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Abstract

The aim of this paper is to study an interaction law coupling re-

coverable adhesion, friction and unilateral contact between two vis-

coelastic bodies of Kelvin-Voigt type. A dynamic contact problem

with adhesion and nonlocal friction is considered and its variational

formulation is written as the coupling between an implicit variational

inequality and a parabolic variational inequality describing the evolu-

tion of the intensity of adhesion. The existence and approximation of

variational solutions are analysed, based on a penalty method, some

abstract results and compactness properties. Finally, some numerical

examples are presented.

1 Introduction

In this paper we consider an interaction law including dynamic unilateral
contact, recoverable adhesion and nonlocal friction between two viscoelas-
tic bodies. The adhesion is characterized by the intensity of adhesion, first
introduced by M. Frémond (see, e.g., [13, 14]). An interface law for a qua-
sistatic evolution where rebonding is not allowed was originally proposed in
[22] in the framework of continuum thermodynamics. The corresponding
quasistatic problem coupling unilateral contact, adhesion and local friction
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for an elastic body has been analysed in [8]. This interface law has been used
on various applications : fibre-matrix interaction in the context of compos-
ite materials [24], steel-concrete interaction [23] and, more recently, tectonic
plates interaction in the context of earthquakes.

The extension to reversible adhesion proposed in the present paper con-
stitutes an approximation of interactions of van der Waals type for rubber -
glass contact and other specific phenomena as those studied by M. Barquins
[3] and K.L. Johnson, K. Kendall, A.D. Roberts [16, 17]. This model, which
extends the one considered in [22, 24], is dedicated to the description of bond
damage and can be called a healing model because it allows us to describe
both the formation and the rupture of adhesive contacts during the approach
of the bodies. Also, in this model bond damage and healing behaviours are
rate-dependent. The dissipation effects are related to both viscoelasticity
and adhesion.

Dynamic frictional contact problems with normal compliance laws for a
viscoelastic body have been considered by J.A.C. Martins and J.T. Oden [20],
K.L. Kuttler [18], O. Chau, W. Han and M. Sofonea [6]. Dynamic unilateral
or bilateral contact problems with friction for viscoelastic bodies have been
studied in [12, 19, 9] and dynamic frictionless problems with adhesion have
been analysed in [28] and in the references therein.

In this work we consider a coupled dynamic problem combining reversible
adhesion, friction and unilateral contact. In section 2, classical and vari-
ational formulations of the dynamic contact problem are presented. The
variational formulation is given as an implicit variational inequality coupled
with a parabolic variational inequality which describes the evolution of the
intensity of adhesion. Also, classical and variational formulations of an aux-
iliary penalized problem are considered. In section 3, general existence and
uniqueness results are proved. In section 4, these abstract results are used to
prove the existence and the uniqueness of penalized solutions and the exis-
tence of solutions to unilateral contact problem. In section 5, some numerical
examples are presented and discussed.

2 Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt con-
stitutive law, which occupy the reference domains Ωα of Rd, d = 2 or 3,
with Lipschitz continuous boundaries Γα = ∂Ωα, α = 1, 2. In this paper we
assume the small deformation hypothesis and we use Cartesian coordinate
representations.

Let Γα
U , Γ

α
F and Γα

C be three open disjoint sufficiently smooth parts of Γα
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such that Γα = Γ
α

U ∪ Γ
α

F ∪ Γ
α

C and, to simplify the estimates, meas(Γα
U) >

0, α = 1, 2.
We denote by yα(xα, t) the position at time t ∈ [0, T ], where T > 0,

of the material point represented by xα in the reference configuration, by
uα(xα, t) := yα(xα, t) − xα the displacement vector of xα at time t, with
the Cartesian coordinates uα = (uα1 , ..., u

α
d ) = (uα, uαd ). Let εα, with the

Cartesian coordinates εα = (εij (u
α)), and σα, with the Cartesian coordi-

nates σα =
(

σα
ij

)

, be the infinitesimal strain tensor and the stress tensor,
respectively, corresponding to Ωα, α = 1, 2.

Excepting in the last section, to simplify notations we assume that the
displacement Uα = 0 is prescribed on Γα

U × ]0, T [ , α = 1, 2, and that the
densities of both bodies are equal to 1. Let f = (f 1,f 2) and F = (F 1,F 2)
denote the given body forces in Ω1∪Ω2 and tractions on Γ1

F∪Γ2
F , respectively.

The initial displacements and velocities of the bodies are denoted by u0 =
(u1

0,u
2
0), u1 = (u1

1,u
2
1). The usual summation convention will be used for

i, j, k, l = 1, . . . , d.
We suppose that the solids can be in unilateral contact between the po-

tential contact surfaces Γ1
C and Γ2

C . We assume also that the surfaces Γ1
C

and Γ2
C can be parametrized by two C1 functions, ϕ1, ϕ2, defined on an open

subset Ξ of Rd−1 such that ϕ1(ξ) − ϕ2(ξ) ≥ 0 ∀ ξ ∈ Ξ and each Γα
C is

the graph of ϕα on Ξ that is Γα
C = { (ξ, ϕα(ξ)) ∈ R

d ; ξ ∈ Ξ}, α = 1, 2.
Let mα : Ξ → R

d, with m1(ξ) := (∇ϕ1(ξ),−1), m2(ξ) := (−∇ϕ2(ξ), 1),
∀ ξ ∈ Ξ, be the outward normal to Γα

C , α = 1, 2. Since the displacements,
their derivatives and the gap are assumed small, by using a similar method
as the one considered by P. Boieri, F. Gastaldi and D. Kinderlehrer [4] (see
also [9]) we obtain the following contact condition at time t on the set Ξ:

0 ≤ ϕ1(ξ)− ϕ2(ξ) + u1d(ξ, ϕ
α(ξ), t)− u2d(ξ, ϕ

α(ξ), t)

−∇ϕ1(ξ) · u1(ξ, ϕ1(ξ), t) +∇ϕ2(ξ) · u2(ξ, ϕ2(ξ), t) ∀ ξ ∈ Ξ,

or, using the definition of m1, m2,

m1(ξ) · u1(ξ, ϕ1(ξ), t) +m2(ξ) · u2(ξ, ϕ2(ξ), t) ≤ ϕ1(ξ)− ϕ2(ξ) ∀ ξ ∈ Ξ.(2.1)

Let nα := mα/|mα| denote the unit outward normal vector to Γα
C , α = 1, 2.

The initial normalized gap between the two contact surfaces is defined as

g0(ξ) :=
ϕ1(ξ)− ϕ2(ξ)
√

1 + |∇ϕ1(ξ)|2
∀ ξ ∈ Ξ.

We shall use the following notations for the normal and tangential com-
ponents of a displacement field vα, α = 1, 2, of the relative displacement
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corresponding to v := (v1,v2), by including the initial gap g0 in the normal
direction, and of the stress vector σαnα on Γα

C :

vα := vα(ξ, t) = vα(ξ, ϕα(ξ), t),

vαN := vαN(ξ, t) = vα(ξ, ϕα(ξ), t) · nα(ξ), vα
T := vα

T (ξ, t) = vα − vαNn
α,

[vN ] := [vN ](ξ, t) = v1N + v2N − g0, [vT ] := [vT ](ξ, t) = v1
T − v2

T ,

σα
N := σα

N(ξ, t) = (σαnα) · nα, σα
T := σα

T (ξ, t) = σαnα − σα
Nn

α,

(2.2)

for all ξ ∈ Ξ and for all t ∈ [0, T ]. We denote also by g := −[uN ] =
g0−u1N −u2N the gap corresponding to the solution u := (u1,u2). Assuming
that ∇ϕ1(ξ) ≃ ∇ϕ2(ξ), it follows that the unilateral contact condition (2.1)
at time t can be written as

[uN ] (ξ, t) = −g(ξ, t) ≤ 0 ∀ ξ ∈ Ξ. (2.3)

Following M. Frémond [13, 14], we introduce the internal state variable β,
which represents the intensity of adhesion (β = 1 means that the adhesion
is total, β = 0 means that there is no adhesion and 0 < β < 1 is the
case of partial adhesion). In the following, we will consider only isothermal
evolutions.

