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Introduction

In this paper we consider an interaction law including dynamic unilateral contact, recoverable adhesion and nonlocal friction between two viscoelastic bodies. The adhesion is characterized by the intensity of adhesion, first introduced by M. Frémond (see, e.g., [START_REF] Frémond | Adhérence des solides[END_REF][START_REF] Frémond | Contact with adhesion. Nonsmooth Mechanics and Applications[END_REF]). An interface law for a quasistatic evolution where rebonding is not allowed was originally proposed in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF] in the framework of continuum thermodynamics. The corresponding quasistatic problem coupling unilateral contact, adhesion and local friction for an elastic body has been analysed in [START_REF] Cocou | Existence results for unilateral quasistatic contact problems with friction and adhesion[END_REF]. This interface law has been used on various applications : fibre-matrix interaction in the context of composite materials [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF], steel-concrete interaction [START_REF] Raous | Model coupling friction and adhesion for steel-concrete interfaces[END_REF] and, more recently, tectonic plates interaction in the context of earthquakes.

The extension to reversible adhesion proposed in the present paper constitutes an approximation of interactions of van der Waals type for rubberglass contact and other specific phenomena as those studied by M. Barquins [START_REF] Barquins | Sliding friction of rubber and Schallamach waves -A review[END_REF] and K.L. Johnson, K. Kendall, A.D. Roberts [START_REF] Johnson | Mechanics of adhesion[END_REF][START_REF] Johnson | Surface energy and the contact of elastic solids[END_REF]. This model, which extends the one considered in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF], is dedicated to the description of bond damage and can be called a healing model because it allows us to describe both the formation and the rupture of adhesive contacts during the approach of the bodies. Also, in this model bond damage and healing behaviours are rate-dependent. The dissipation effects are related to both viscoelasticity and adhesion.

Dynamic frictional contact problems with normal compliance laws for a viscoelastic body have been considered by J.A.C. Martins and J.T. Oden [START_REF] Martins | Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws[END_REF], K.L. Kuttler [START_REF] Kuttler | Dynamic friction contact problems for general normal and friction laws[END_REF], O. Chau, W. Han and M. Sofonea [START_REF] Chau | A dynamic frictional contact problem with normal damped response[END_REF]. Dynamic unilateral or bilateral contact problems with friction for viscoelastic bodies have been studied in [START_REF] Eck | Unilateral Contact Problems -Variational Methods and Existence Theorems[END_REF][START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF][START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF] and dynamic frictionless problems with adhesion have been analysed in [START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF] and in the references therein.

In this work we consider a coupled dynamic problem combining reversible adhesion, friction and unilateral contact. In section 2, classical and variational formulations of the dynamic contact problem are presented. The variational formulation is given as an implicit variational inequality coupled with a parabolic variational inequality which describes the evolution of the intensity of adhesion. Also, classical and variational formulations of an auxiliary penalized problem are considered. In section 3, general existence and uniqueness results are proved. In section 4, these abstract results are used to prove the existence and the uniqueness of penalized solutions and the existence of solutions to unilateral contact problem. In section 5, some numerical examples are presented and discussed.

Classical and variational formulations

We consider two viscoelastic bodies, characterized by a Kelvin-Voigt constitutive law, which occupy the reference domains Ω α of R d , d = 2 or 3, with Lipschitz continuous boundaries Γ α = ∂Ω α , α = 1, 2. In this paper we assume the small deformation hypothesis and we use Cartesian coordinate representations.

Let Γ α U , Γ α F and Γ α C be three open disjoint sufficiently smooth parts of Γ α

such that Γ α = Γ α U ∪ Γ α F ∪ Γ α C
and, to simplify the estimates, meas(Γ α U ) > 0, α = 1, 2.

We denote by y α (x α , t) the position at time t ∈ [0, T ], where T > 0, of the material point represented by x α in the reference configuration, by u α (x α , t) := y α (x α , t)x α the displacement vector of x α at time t, with the Cartesian coordinates u α = (u α 1 , ..., u α d ) = (u α , u α d ). Let ε α , with the Cartesian coordinates ε α = (ε ij (u α )), and σ α , with the Cartesian coordinates σ α = σ α ij , be the infinitesimal strain tensor and the stress tensor, respectively, corresponding to Ω α , α = 1, 2.

