure 1 and Figure 2). A plane stress hypothesis is assumed
here (the thickness is 9.6 mm). The block beeing elastic, the time variable
can be considered as a loading parameter.
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Figure 1: Geometry and prescribed displacements
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Figure 2: Changes in the prescribed displacements with time

5.2.2 The solution

It is worth noting that the solution is strongly affected by the friction
and, depending on the coefficient of friction, the shape and the regularity
of solutions can be different. To illustrate the influence of the coefficient of
friction on the convergence, the changes in the contact forces σN and σT/µ
on the contact boundary, occurring when the prescribed displacement u0

T

of the plate increases, are shown in Figure 3 and Figure 4 for µ = 0.5 and
µ = 1. It can be noted that at µ = 0.5, the sliding zone spreads out from
the center of the zone, while at µ = 1 it spreads out from the right edge.
In both cases, before complete total sliding occurs, the solution shows the
existence of three zones: a separate part (where the forces are zero), a sliding
one (where the plot of σN overlaps that of σT/µ) and a sticking one (where
the plots of σN and σT/µ are separate).

5.2.3 Convergence of the algorithm

Fixed point method on the sliding limit
The convergence of the fixed point method described by P 1

inc on the slid-
ing threshold is generally observed after less than 10 iterations and it is not
very sensitive regarding the mesh size. A diagonal process is used, which
means that for the first iterations the prescribed accuracy of the Gauss-
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Figure 3: Changes in time in the contact forces σN (solid line) and σT/µ
(broken line) at µ = 0.5 (sticking, sliding and separation zones)

Figure 4: Changes in time in the contact forces σN (solid line) and σT/µ
(broken line) at µ = 1 (sticking, sliding and separation zones)

Seidel method is low (a rough solution is sufficient to get the contact force)
and increase progressively up to ǫ = 5.10−6, a convenient convergence test
value. This test value saves about 50% of Gauss-Seidel iterations.

Convergence of Gauss-Seidel algorithm with Aitken acceleration
The Aitken acceleration is an heuristic process based on considering 3

terms of the Projected Gauss-Seidel sequence and computing a new sequence
based on an assumption of geometrical sequence property. It is combined
with the Gauss-Seidel iterations in order to compute a good initial value to a
regular Gauss-Seidel process, the convergence of which has been established
on the unilateral contact problem with friction.

In that way, the number of iterations needed to treat one loading step and
including the fixed point method on the sliding threshold g, is of the same
order of magnitude as the number of iterations required when an overrelax-
ation method with projection is used. This avoids the determination of an
optimal relaxation parameter which needs a lot of preliminary computations.

In order to illustrate these comments on the algorithm convergence, we
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shall present some numerical results. For our example, by considering a mesh
with 4193 nodes, including 65 contact nodes, for the step t = 2 where both
u0
T and u0

N are applied, we have the following results:
- convergence on the sliding threshold is obtained within 8 iterations;
- convergence of the Gauss-Seidel method with Aitken acceleration (in-

cluding the previous fixed point iterations) is obtained after 654 iterations,
while using an overrelaxation method, which requires a costly preliminary
computation of the optimal overrelaxation parameter, the convergence is ob-
tained within 621 iterations.

5.2.4 Effects of space and time discretizations

Various structured meshes were used here and the same P1 elements (lin-
ear interpolation) were used in order to obtain an internal approximation of
the convex K0. The characteristics of the various meshes are given in Table
1 and the mesh M2 is given in Figure 5 whereas the other meshes can be
easily deduced by cutting every triangle in 3 parts.

Mesh name Total number of nodes Number of contact nodes
M0 6 3
M1 15 5
M2 45 9
M3 153 17
M4 561 33
M5 2145 65
M6 8385 129
M7 33153 257

Table 1: Characteristics of the various meshes

The comparisons between the various solutions have been conducted on
the values of the tangential displacement at the central node of the contact
zone. In order to obtain a sliding condition for this node in every case, the
solutions have been compared at u0

T = −1mm when µ = 0.5, u0
T = −2mm

when µ = 1 and u0
T = −3mm when µ = 1.5.

Effects of time discretization
When the loading is piecewise proportional and monotone, the step size

can be theoretically as large as a whole interval. This is globally confirmed on
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Figure 5: The medium size mesh M2

tables 2 and 3 in the present example including two intervals. When at least
two and respectively three increments are used on each interval the error is
less than 0.4 per cent. This accuracy is only slightly improved when a larger
number of increments is used. This is not surprising since a more accurate
solution is obtained when the intermediate solutions (those obtained before
total sliding occurs) are well evaluated, but the difference is slight. That is
of great importance for the computations: it allows that small time steps are
not required on the intervals where the loading is piecewise proportional and
monotone.

The computations presented in tables 2 and 3 were carried out on the
mesh M4 (561 nodes, 33 contact nodes). The value chosen as reference to
estimate the error was the solution computed with 24 increments for the
normal loading and 36 for the tangential one.

Increment number Relative error on
normal tangential the central node

1 1 2.1 %
2 3 0.35 %
4 6 0.28 %
12 18 0.01 %

Table 2: Effects of the number of increments (µ = 0.5)

Effects of space discretization and dependency on the coefficient of friction
In Figure 6, the convergence with respect to the mesh size h is shown

at various values of the coefficient of friction (µ = 0.5, 1, 1.5). The solution
chosen as reference was that computed using the mesh M7 (33153 nodes,
257 contact nodes). The plotted relative error is a mean value of the errors
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Increment number Relative error on
normal tangential the central node

1 1 1.5 %
2 3 0.37 %
4 6 0.28 %
12 18 0.01%

Table 3: Effects of the number of increments (µ = 1)

computed on the sliding displacements of several nodes located in the central
zone for the various meshes. Meshes M0 to M5 (see Table 1) are considered
in Figure 6 and L/h is the number of contact nodes minus one. It has to
be noted that no significant influence of the magnitude of the coefficient of
friction was observed. The differences observed between the convergence at
µ = 0.5 and at µ = 1 or µ = 1.5 were mostly due to the difference between
the morphologies of the solutions (see Figure 3 and Figure 4): sliding zone
spreading from a center zone when the coefficient of friction is small (µ = 0.5)
and from the left side when it is larger (µ = 1, µ = 1.5).
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Figure 6: Error depending on the mesh size at µ = 0.5, 1, 1.5
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