2.1 Classical formulation

Let Aα, Bα denote two fourth-order tensors, the elasticity tensor and the
viscosity tensor corresponding to Ωα, with the components Aα = (Aα

ijkl)
and Bα = (Bα

ijkl), respectively. We assume that these components satisfy
the following classical symmetry and ellipticity conditions: Cijkl = Cjikl =
Cklij ∈ W 1,∞(Rd), ∀ i, j, k, l = 1, . . . , d, ∃αC > 0 such that Cijklτijτkl ≥
αC τijτij ∀ τ = (τij) verifying τij = τji, ∀ i, j = 1, . . . , d, where Cijkl = Aα

ijkl,
C = Aα or Cijkl = Bα

ijkl, C = Bα ∀ i, j, k, l = 1, . . . , d, α = 1, 2.
We choose the following state variables (see [22], [10]): the infinitesimal

strain tensor ε = (ε1, ε2) = (ε(u1), ε(u2)) in Ω1 ∪ Ω2, the normal relative
displacement [uN ] = u1N+u

2
N−g0, the tangential relative displacement [uT ] =

u1
T − u2

T , and the intensity of adhesion β in Ξ. We assume that σ1n1 =
−σ2n2 in Ξ, that the normal behaviour is purely elastic for a fixed value
of β and that the only dissipative processes on the potential contact surfaces
are adhesion and friction.

We define ϑ : R → R a truncation operator as ϑ(s) = −r if s ≤ −r ,
ϑ(s) = s if |s| < r and ϑ(s) = r if s ≥ r , where r > 0 is a given
characteristic length (see, e.g., [22, 28]).
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We consider the following classical formulation of the dynamic problem
coupling adhesion, nonlocal friction and unilateral contact.

Problem Pc : Find u = (u1,u2) and β such that u(0) = u0, u̇(0) = u1,
β(0) = β0 and

üα − divσα(uα, u̇α) = fα in Ωα × ]0, T [ , (2.4)

σα(uα, u̇α) = Aαε(uα) +Bαε(u̇α) in Ωα × ]0, T [ , (2.5)

uα = 0 on Γα
U × ]0, T [ , σαnα = F α on Γα

F × ]0, T [ , α = 1, 2, (2.6)

σ1n1 + σ2n2 = 0 in Ξ× ]0, T [ , (2.7)

[uN ] ≤ 0, σN + CN [uN ] β
2 ≤ 0, (σN + CN [uN ] β

2) [uN ] = 0 in Ξ× ]0, T [ ,(2.8)

|σT | ≤ µ | (Rσ)N + CN [uN ] β
2 | in Ξ× ]0, T [ and (2.9)

|σT | < µ | (Rσ)N + CN [uN ] β
2 | ⇒ [u̇T ] = 0,

|σT | = µ | (Rσ)N + CN [uN ] β
2 | ⇒ ∃ λ̃ ≥ 0 , [u̇T ] = −λ̃σT ,

β ∈ [0, 1] in Ξ× ]0, T [ and (2.10)

b β̇ ≥ w if β = 0,

b β̇ = w − CN ϑ([uN ]
2) β if β ∈ ]0, 1[,

b β̇ ≤ w − CN ϑ([uN ]
2) if β = 1,

where β0 ∈ [0, 1] in Ξ, CN > 0, b > 0, w > 0, σα = σα(uα, u̇α), α = 1, 2,
σN := σ1

N , σT := σ1
T , σ := σ1, µ is the coefficient of friction and R is a

regularization with good approximation properties which will be presented
later.

Note that the healing (rebonding) process is allowed. In the particular
case when β = 0, that is the adhesion is totally broken, the classical Sig-
norini’s conditions with nonlocal friction are obtained.

2.2 Variational formulation

We shall adopt the following notations for some Sobolev spaces and corre-
sponding duality pairings:

Hs := [Hs(Ω1)]d × [Hs(Ω2)]d ∀ s ∈ R,

〈v,w〉−s,s = 〈v1,w1〉H−s(Ω1),Hs(Ω1) + 〈v2,w2〉H−s(Ω2),Hs(Ω2)

∀ v = (v1,v2) ∈ H−s, ∀w = (w1,w2) ∈ Hs.
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We define the Hilbert spaces (H , |.|) with the associated scalar product
denoted by (. , .), (V , ‖.‖) with the associated scalar product (ofH1) denoted
by 〈. , .〉 and the sets K, Λ as follows:

H := H0 = [L2(Ω1)]
d × [L2(Ω2)]

d
, V = V 1 × V 2, where

V α = {vα ∈ [H1(Ωα)]
d
; vα = 0 a.e. on Γα

U}, α = 1, 2,

K = {v = (v1,v2) ∈ V ; [vN ] ≤ 0 a.e. in Ξ},
Λ = {λ ∈ L2(Ξ) ; λ ∈ [0, 1] a.e. in Ξ}.

We assume that F = (F 1,F 2) ∈ W 1,∞(0, T ; [L2(Γ1
F )]

d)×W 1,∞(0, T ; [L2(Γ2
F )]

d),
f = (f 1,f 2) ∈ W 1,∞(0, T ; [L2(Ω1)]d) × W 1,∞(0, T ; [L2(Ω2)]d), u0 ∈ K,
u1 ∈ V , β0 ∈ Λ, µ ∈ L∞(Ξ), µ ≥ 0 a.e. in Ξ.

Let us define two bilinear, continuous and symmetric mappings a, b on
H1 ×H1 → R by

a(v,w) = a1(v1,w1) + a2(v2,w2), b(v,w) = b1(v1,w1) + b2(v2,w2)

∀v = (v1,v2), w = (w1,w2) ∈ H1, where, for α = 1, 2,

aα(vα,wα) =

∫

Ωα

Aαε(vα) ·ε(wα) dx, bα(vα,wα) =

∫

Ωα

Bαε(vα) ·ε(wα) dx.

Using the previous hypotheses, we considerL as an element ofW 1,∞(0, T ;H1)
such that ∀ t ∈ [0, T ]

〈L,v〉 =
∑

α=1,2

∫

Ωα

fα · vα dx+
∑

α=1,2

∫

Γα
F

F α · vα ds ∀v = (v1,v2) ∈ H1.

We suppose that R : [L2
sym(Ω

1)]d
2 → [H1(Ω1)]d

2

is a linear and continuous
regularization of σ(u1,v1) = σ1(u1,v1), satisfying (Rσ (u1

0,u
1
1))N = 0 and

∃C > 0, ‖Rσ (u1,v1)‖[H1(Ω1)]d
2 ≤ C ( |u1|+ |v1| ) ∀u1, v1 ∈ V 1, (2.11)

where |.| denotes also the norm of [L2(Ω1)]d. A similar type of regularization
can be found in [19] and the same regularization was considered in [9].
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We define the following mappings:

c : L∞(Ξ)× (H1)2 → R, c(β,u,v) =

∫

Ξ

CN ϑ([uN ]) β
2 (v1N + v2N) dξ,

J : L∞(Ξ)× (H1)3 → R,

J(β,u,v,w) =

∫

Ξ

µ | (Rσ (u1,v1))N + CN ϑ([uN ]) β
2 | | [wT ] | dξ

∀ β ∈ L∞(Ξ), ∀u = (u1,u2), v = (v1,v2), w = (w1,w2) ∈ H1,

γ : H1 × [L2(Ξ)]2 → R, γ(u, δ, λ) =

∫

Ξ

CN

b
ϑ([uN ]

2) δ λ dξ

∀u = (u1,u2) ∈ H1, ∀ δ, λ ∈ L2(Ξ).