Excepting in the last section, to simplify notations we assume that the displacement U α = 0 is prescribed on Γ α U × ]0, T [ , α = 1, 2, and that the densities of both bodies are equal to 1. Let f = (f 1 , f 2 ) and F = (F 1 , F 2 ) denote the given body forces in Ω 1 ∪Ω 2 and tractions on Γ 1 F ∪Γ 2 F , respectively. The initial displacements and velocities of the bodies are denoted by

u 0 = (u 1 0 , u 2 0 ), u 1 = (u 1 1 , u 2 1 
). The usual summation convention will be used for i, j, k, l = 1, . . . , d.

We suppose that the solids can be in unilateral contact between the potential contact surfaces Γ 1 C and Γ 2 C . We assume also that the surfaces Γ 1

C

and Γ 2 C can be parametrized by two

C 1 functions, ϕ 1 , ϕ 2 , defined on an open subset Ξ of R d-1 such that ϕ 1 (ξ) -ϕ 2 (ξ) ≥ 0 ∀ ξ ∈ Ξ and each Γ α C is the graph of ϕ α on Ξ that is Γ α C = { (ξ, ϕ α (ξ)) ∈ R d ; ξ ∈ Ξ}, α = 1, 2. Let m α : Ξ → R d ,
with m 1 (ξ) := (∇ϕ 1 (ξ), -1), m 2 (ξ) := (-∇ϕ 2 (ξ), 1), ∀ ξ ∈ Ξ, be the outward normal to Γ α C , α = 1, 2. Since the displacements, their derivatives and the gap are assumed small, by using a similar method as the one considered by P. Boieri, F. Gastaldi and D. Kinderlehrer [START_REF] Boieri | Existence, uniqueness, and regularity results for the two-body contact problem[END_REF] (see also [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF]) we obtain the following contact condition at time t on the set Ξ:

0 ≤ ϕ 1 (ξ) -ϕ 2 (ξ) + u 1 d (ξ, ϕ α (ξ), t) -u 2 d (ξ, ϕ α (ξ), t) -∇ϕ 1 (ξ) • u 1 (ξ, ϕ 1 (ξ), t) + ∇ϕ 2 (ξ) • u 2 (ξ, ϕ 2 (ξ), t) ∀ ξ ∈ Ξ, or, using the definition of m 1 , m 2 , m 1 (ξ) • u 1 (ξ, ϕ 1 (ξ), t) + m 2 (ξ) • u 2 (ξ, ϕ 2 (ξ), t) ≤ ϕ 1 (ξ) -ϕ 2 (ξ) ∀ ξ ∈ Ξ. (2.1) Let n α := m α /|m α | denote the unit outward normal vector to Γ α C , α = 1, 2.
The initial normalized gap between the two contact surfaces is defined as

g 0 (ξ) := ϕ 1 (ξ) -ϕ 2 (ξ) 1 + |∇ϕ 1 (ξ)| 2 ∀ ξ ∈ Ξ.
We shall use the following notations for the normal and tangential components of a displacement field v α , α = 1, 2, of the relative displacement corresponding to v := (v 1 , v 2 ), by including the initial gap g 0 in the normal direction, and of the stress vector σ α n α on Γ α C :

v α := v α (ξ, t) = v α (ξ, ϕ α (ξ), t), v α N := v α N (ξ, t) = v α (ξ, ϕ α (ξ), t) • n α (ξ), v α T := v α T (ξ, t) = v α -v α N n α , [v N ] := [v N ](ξ, t) = v 1 N + v 2 N -g 0 , [v T ] := [v T ](ξ, t) = v 1 T -v 2 T , σ α N := σ α N (ξ, t) = (σ α n α ) • n α , σ α T := σ α T (ξ, t) = σ α n α -σ α N n α , (2.2) 
for all ξ ∈ Ξ and for all t ∈ [0, T ]. We denote also by

g := -[u N ] = g 0 -u 1 N -u 2
N the gap corresponding to the solution u := (u 1 , u 2 ). Assuming that ∇ϕ 1 (ξ) ≃ ∇ϕ 2 (ξ), it follows that the unilateral contact condition (2.1) at time t can be written as