We denote by (. , .)Ξ the scalar product in L2(Ξ), with the associated norm

|.|Ξ, and we set χ :=
w

b
.

We assume also the following compatibility relation on initial conditions:
∃ l ∈ H such that

(l,v) + a(u0,v) + b(u1,v) + c(β0,u0,v) = 〈L(0),v〉 ∀v ∈ V . (2.12)

A variational formulation of the problem Pc is the following.

Problem Pv : Find u ∈ W 1,2(0, T ;V ) ∩ C1([0, T ];H−1/2),
β ∈ W 1,∞(0, T ;L∞(Ξ)) such that u(0) = u0, u̇(0) = u1 in Ω1 ∪ Ω2,
β(0) = β0 in Ξ, u(t) ∈ K, β(t) ∈ Λ for all t ∈ ]0, T [ and

〈u̇(T ),v(T )− u(T )〉−1/2, 1/2 − (u1,v(0)− u0)−
∫ T

0

(u̇, v̇ − u̇) dt

+

∫ T

0

{a(u,v − u) + b(u̇,v − u) + c(β,u,v − u)} dt (2.13)

+

∫ T

0

{J(β,u, u̇,v + κu̇− u)− J(β,u, u̇, κu̇)} dt ≥
∫ T

0

〈L,v − u〉 dt

∀v ∈ L∞(0, T ;V ) ∩ W 1,2(0, T ;H) with v(t) ∈ K a.e. t ∈ ]0, T [,

(β̇, λ− β)Ξ + γ(u, β, λ− β) ≥ (χ, λ− β)Ξ (2.14)

∀λ ∈ L2(0, T ;L2(Ξ)) with λ(t) ∈ Λ a.e. t ∈ ]0, T [,

where κ > 0.
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The formal equivalence between the variational system (2.13),(2.14) and
the classical problem (2.4)-(2.10) can be easily proved by using Green’s for-
mula and an integration by parts.

2.3 An auxiliary penalized problem

We consider a penalized contact problem that is a dynamic contact prob-
lem with normal compliance law, the solution of which is denoted by uε =
(u1

ε,u
2
ε), βε, where ε > 0, verifying the same equations and initial conditions

in Ω1 ∪ Ω2, the same boundary conditions as in problem Pc, excepting the
unilateral contact conditions. The new contact conditions in Ξ× ]0, T [ are

σ1
N = σ2

N = −1

ε
[uεN ]+ − CN [uεN ] β

2
ε , where r+ = max(r, 0),

σ1
T (u

1
ε, u̇

1
ε) = − σ2

T (u
2
ε, u̇

2
ε),

|σT | ≤ µ | (Rσ)N + CN [uεN ] β
2
ε | and

|σT | < µ | (Rσ)N + CN [uεN ] β
2
ε | ⇒ [u̇εT ] = 0,

|σT | = µ | (Rσ)N + CN [uεN ] β
2
ε | ⇒ ∃ λ̃ ≥ 0 , [u̇εT ] = −λ̃σT ,

βε ∈ [0, 1] and

b β̇ε ≥ w if βε = 0,

b β̇ε = w − CN ϑ([uεN ]
2) βε if βε ∈ ]0, 1[,

b β̇ε ≤ w − CN ϑ([uεN ]
2) if βε = 1.

Let us define the mapping pε : V × V → R by

pε(v,w) =
1

ε

∫

Ξ

ϑ([vN ]+)(w
1
N + w2

N) dξ ∀v, w ∈ V . (2.15)

We shall study the following variational formulation of the penalized problem.

Problem Pε : Find uε ∈ W 2,2(0, T ;H) ∩W 1,2(0, T ;V ) and
βε ∈ W 1,∞(0, T ;L∞(Ξ)) such that uε(0) = u0, u̇ε(0) = u1 in Ω1 ∪ Ω2,
βε(0) = β0 in Ξ, βε(s) ∈ Λ for all s ∈ ]0, T [, and a.e. t ∈ ]0, T [

(üε,w − u̇ε) + a(uε,w − u̇ε) + b(u̇ε,w − u̇ε) + pε(uε,w − u̇ε) (2.16)

+c(βε,uε,w − u̇ε) + J(βε,uε, u̇ε,w)− J(βε,uε, u̇ε, u̇ε) ≥ 〈L,w − u̇ε〉

∀w ∈ V ,

(β̇ε, λ− βε)Ξ + γ(uε, βε, λ− βε) ≥ (χ, λ− βε)Ξ ∀λ ∈ Λ. (2.17)
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3 General existence and uniqueness results

The existence and uniqueness of solutions of problems Pε will be obtained
by using the following abstract problem.

Let (H0, |.|), (V0, ‖.‖) and (Π0, |.|Π0
) be three Hilbert spaces with cor-

responding scalar products denoted by (. , .), 〈. , .〉 and (. , .)Π0
, respectively,

such that V0 is dense in H0 with compact imbedding from V0 into H0 and let
Λ0 be a closed convex set in Π0. We assume that 0 ∈ Λ0 and also that Λ0 is
bounded, to simplify the estimates.

We define two bilinear and symmetric forms, a0, b0 : V0 × V0 → R and
the mapping γ0 : V0 × Π0 × Π0 → R such that

∃ma, mb > 0 a0(u, v) ≤ ma ‖u‖ ‖v‖, b0(u, v) ≤ mb ‖u‖ ‖v‖, (3.1)

∃A, B > 0 a0(v, v) ≥ A ‖v‖2, b0(v, v) ≥ B ‖v‖2 ∀u, v ∈ V0, (3.2)

∀u ∈ V0 γ0(u, ·, ·) is a bilinear and symmetric form, (3.3)

∃mγ > 0 such that ∀u1,2 ∈ V0, ∀ δ1,2 ∈ Λ0, ∀λ ∈ Π0,

|γ0(u1, δ1, λ)− γ0(u2, δ2, λ)| ≤ mγ(‖u1 − u2‖+ |δ1 − δ2|Π0
) |λ|Π0

, (3.4)

γ0(u, λ, λ) ≥ 0 ∀u ∈ V0, ∀λ ∈ Π0. (3.5)

Let φ0 : [0, T ]× Λ0 × V 3
0 → R and τ0 : V0 → R be two mappings satisfying

φ0(t, λ, ·, ·, ·) and τ0 are sequentially weakly continuous, (3.6)

φ0(t, λ, u, v, w1 + w2) ≤ φ0(t, λ, u, v, w1) + φ0(t, λ, u, v, w2), (3.7)

φ0(t, λ, u, v, θw) = θ φ0(t, λ, u, v, w), (3.8)

φ0(0, 0, 0, 0, w) = 0, (3.9)

∃ η0 > 0 such that |τ0(u)| ≤ η0‖u‖, (3.10)

∀ t ∈ [0, T ], ∀λ ∈ Λ0, ∀u, v, w, w1,2 ∈ V0, ∀ θ ≥ 0,

∃ η1 > 0 such that ∀ t1,2 ∈ [0, T ], ∀λ1,2 ∈ Λ0, ∀u1,2, v1,2, w ∈ V0,

|φ0(t1, λ1, u1, v1, w)− φ0(t2, λ2, u2, v2, w)|
≤ η1(|t1 − t2|+ |λ1 − λ2|Π0

+ |τ0(u1 − u2)|+ |v1 − v2|) ‖w‖,
(3.11)
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∃ η2 > 0 such that ∀ t1,2 ∈ [0, T ], ∀λ1,2 ∈ Λ0, ∀ u1,2, v1,2, w1,2 ∈ V0,

|φ0(t1, λ1, u1, v1, w1)− φ0(t1, λ1, u1, v1, w2)

+ φ0(t2, λ2, u2, v2, w2)− φ0(t2, λ2, u2, v2, w1)|
≤ η2 (|t1 − t2|+ |λ1 − λ2|Π0

+ ‖u1 − u2‖+ |v1 − v2|) ‖w1 − w2‖.

(3.12)

We assume that L0 ∈ W 1,∞(0, T ;V0), χ0 ∈ W 1,2(0, T ; Π0), u0, u1 ∈
V0, β0 ∈ Λ0 and the following compatibility condition: ∃ l0 ∈ H0 such
that ∀w ∈ V0

(l0, w) + a0(u0, w) + b0(u1, w) + φ0(0, β0, u0, u1, w) = 〈L0(0), w〉. (3.13)

We consider the following problem.

Problem Q : Find u ∈ W 2,2(0, T ;H0)∩W 1,2(0, T ;V0), β ∈ W 1,∞(0, T ; Π0)
such that u(0) = u0, u̇(0) = u1, β(0) = β0, β(s) ∈ Λ0 for all s ∈ ]0, T [, and
a.e. t ∈ ]0, T [

(ü, v − u̇) + a0(u, v − u̇) + b0(u̇, v − u̇) (3.14)

+φ0(t, β, u, u̇, v)− φ0(t, β, u, u̇, u̇) ≥ 〈L0, v − u̇〉 ∀ v ∈ V0,

(β̇, λ− β)Π0
+ γ0(u, β, λ− β) ≥ (χ0, λ− β)Π0

∀λ ∈ Λ0. (3.15)

The existence and uniqueness of the solution for problem Q will be proved
by using a result presented in [9], an incremental technique and a fixed point
argument.

We define the set

X = {λ ∈ C0([0, T ]; Π0) ; λ(0) = β0, λ(t) ∈ Λ0 ∀ t ∈ ]0, T ]},

where the Banach space C0([0, T ]; Π0) is endowed with the norm

‖λ‖k = max
t∈[0,T ]

[exp(−kt) |λ(t)|Π0
] for all λ ∈ C0([0, T ]; Π0), k ≥ 0.

Using the Theorem 3.2 of [9], which for every β ∈ X clearly can be applied
with minor modifications to (3.14) with the initial conditions u0, u1, we have
the following result.

Lemma 3.1. For each β ∈ X there exists a unique uβ ∈ W 2,2(0, T ;H0) ∩
W 1,2(0, T ;V0) solution of the inequality (3.14) such that uβ(0) = u0, u̇β(0) =
u1.
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Lemma 3.2. Let β1, β2 ∈ X and let uβ1
, uβ2

be the corresponding solutions
of (3.14) with the same initial conditions u0, u1, respectively. Then there
exists a constant C1 > 0, independent of β1, β2, uβ1

, uβ2
, such that for all

t ∈ [0, T ]

|u̇β1
(t)− u̇β2

(t)|2 + ‖uβ1
(t)− uβ2

(t)‖2 ≤ C1

∫ t

0

|β1(s)− β2(s)|2Π0
ds. (3.16)

Proof. Let uβ1
, uβ2

be the solutions of (3.14) corresponding to β1, β2 ∈ X.
Taking in each inequality v = u̇β2

and v = u̇β1
, respectively, for a.e. s ∈ ]0, T [

we have

(üβ1
− üβ2

, u̇β1
− u̇β2

) + a0(uβ1
− uβ2

, u̇β1
− u̇β2

) + b0(u̇β1
− u̇β2

, u̇β1
− u̇β2

)

≤ φ0(s, β1, uβ1
, u̇β1

, u̇β2
)− φ0(s, β1, uβ1

, u̇β1
, u̇β1

)

+φ0(s, β2, uβ2
, u̇β2

, u̇β1
)− φ0(s, β2, uβ2

, u̇β2
, u̇β2

)

≤ η2( |β1 − β2|Π0
+ ‖uβ1

− uβ2
‖+ |u̇β1

− u̇β2
| )‖u̇β1

− u̇β2
‖,

where the second inequality follows by (3.12). For all t ∈ [0, T ], as the
solutions uβ1

, uβ2
verify the same initial conditions, by integrating between

0 and t we obtain

1

2
|u̇β1

(t)− u̇β2
(t)|2 + 1

2
a0(uβ1

(t)− uβ2
(t), uβ1

(t)− uβ2
(t))

+

∫ t

0

b0(u̇β1
− u̇β2

, u̇β1
− u̇β2

) ds ≤ η2

∫ t

0

|β1 − β2|Π0
‖u̇β1

− u̇β2
‖ ds

+η2

∫ t

0

( ‖uβ1
− uβ2

‖ ‖u̇β1
− u̇β2

‖+ |u̇β1
− u̇β2

| ‖u̇β1
− u̇β2

‖ ) ds.

Using Young’s inequalities for the last three terms with an appropriate con-
stant, and V0 - ellipticity of a0, b0, it follows that

1

2
|u̇β1

(t)− u̇β2
(t)|2 + A

2
‖uβ1

(t)− uβ2
(t)‖2 + B

2

∫ t

0

‖u̇β1
− u̇β2

‖2 ds

≤ 3η22
2B

∫ t

0

|β1 − β2|2Π0
ds+

3η22
2B

∫ t

0

( ‖uβ1
− uβ2

‖2 + |u̇β1
− u̇β2

|2 ) ds.

By Gronwall’s lemma we obtain the estimate (3.16).

Now, for every element u ∈ W 1,2(0, T ;V0), we consider the inequality
(3.15) with the initial condition β0, the solution of which is denoted by βu.
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The existence and uniqueness results for this parabolic inequality follow by
classical references, see, e.g., [5] or [2], but we prefer to present a direct proof
based on an incremental technique, for the convenience of the reader.

Proposition 3.3. For each u ∈ W 1,2(0, T ;V0) there exists a unique βu ∈
X ∩W 1,∞(0, T ; Π0), solution of the inequality (3.15).

Proof. We consider an incremental formulation obtained by using an im-
plicit time discretization scheme for (3.15). For n ∈ N

∗, we set ∆t :=
T/n and ti := i∆t, i = 0, 1, ..., n, and β0 := β0. If ψ is a continuous
function of t ∈ [0, T ] valued in some vector space, we use the notations
ψi := ψ(ti) and if (θi)i∈{0,1,...,n} are elements of some vector space, then for
all i ∈ {0, 1, ..., n− 1} we set ∆θi := θi+1 − θi. We then approximate (3.15)
using the sequence of following incremental problems: for i = 0, 1, ..., n− 1,
find βi+1 ∈ Λ0 such that
(

∆βi

∆t
, λ− βi+1

)

Π0

+ γ0(u
i+1, βi+1, λ−βi+1) ≥ (χi+1

0 , λ−βi+1)Π0
∀λ ∈ Λ0.

(3.17)
As the previous inequality can be written in the equivalent form

(βi+1, λ− βi+1)Π0
+∆t γ0(u

i+1, βi+1, λ− βi+1)

≥ (∆t χi+1
0 + βi, λ− βi+1)Π0

∀λ ∈ Λ0,

which is an elliptic variational inequality of the first kind that contains the
scalar product in Π0 and γ0 satisfying (3.3)-(3.5), by a classical result it
follows that there exists a unique solution βi+1 of (3.17).

Taking in (3.17) λ = βi, using (3.4) and Cauchy-Schwarz inequality, we
have

(

∆βi

∆t
,∆βi

)

Π0

≤ − γ0(u
i+1, βi+1,∆βi) + (χi+1

0 ,∆βi)Π0

≤ mγ(‖ui+1‖+ |βi+1|Π0
)|∆βi|Π0

+ |χi+1
0 |Π0

|∆βi|Π0
.

Hence,

|∆βi|Π0

∆t
≤ mγ(‖ui+1‖+ |βi+1|Π0

) + |χi+1
0 |Π0

, for i = 0, 1, ..., n− 1. (3.18)

Let us define the following functions:

βn(0) = β̂n(0) = β0, un(0) = u0, χn(0) = χ0
0 and

∀ i ∈ {0, 1, ..., n− 1}, ∀ t ∈ ]ti, ti+1],

βn(t) = βi+1, β̂n(t) = βi + (t− ti)
∆βi

∆t
,

un(t) = ui+1, χn(t) = χi+1
0 .