[u N ] (ξ, t) = -g(ξ, t) ≤ 0 ∀ ξ ∈ Ξ.
(2.3) Following M. Frémond [START_REF] Frémond | Adhérence des solides[END_REF][START_REF] Frémond | Contact with adhesion. Nonsmooth Mechanics and Applications[END_REF], we introduce the internal state variable β, which represents the intensity of adhesion (β = 1 means that the adhesion is total, β = 0 means that there is no adhesion and 0 < β < 1 is the case of partial adhesion). In the following, we will consider only isothermal evolutions.

Classical formulation

Let A α , B α denote two fourth-order tensors, the elasticity tensor and the viscosity tensor corresponding to Ω α , with the components A α = (A α ijkl ) and B α = (B α ijkl ), respectively. We assume that these components satisfy the following classical symmetry and ellipticity conditions:

C ijkl = C jikl = C klij ∈ W 1,∞ (R d ), ∀ i, j, k, l = 1, . . . , d, ∃ α C > 0 such that C ijkl τ ij τ kl ≥ α C τ ij τ ij ∀ τ = (τ ij ) verifying τ ij = τ ji , ∀ i, j = 1, . . . , d, where C ijkl = A α ijkl , C = A α or C ijkl = B α ijkl , C = B α ∀ i, j, k, l = 1, . . . , d, α = 1, 2.
We choose the following state variables (see [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF], [START_REF] Cocou | A variational analysis of a contact interaction problem in viscoelasticity[END_REF]): the infinitesimal strain tensor ε

= (ε 1 , ε 2 ) = (ε(u 1 ), ε(u 2 )) in Ω 1 ∪ Ω 2 , the normal relative displacement [u N ] = u 1 N +u 2 N -g 0 , the tangential relative displacement [u T ] = u 1
Tu 2 T , and the intensity of adhesion β in Ξ. We assume that σ 1 n 1 = -σ 2 n 2 in Ξ, that the normal behaviour is purely elastic for a fixed value of β and that the only dissipative processes on the potential contact surfaces are adhesion and friction.

We define ϑ : R → R a truncation operator as ϑ(s) = -r if s ≤ -r , ϑ(s) = s if |s| < r and ϑ(s) = r if s ≥ r , where r > 0 is a given characteristic length (see, e.g., [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF]).

We consider the following classical formulation of the dynamic problem coupling adhesion, nonlocal friction and unilateral contact.

Problem P c : Find u = (u 1 , u 2 ) and β such that u(0) = u 0 , u(0) = u 1 , β(0) = β 0 and üα -div σ α (u α , uα ) = f α in Ω α × ]0, T [ , (2.4 
)

σ α (u α , uα ) = A α ε(u α ) + B α ε( uα ) in Ω α × ]0, T [ , (2.5 
)

u α = 0 on Γ α U × ]0, T [ , σ α n α = F α on Γ α F × ]0, T [ , α = 1, 2, (2.6 
)

σ 1 n 1 + σ 2 n 2 = 0 in Ξ × ]0, T [ , (2.7) 
[u N ] ≤ 0, σ N + C N [u N ] β 2 ≤ 0, (σ N + C N [u N ] β 2 ) [u N ] = 0 in Ξ × ]0, T [ , (2.8) 
| σ T | ≤ µ | (Rσ) N + C N [u N ] β 2 | in Ξ × ]0, T [ and (2.9) | σ T | < µ | (Rσ) N + C N [u N ] β 2 | ⇒ [ uT ] = 0, | σ T | = µ | (Rσ) N + C N [u N ] β 2 | ⇒ ∃ λ ≥ 0 , [ uT ] = -λ σ T , β ∈ [0, 1] in Ξ × ]0, T [ and (2.10) b β ≥ w if β = 0, b β = w -C N ϑ([u N ] 2 ) β if β ∈ ]0, 1[, b β ≤ w -C N ϑ([u N ] 2 ) if β = 1,
where

β 0 ∈ [0, 1] in Ξ, C N > 0, b > 0, w > 0, σ α = σ α (u α , uα ), α = 1, 2, σ N := σ 1 N , σ T := σ 1 T , σ := σ 1
, µ is the coefficient of friction and R is a regularization with good approximation properties which will be presented later.