(3.19)
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Then βn ∈ L2(0, T ; Π0), β̂n ∈ W 1,2(0, T ; Π0), un → u in L2(0, T ;V0),
χn → χ0 in L2(0, T ; Π0) and βn(t) ∈ Λ0, un(t) → u(t) in V0, χn(t) →
χ0(t) in Π0 ∀ t ∈ [0, T ]. Since u ∈ W 1,2(0, T ;V0) ⊂ C0([0, T ];V0),
χ0 ∈ W 1,2(0, T ; Π0) ⊂ C0([0, T ]; Π0), it follows that (‖un(t)‖)n∈N∗ and
(|χn(t)|Π0

)n∈N∗ are bounded by constants independent of t ∈ [0, T ].
Also, for all n ∈ N

∗ we have

|βn(t)− β̂n(t)|Π0
≤ T

n

∣

∣

∣

∣

d

dt
β̂n(t)

∣

∣

∣

∣

Π0

for a.e. t ∈ ]0, T [ (3.20)

and the estimates (3.18), i = 0, 1, ..., n− 1, imply the following relation:

∣

∣

∣

∣

d

dt
β̂n(t)

∣

∣

∣

∣

Π0

≤ mγ(‖un(t)‖+|βn(t)|Π0
)+|χn(t)|Π0

for a.e. t ∈ ]0, T [. (3.21)

Thus, there exists a constant C2 > 0 satisfying

‖β̂n‖W 1,∞(0,T ;Π0) ≤ C2 for all n ∈ N
∗,

so that there exists a subsequence, still denoted by (β̂n)n, and an element
βu ∈ W 1,∞(0, T ; Π0) such that

β̂n ⇀
∗ βu in W 1,∞(0, T ; Π0), (3.22)

and, by (3.20),
βn ⇀

∗ βu in L∞(0, T ; Π0). (3.23)

Applying a diagonal process, see, e.g., [7], it follows from (3.22), (3.20) that,
up to a subsequence,

βn(t)⇀ βu(t) in Π0 ∀ t ∈ [0, T ], (3.24)

which implies that βu(0) = β0 and βu(t) ∈ Λ0 for all t ∈ ]0, T [.
We shall prove that the limit βu is a solution of the inequality (3.15).

The sequence of inequalities (3.17), i = 0, 1, ..., n − 1, is equivalent to the
following incremental formulation: βn(t) ∈ Λ0 for all t ∈ [0, T ] and

(

d

dt
β̂n(t), λ− βn(t)

)

Π0

+ γ0(un(t), βn(t), λ− βn(t)) (3.25)

≥ (χn(t), λ− βn(t))Π0
∀λ ∈ Λ0, for a.e. t ∈ ]0, T [.
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Integrating both sides of (3.25) over [0, T ] it follows that for all λ ∈
L2(0, T ; Π0) such that λ(t) ∈ Λ0 for a.e. t ∈ ]0, T [,

∫ T

0

(

d

dt
β̂n(t), λ(t)− βn(t)

)

Π0

dt+

∫ T

0

γ0(un(t), βn(t), λ(t)− βn(t)) dt (3.26)

≥
∫ T

0

(χn(t), λ(t)− βn(t))Π0
dt.

Using the properties of the corresponding sequences, of the scalar product
and of γ0, we have

∫ T

0

(

d

dt
β̂n(t), βn(t)

)

Π0

dt ≥ 1

2
[(βn(T ), βn(T ))Π0

− (β0, β0)Π0
],

lim
n→∞

∣

∣

∣

∣

∫ T

0

[γ0(un(t), βn(t), βn(t))− γ0(u(t), βn(t), βn(t))] dt

∣

∣

∣

∣

= 0.

Therefore, by passing to the limit we obtain

lim inf
n→∞

∫ T

0

(

d

dt
β̂n(t), βn(t)

)

Π0

dt ≥
∫ T

0

(β̇u(t), βu(t))Π0
dt,

lim inf
n→∞

∫ T

0

γ0(un(t), βn(t), βn(t)) dt ≥
∫ T

0

γ0(u(t), βu(t), βu(t)) dt.

Since we clearly have

lim
n→∞

∫ T

0

(

d

dt
β̂n(t), λ(t)

)

Π0

dt =

∫ T

0

(β̇u(t), λ(t))Π0
dt,

lim
n→∞

∫ T

0

γ0(un(t), βn(t), λ(t)) dt

= lim
n→∞

∫ T

0

[γ0(un(t), βn(t), λ(t))− γ0(u(t), βn(t), λ(t))] dt

+ lim
n→∞

∫ T

0

γ0(u(t), βn(t), λ(t)) dt =

∫ T

0

γ0(u(t), βu(t), λ(t)) dt,

lim
n→∞

∫ T

0

(χn(t), λ(t)− βn(t))Π0
dt =

∫ T

0

(χ0(t), λ(t)− βu(t))Π0
dt,
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finally by passing to the limit in (3.26), we obtain that for all λ ∈ L2(0, T ; Π0)
such that λ(t) ∈ Λ0 for a.e. t ∈ ]0, T [

∫ T

0

(β̇u(t), λ(t)− βu(t))Π0
dt+

∫ T

0

γ0(u(t), βu(t), λ(t)− βu(t)) dt

≥
∫ T

0

(χ0(t), λ(t)− βu(t))Π0
dt.

By Lebesgue’s theorem, it follows that βu is a solution of the parabolic
inequality (3.15).

In order to show the uniqueness of βu , let β1, β2 be two solutions of
(3.15) corresponding to u ∈ W 1,2(0, T ;V0). Taking in each inequality λ = β2
and λ = β1, respectively, we derive that for a.e. s ∈ ]0, T [

(β̇1(s)− β̇2(s), β1(s)− β2(s))Π0
+ γ0(u(s), β1(s)− β2(s), β1(s)− β2(s)) ≤ 0.

Using that β1, β2 satisfy the same initial condition, for all t ∈ ]0, T [ by
integrating over [0, t] we have

1

2
|β1(t)− β2(t)|2Π0

+

∫ t

0

γ0(u(s), β1(s)− β2(s), β1(s)− β2(s)) ds ≤ 0,

which implies that β1 = β2.

Lemma 3.4. Let u1, u2 ∈ W 1,2(0, T ;V0) and let βu1
, βu2

∈ X be the cor-
responding solutions of (3.15) with the same initial condition β0, respectively.
Then there exists a constant C3 > 0, independent of u1, u2, βu1

, βu2
, such

that for all t ∈ [0, T ]

|βu1
(t)− βu2

(t)|2Π0
≤ C3

∫ t

0

‖u1(s)− u2(s)‖2 ds. (3.27)

Proof. Let βu1
, βu2

be the solutions of (3.15) corresponding to u1, u2. Tak-
ing in each inequality λ = βu2

, λ = βu1
, respectively, for all t ∈ ]0, T [, by

15



integrating over [0, t], using (3.4) and some elementary inequality we have

1

2
|βu1

(t)− βu2
(t)|2Π0

≤
∫ t

0

[γ0(u2, βu2
, βu1

− βu2
)− γ0(u1, βu1

, βu1
− βu2

)] ds

=

∫ t

0

[γ0(u2, βu2
, βu1

− βu2
)− γ0(u2, βu1

, βu1
− βu2

)] ds

+

∫ t

0

[γ0(u2, βu1
, βu1

− βu2
)− γ0(u1, βu1

, βu1
− βu2

)] ds

≤ mγ

∫ t

0

|βu1
− βu2

|2Π0
ds+mγ

∫ t

0

‖u1 − u2‖ |βu1
− βu2

|Π0
ds

≤ mγ

2

∫ t

0

‖u1(s)− u2(s)‖2 ds+
3mγ

2

∫ t

0

|βu1
(s)− βu2

(s)|2Π0
ds,

where, to simplify, the variable s was omitted in some relations. By Gron-
wall’s lemma we obtain the estimate (3.27).

Now we can prove the following existence and uniqueness result.

Theorem 3.5. Assume that (3.1)-(3.12) and the compatibility condition
(3.13) hold. Then there exists a unique solution of the problem Q.

Proof. For every β ∈ X let uβ ∈ W 2,2(0, T ;H0) ∩W 1,2(0, T ;V0) be the
solution of the inequality (3.14) corresponding to β such that uβ(0) = u0,
u̇β(0) = u1 and let βuβ

∈ X ∩ W 1,∞(0, T ; Π0) be the solution of the in-
equality (3.15) corresponding to uβ. We define the mapping T : X → X by
∀ β ∈ X T β = βuβ

and we will prove that T : X → X has a unique fixed
point, which is equally the solution of the problem Q.

For all β1, β2 ∈ X, for all t ∈ [0, T ], using (3.27) and (3.16), we have

|T β1(t)− T β2(t)|2Π0
≤ C3

∫ t

0

‖uβ1
(s)− uβ2

(s)‖2 ds

≤ C1C3

∫ t

0

(
∫ s

0

exp(−2kr) exp(2kr) |β1(r)− β2(r)|2Π0
dr

)

ds

≤ C1C3 ‖β1 − β2‖2k
∫ t

0

exp(2ks)

2k
ds

≤ C1C3

4k2
· exp(2kt) ‖β1 − β2‖2k.
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Then

‖T β1 − T β2‖k = max
t∈[0,T ]

[exp(−kt) |T β1(t)− T β2(t)|Π0
]

≤
√
C1C3

2k
‖β1 − β2‖k.

Hence, for all β1, β2 ∈ X

‖T β1 − T β2‖k ≤
√
C1C3

2k
‖β1 − β2‖k,

so that if k is sufficiently large it follows that T is a contraction and its
fixed point is the solution of the problem Q.

4 Approximation and existence of variational

solutions

Now, the previous general results are applied to analyse the penalized and
the unilateral contact problems.

4.1 Existence and uniqueness of penalized solutions

We prove the following existence and uniqueness result for the penalized
problem.

Theorem 4.1. There exists a unique solution to the problem Pε.

Proof. We apply Theorem 3.5 to H0 = H , V0 = V , Π0 = L2(Ξ), Λ0 = Λ,
u0 = u0, u1 = u1, a0 = a, b0 = b, L0 = L, (. , .)Π0

= (. , .)Ξ, |.|Π0
= |.|Ξ, γ0 =

γ, χ0 = χ and

φ0(t, λ,u,v,w) = pε(u,w) + c(λ,u,w) + J(λ,u,v,w)

∀ t ∈ [0, T ], ∀λ ∈ L2(Ξ), ∀u, v, w ∈ V .

As meas(Γα
U) > 0, the ellipticity property of the coefficients Aα

ijkl, Bα
ijkl and

the Korn’s inequality imply that there exist Aα, Bα > 0 such that

aα(vα,vα) ≥ Aα ‖vα‖2
V

α , bα(vα,vα) ≥ Bα ‖vα‖2
V

α ∀vα ∈ V α, α = 1, 2,

and we obtain

a(v,v) ≥ A ‖v‖2, b(v,v) ≥ B ‖v‖2 ∀v ∈ V , (4.1)
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where A = min(A1, A2), B = min(B1, B2).
For all u1,2 ∈ V , δ1,2 ∈ Λ, λ ∈ L2(Ξ), we have the following relations:

|γ(u1, δ1, λ)− γ(u2, δ2, λ)| =
∣

∣

∣

∣

CN

b

∫

Ξ

(ϑ([u1N ]
2) δ1 − ϑ([u2N ]

2) δ2)λ dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

CN

b

∫

Ξ

[(ϑ([u1N ])
2 − ϑ([u2N ])

2) δ1 + ϑ([u2N ]
2)(δ1 − δ2)]λ dξ

∣

∣

∣

∣

≤ CN

b

∫

Ξ

[2r|ϑ([u1N ])− ϑ([u2N ])|+ r2|δ1 − δ2|] |λ| dξ

≤ max(2r, r2)
CN

b

∫

Ξ

(|[u1N ]− [u2N ]|+ |δ1 − δ2|) |λ| dξ

= max(2r, r2)
CN

b

∫

Ξ

(|u11N + u21N − u12N − u22N |+ |δ1 − δ2|) |λ| dξ

≤ mγ(‖u1 − u2‖+ |δ1 − δ2|Ξ) |λ|Ξ.

Thus, (3.2) and (3.4) are satisfied. We can also easily verify (3.1), (3.3) and
(3.5).

For all λ ∈ L2(Ξ), u ∈ V , the mappings pε(u, ·), c(λ,u, ·) are linear on
V and the mapping J(λ,u,v, ·) is a semi-norm on V , which imply that φ0

satisfies conditions (3.7), (3.8). The mapping φ0 equally satisfies (3.6) and
(3.9).

We set

τ0 : V → R, τ0(v) = |v1N + v2N |Ξ + |v| ∀v ∈ V .

The mapping τ0, which clearly verifies (3.10), is weakly continuous on V ,
since it contains a trace term considered in L2(Ξ) and the norm in H .

As the function s 7→ (s− g)+ is Lipschitz continuous on R, using (3.10)
we also have

∃ η̃ε, ηε > 0 |pε(u1,w1)− pε(u1,w2) + pε(u2,w2)− pε(u2,w1)|
= |pε(u1,w1 −w2)− pε(u2,w1 −w2)|
≤ η̃ε |τ0(u1 − u2)| ‖w1 −w2‖ ≤ ηε ‖u1 − u2‖ ‖w1 −w2‖

∀ u1,2, w1,2 ∈ V ,

(4.2)
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and

∃ η̃c, ηc > 0 |c(λ1,u1,w1)− c(λ1,u1,w2) + c(λ2,u2,w2)− c(λ2,u2,w1)|
= |c(λ1,u1,w1 −w2)− c(λ2,u2,w1 −w2)|
≤ η̃c (|λ1 − λ2 |Ξ + |τ0(u1 − u2)|) ‖w1 −w2‖
≤ ηc (|λ1 − λ2 |Ξ + ‖u1 − u2‖) ‖w1 −w2‖

∀ λ1,2 ∈ Λ, u1,2, w1,2 ∈ V .

(4.3)

Using the relations (2.11) and (3.10) one can clearly establish the following
estimates: ∃ η̃J , ηJ > 0 such that

|J(λ1,u1,v1,w1)− J(λ1,u1,v1,w2) + J(λ2,u2,v2,w2)− J(λ2,u2,v2,w1)|
≤ η̃J (|λ1 − λ2 |Ξ + |τ0(u1 − u2)|+ |v1 − v2|) ‖w1 −w2‖
≤ ηJ (|λ1 − λ2 |Ξ + ‖u1 − u2‖+ |v1 − v2|) ‖w1 −w2‖

∀ λ1,2 ∈ Λ, u1,2, v1,2, w1,2 ∈ V .

(4.4)

From (4.2)-(4.4) it follows that (3.12) is satisfied and if we set w = w1,
w2 = 0, we obtain (3.11). Finally, relation (2.12) implies the validity of
(3.13).

Thus, by Theorem 3.5 the problem Pε admits a unique solution.

4.2 Existence of a variational solution

We shall use several times the following compactness theorem proved by
J. Simon [27].

Theorem 4.2. Let X, U and Y be three Banach spaces such that X ⊂ U ⊂ Y
with compact imbedding X → U .

Let F be bounded in Lp(0, T ;X), where 1 ≤ p <∞, and ∂F/∂t = {ḟ ; f ∈
F} be bounded in L1(0, T ;Y ). Then F is relatively compact in Lp(0, T ;U).

Let F be bounded in L∞(0, T ;X) and ∂F/∂t be bounded in Lr(0, T ;Y ),
where r > 1. Then F is relatively compact in C0([0, T ];U).