Note that the healing (rebonding) process is allowed. In the particular case when β = 0, that is the adhesion is totally broken, the classical Signorini's conditions with nonlocal friction are obtained.

Variational formulation

We shall adopt the following notations for some Sobolev spaces and corresponding duality pairings:

H s := [H s (Ω 1 )] d × [H s (Ω 2 )] d ∀ s ∈ R, v, w -s,s = v 1 , w 1 H -s (Ω 1 ),H s (Ω 1 ) + v 2 , w 2 
H -s (Ω 2 ),H s (Ω 2 ) ∀ v = (v 1 , v 2 ) ∈ H -s , ∀ w = (w 1 , w 2 ) ∈ H s .
We define the Hilbert spaces (H, |.|) with the associated scalar product denoted by (. , .), (V , . ) with the associated scalar product (of H 1 ) denoted by . , . and the sets K, Λ as follows:

H := H 0 = [L 2 (Ω 1 )] d × [L 2 (Ω 2 )] d , V = V 1 × V 2 ,
where

V α = {v α ∈ [H 1 (Ω α )] d ; v α = 0 a.e. on Γ α U }, α = 1, 2, K = {v = (v 1 , v 2 ) ∈ V ; [v N ] ≤ 0 a.e. in Ξ}, Λ = {λ ∈ L 2 (Ξ) ; λ ∈ [0, 1] a.e. in Ξ}. We assume that F = (F 1 , F 2 ) ∈ W 1,∞ (0, T ; [L 2 (Γ 1 F )] d )×W 1,∞ (0, T ; [L 2 (Γ 2 F )] d ), f = (f 1 , f 2 ) ∈ W 1,∞ (0, T ; [L 2 (Ω 1 )] d ) × W 1,∞ (0, T ; [L 2 (Ω 2 )] d ), u 0 ∈ K, u 1 ∈ V , β 0 ∈ Λ, µ ∈ L ∞ (Ξ), µ ≥ 0 a.e. in Ξ.
Let us define two bilinear, continuous and symmetric mappings a, b on

H 1 × H 1 → R by a(v, w) = a 1 (v 1 , w 1 ) + a 2 (v 2 , w 2 ), b(v, w) = b 1 (v 1 , w 1 ) + b 2 (v 2 , w 2 ) ∀ v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ H 1 , where, for α = 1, 2, a α (v α , w α ) = Ω α A α ε(v α ) • ε(w α ) dx, b α (v α , w α ) = Ω α B α ε(v α ) • ε(w α ) dx.
Using the previous hypotheses, we consider L as an element of W 1,∞ (0, T ;

H 1 ) such that ∀ t ∈ [0, T ] L, v = α=1,2 Ω α f α • v α dx + α=1,2 Γ α F F α • v α ds ∀ v = (v 1 , v 2 ) ∈ H 1 . We suppose that R : [L 2 sym (Ω 1 )] d 2 → [H 1 (Ω 1 )] d 2 is a linear and continuous regularization of σ(u 1 , v 1 ) = σ 1 (u 1 , v 1 ), satisfying (Rσ (u 1 0 , u 1 1 )) N = 0 and ∃ C > 0, Rσ (u 1 , v 1 ) [H 1 (Ω 1 )] d 2 ≤ C ( |u 1 | + |v 1 | ) ∀ u 1 , v 1 ∈ V 1 , (2.11)
where |.| denotes also the norm of [L 2 (Ω 1 )] d . A similar type of regularization can be found in [START_REF] Kuttler | Dynamic contact with Signorini's condition and slip rate depending friction[END_REF] and the same regularization was considered in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF].