Theorem 4.3. Under the assumptions of Section 2 there exists a solution of
the problem Pv.

Proof. First, we establish some estimates on the penalized solutions uε and
βε which will enable us to pass to the limit in Pε in order to obtain a solution
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of Pv. If we choose w = 0 in (2.16), by integrating from 0 to t ∈ ]0, T [ we
have

∫ t

0

(üε, u̇ε) ds+

∫ t

0

a(uε, u̇ε) ds+

∫ t

0

b(u̇ε, u̇ε) ds

+

∫ t

0

pε(uε, u̇ε) ds+

∫ t

0

c(βε,uε, u̇ε) ds ≤
∫ t

0

〈L, u̇ε〉 ds.

As a is a symmetric bilinear mapping, g0 is independent of time and u0

belongs to K, we obtain for all t ∈ ]0, T [

1

2
|u̇ε(t)|2 +

1

2
a(uε(t),uε(t)) +

∫ t

0

b(u̇ε, u̇ε) ds+
1

2ε
|ϑ([uεN(t)]+)|2Ξ

≤
∫ t

0

〈L, u̇ε〉 ds−
∫ t

0

c(βε,uε, u̇ε) ds+
1

2
|u1|2 +

1

2
a(u0,u0).

Using (4.1), Young’s inequality, the properties of the truncation operator ϑ
and Gronwall’s lemma, it follows that there exists a positive constant M
independent of ε such that, for all ε > 0, the following estimates on uε hold

|u̇ε(t)| ≤M, ‖uε(t)‖ ≤M |[uεN(t)]+|Ξ ≤M
√
ε ∀ t ∈ ]0, T [,

∫ T

0

‖u̇ε‖2 ds ≤M.
(4.5)

From (2.16) we obtain for all ϕ = (ϕ1,ϕ2) ∈ L2(0, T ; [H1
0 (Ω

1)]
d× [H1

0 (Ω
2)]

d
)

∫ T

0

(üε,ϕ) dt+

∫ T

0

a(uε,ϕ) dt+

∫ T

0

b(u̇ε,ϕ) dt =
∑

α=1,2

∫ T

0

∫

Ωα

fα · ϕα dx dt.

Hence, the term üε is bounded in L2(0, T ;H−1) by a constant independent
of ε.

For all v ∈ L∞(0, T ;V )∩W 1,2(0, T ;H) such that v(t) ∈ K for almost
every t ∈ ]0, T [, we choose in (2.16) w = u̇ε +

1
κ
(v − uε). Then, integrating

with respect to t ∈ ]0, T [ from (2.16), we obtain

∫ T

0

(üε,v − uε) dt+

∫ T

0

a(uε,v − uε) dt+

∫ T

0

b(u̇ε,v − uε) dt

+

∫ T

0

pε(uε,v − uε) dt+

∫ T

0

c(βε,uε,v − uε) dt (4.6)

+

∫ T

0

{J(βε,uε, u̇ε,v + κu̇ε − uε)− J(βε,uε, u̇ε, κu̇ε)} dt ≥
∫ T

0

〈L,v − uε〉 dt.

20



Integrating by parts the acceleration term in (4.6) and by a monotonicity
argument for pε we derive

〈u̇ε(T ),v(T )− uε(T )〉−1/2, 1/2 − (u1,v(0)− u0)−
∫ T

0

(u̇ε, v̇ − u̇ε) dt

+

∫ T

0

{a(uε,v − uε) + b(u̇ε,v − uε) + c(βε,uε,v − uε)} dt (4.7)

+

∫ T

0

{J(βε,uε, u̇ε,v + κu̇ε − uε)− J(βε,uε, u̇ε, κu̇ε)} dt ≥
∫ T

0

〈L,v − uε〉 dt

∀v ∈ L∞(0, T ;V ) ∩ W 1,2(0, T ;H) with v(t) ∈ K a.e. t ∈ ]0, T [.

From the estimates (4.5) and the previous estimate on the acceleration, it
follows that there exists u such that, up to a subsequence,

uε ⇀
∗ u in L∞(0, T ;V ), u̇ε ⇀ u̇ in L2(0, T ;V ),

u̇ε ⇀
∗ u̇ in L∞(0, T ;H), üε ⇀ ü in L2(0, T ;H−1).

(4.8)

As W 1,2(0, T ;V ) ⊂ C0([0, T ];V ), it follows that, for all t ∈ [0, T ], (uε(t))ε is
bounded in V by a constant independent of ε and of t, so that by a diagonal
process we can extract a subsequence, still denoted by (uε)ε, such that

uε(t)⇀ u(t) in V ∀ t ∈ [0, T ]. (4.9)

By (4.8) we can easily pass to the limit in the linear terms of (4.7). To pass to
the limit in the nonlinear terms we need the compactness result of Theorem
4.2. As ∂Ωα is Lipschitz continuous, the imbeddings from V α into Hα, from
V α into [H1/2(Ωα)]d and from Hα into [H−1/2(Ωα)]d are compact, α = 1, 2.
Then we may apply Theorem 4.2 with

F = (u̇ε)ε, X = V , U = H , Y = H−1, p = 2,

F = (uε)ε, X = V , U = H1/2, Y = H , r = 2,

F = (u̇ε)ε, X = H , U = H−1/2, Y = H−1, r = 2,

so that, up to a subsequence, we obtain

u̇ε → u̇ in L2(0, T ;H), uε → u in C0([0, T ];H1/2),

u̇ε → u̇ in C0([0, T ];H−1/2).
(4.10)

Hence,

〈u̇ε(T ),v(T )− uε(T )〉−1/2,1/2 → 〈u̇(T ),v(T )− u(T )〉−1/2,1/2. (4.11)
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The functional v 7→
∫ T

0
a(v,v) dt is convex and continuous on L2(0, T ;V ),

so it is sequentially weakly lower semicontinuous, which implies that

lim inf
ε→0

∫ T

0

a(uε,uε) dt ≥
∫ T

0

a(u,u) dt. (4.12)

Since v 7→ b(v,v) is convex and continuous on V , it is sequentially weakly
lower semicontinuous on V . Thus, as uε(T )⇀ u(T ) in V , we obtain

lim inf
ε→0

∫ T

0

b(u̇ε,uε) dt = lim inf
ε→0

(

1

2
b(uε(T ),uε(T ))−

1

2
b(u0,u0)

)

≥ 1

2
b(u(T ),u(T ))− 1

2
b(u0,u0) =

∫ T

0

b(u̇,u)dt.

(4.13)

As the imbedding from H1/2(Ξ) into L2(Ξ) is compact, by (4.9) we have

[uεN ](t) → [uN ](t) in L
2(Ξ) ∀ t ∈ [0, T ]. (4.14)

Then from (4.5)3 we derive

0 = lim
ε→0

|[uεN(t)]+|Ξ = |[uN ]+(t)|Ξ ∀ t ∈ [0, T ].

Hence, [uN(t)] ≤ 0 almost everywhere on Ξ and for all t ∈ [0, T ], which
implies u(t) ∈ K for all t ∈ [0, T ].

Let β := βu ∈ W 1,∞(0, T ;L∞(Ξ)), with β(s) ∈ Λ for all s ∈ ]0, T [, be
the solution, which by Proposition 3.3 exists and is unique, of the parabolic
variational inequality

(β̇, λ− β)Ξ + γ(u, β, λ− β) ≥ (χ, λ− β)Ξ ∀λ ∈ Λ (4.15)

with the initial condition β0.
We will verify that (u, β) is a solution of the problem Pv. By a similar

result as in Lemma 3.4, it follows that there exists a constant M ′ > 0,
independent of uε, u, βε, β, such that for all t ∈ [0, T ]

|βε(t)− β(t)|2Ξ ≤M ′

∫ t

0

|[uεN ](s)− [uN ](s)|2Ξ ds. (4.16)

Then by (4.5)2 and (4.14) we have

βε(t) → β(t) in L2(Ξ) ∀ t ∈ [0, T ]. (4.17)

To pass to the limit in the friction term, we apply Theorem 4.2 with F =
(u̇ε)ε, X = V , U = H1−ι, where 1/2 > ι > 0, Y = H−1, p = 2 and we
obtain

uε → u in W 1,2(0, T ;H1−ι).

22



As the mapping v 7→ [vT ] defined from H1−ι into [L2(Ξ)]d is compact, we
have

[uεT ] → [uT ] in W
1,2(0, T ; [L2(Ξ)]d). (4.18)

Relations (2.11), (4.11)–(4.14), (4.17) and (4.18) enable us to pass to the
lower limit in (4.7) and to prove that (u, β) verify (2.13).

Now, integrating with respect to t ∈ ]0, T [ from (2.17) we derive

∫ T

0

(β̇ε, λ− βε)Ξ dt+

∫ T

0

γ(uε, βε, λ− βε) dt ≥
∫ T

0

(χ, λ− βε)Ξ dt (4.19)

∀λ ∈ L2(0, T ;L2(Ξ)) with λ(t) ∈ Λ a.e. t ∈ ]0, T [,

so that using (4.14), (4.17) and a weakly lower semicontinuity argument, by
passing to the lower limit we obtain

∫ T

0

(β̇, λ− β)Ξ dt+

∫ T

0

γ(u, β, λ− β) dt ≥
∫ T

0

(χ, λ− β)Ξ dt

∀λ ∈ L2(0, T ;L2(Ξ)) with λ(t) ∈ Λ a.e. t ∈ ]0, T [.

By Lebesgue’s theorem, it follows that (u, β) verify also the parabolic in-
equality (2.14).

We note that the abstract results presented in section 3 can be also ap-
plied to prove the existence and uniqueness of solutions to dynamic contact
problems with normal compliance and adhesion between a viscoelastic body
and an obstacle.

Similar results as the previous ones are easily seen to hold for the contact
with irreversible adhesion, where the evolution of the intensity of adhesion
is governed by a differential equation satisfying the relation (3.27), see, e.g.,
[28].

5 Numerical examples

In this section, an example is presented to illustrate the mechanical behaviour
associated with this interface law and to study the influence of the main me-
chanical parameters on the solution. The dynamic behaviour of a cylindrical
viscoelastic block in adhesive frictional contact (µ = 0.2) under axisymmetric
conditions with a stiff sphere is analysed, see Figure 1.

The previous sections concern a dynamic contact problem in viscoelas-
ticity, which constitutes an extension of the model considered in [22, 24] to
the case of recoverable adhesion. In elastodynamics, the discrete problem,
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the algorithms and the numerical solution were given in [24, 1] for non re-
coverable adhesion. They are based on a combination of the Non Smooth
Contact Dynamics (NSCD) method, developed by M. Jean and J.J. Moreau
[15, 21, 11], and the methods proposed in [22, 24] for the treatment of the
adhesion. This approach is extended here to viscoelasticity and to healing
process, see also [25, 26].

Figure 1: Initial configurations, boundary conditions, finite element dis-
cretization of the problems and points O(r=0, z=0), A(1.63, 0), B(3.2, 0).
Γ1
C and Γ2

C are bounded by O, C1(10.1, 3.98) and O, C2(9.82, 0), respectively
(length unit is mm).

The evolution of the adhesion β is computed by using an implicit method
and so a fixed point on β is necessary (the convergence test on the rela-
tive variation is taken as 10−5). The convergence of the relaxation method
included in the NSCD algorithm is tested on the relative variation of the con-
tact power (test condition : 10−5). The implementation of the model with
recoverable adhesion was conducted in the finite element code LMGC90 [11].

The finite element discretizations consist of P1 elements and an initial
triangulation with 480 nodes for the cross-section of the block and 270 nodes
for the cross-section of the sphere is considered. The corresponding size of
minimal length of edge mesh is hc = 0.33 µm. A θ-method is used to solve
the dynamic equations and the choice θ = 0.51 gives good stability and a
small numerical damping.

The sphere is initially in contact with the viscoelastic block at the point
O. A compressive cycle is imposed with a prescribed displacement U 1(t) =
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uz(t)ez on the upper part of the sphere, see Figure 2. The viscoelastic con-

Figure 2: Imposed displacement on the upper face of the sphere uz.

stitutive law is described by the following relations:

σ = σr + σir,

ε =
1 + ν

E
σr − ν

E
tr(σr)I,

ε̇ =
1 + ν̃

Ẽ
σir − ν̃

Ẽ
tr(σir)I,

where E is Young’s modulus, ν is Poisson’s ratio and Ẽ, ν̃ are the viscosity
coefficients. We considered for the sphere E(1) = 2.1011 Pa, ν(1) = 0.3,
ρ(1)=7800 kg.m−3, Ẽ(1) = η(1)E(1) with η(1) → 0, and for the block Ẽ(2) =
η(2)E(2) with η := η(2) ∈ ]0, 10] s, E(2) = 5.106 Pa, ν(2) = ν̃(2) = 0.48,
ρ(2) = 1000 kg.m−3.

This example is used to investigate the dependency of the solution on the
variation of the following parameters:
- the adhesion parameters CN and w,
- the volumic viscosity parameter η,
- the mesh size.

5.1 Effect of adhesion parameters

We consider here three cases of interfacial behaviour with different choices
of the adhesion parameters CN and w as given in Table 1.

For η = 1 s, the evolution of β at the candidate contact point B (see
Figure 1) and the evolution of contact radius, characterized by the relation
g = 0, in these three cases are presented in Figures 3 and 4, respectively.

In case 1, the bonds are weak and brittle. Adhesion has minor effect on
the solution and a loss of contact is observed. In case 2, the bonds are strong
and brittle. An initial contact is observed (radius 0.9 mm), which is due to
the stronger adhesion that acts during the initial step, when only gravity is
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Bonds behaviour w (J.m−2) CN (N.m−3) b (N.s.m−1)
case 1 weak and brittle 1 108 0.1
case 2 strong and brittle 30 3× 109 0.1
case 3 strong and resilient 100 1010 0.1

Table 1: Three cases of interfacial behaviour

Figure 3: Evolution of β at point B
in three cases.

Figure 4: Evolution of the contact ra-
dius (g = 0) in three cases.

concerned. A loss of contact is still observed at t=10 s because the evolution
of the adhesion is still brittle. In case 3, the bonds are strong and resilient.
Adhesion has major effect on the solution and the two bodies remain always
in contact even at t=10 s.

5.2 Effect of the volumic viscosity

The evolutions of the displacement vector and of the intensity of adhesion
in case 1, as presented in Figures 5 and 6, show a good convergence of
viscoelastic solutions towards an elastic solution as η tends to 0.

5.3 Effect of the mesh size

We consider the case 3 with η equal to 1 s. The distributions of the normal
and tangential components of the stress vector, σN and σT , versus the posi-
tion r are displayed at t = 8 s in Figure 7 for different meshes, as given in
Table 2.

The bodies are in contact (σN ≤ 0 and g = 0) for r ≤ rC , where rC ≃ 4.5
mm is the contact radius, and the bodies are in adhesion (σN ≥ 0) for
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Figure 5: Evolutions of the displace-
ment at point O for different values
of η in case 1.

Figure 6: Evolutions of β at point A
for different values of η in case 1.

Figure 7: Distributions of the normal and tangential interfacial stress σN and
σT versus position r for different mesh sizes of the interaction surfaces Γ1

C

and Γ2
C (hc = 0, 33 mm) at t = 8 s.

Name Number of DOF Number of contact element for Γ1
C and Γ2

C

hc 1500 30
hc/2 2956 60
hc/3 4390 90
hc/8 14660 240

Table 2: The different meshes.

rA > r > rC , where rA ≃ 5.5 mm is the adhesion radius. For r ≥ rA the
stress vector is negligible.
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