We define the following mappings:

c : L ∞ (Ξ) × (H 1 ) 2 → R, c(β, u, v) = Ξ C N ϑ([u N ]) β 2 (v 1 N + v 2 N ) dξ, J : L ∞ (Ξ) × (H 1 ) 3 → R, J(β, u, v, w) = Ξ µ | (Rσ (u 1 , v 1 )) N + C N ϑ([u N ]) β 2 | | [w T ] | dξ ∀ β ∈ L ∞ (Ξ), ∀ u = (u 1 , u 2 ), v = (v 1 , v 2 ), w = (w 1 , w 2 ) ∈ H 1 , γ : H 1 × [L 2 (Ξ)] 2 → R, γ(u, δ, λ) = Ξ C N b ϑ([u N ] 2 ) δ λ dξ ∀ u = (u 1 , u 2 ) ∈ H 1 , ∀ δ, λ ∈ L 2 (Ξ).
We denote by (. , .) Ξ the scalar product in L 2 (Ξ), with the associated norm |.| Ξ , and we set χ := w b . We assume also the following compatibility relation on initial conditions:

∃ l ∈ H such that (l, v) + a(u 0 , v) + b(u 1 , v) + c(β 0 , u 0 , v) = L(0), v ∀ v ∈ V . (2.12)
A variational formulation of the problem P c is the following.

Problem P v : Find u ∈ W 1,2 (0, T ; V ) ∩ C 1 ([0, T ]; H -1/2 ), β ∈ W 1,∞ (0, T ; L ∞ (Ξ)) such that u(0) = u 0 , u(0) = u 1 in Ω 1 ∪ Ω 2 , β(0) = β 0 in Ξ, u(t) ∈ K, β(t) ∈ Λ for all t ∈ ]0, T [ and u(T ), v(T ) -u(T ) -1/2, 1/2 -(u 1 , v(0) -u 0 ) - T 0 ( u, v -u) dt + T 0 {a(u, v -u) + b( u, v -u) + c(β, u, v -u)} dt (2.13) + T 0 {J(β, u, u, v + κ u -u) -J(β, u, u, κ u)} dt ≥ T 0 L, v -u dt ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H) with v(t) ∈ K a.e. t ∈ ]0, T [, ( β, λ -β) Ξ + γ(u, β, λ -β) ≥ (χ, λ -β) Ξ (2.14) ∀ λ ∈ L 2 (0, T ; L 2 (Ξ)) with λ(t) ∈ Λ a.e. t ∈ ]0, T [,
where κ > 0.

The formal equivalence between the variational system (2.13),(2.14) and the classical problem (2.4)-(2.10) can be easily proved by using Green's formula and an integration by parts.

An auxiliary penalized problem

We consider a penalized contact problem that is a dynamic contact problem with normal compliance law, the solution of which is denoted by

u ε = (u 1 ε , u 2 ε ), β ε
, where ε > 0, verifying the same equations and initial conditions in Ω 1 ∪ Ω 2 , the same boundary conditions as in problem P c , excepting the unilateral contact conditions. The new contact conditions in Ξ × ]0, T [ are

σ 1 N = σ 2 N = - 1 ε [u εN ] + -C N [u εN ] β 2 ε
, where r + = max(r, 0),

σ 1 T (u 1 ε , u1 ε ) = -σ 2 T (u 2 ε , u2 ε ), | σ T | ≤ µ | (Rσ) N + C N [u εN ] β 2 ε | and | σ T | < µ | (Rσ) N + C N [u εN ] β 2 ε | ⇒ [ uεT ] = 0, | σ T | = µ | (Rσ) N + C N [u εN ] β 2 ε | ⇒ ∃ λ ≥ 0 , [ uεT ] = -λ σ T , β ε ∈ [0, 1] and b βε ≥ w if β ε = 0, b βε = w -C N ϑ([u εN ] 2 ) β ε if β ε ∈ ]0, 1[, b βε ≤ w -C N ϑ([u εN ] 2 ) if β ε = 1.

Let us define the mapping p

ε : V × V → R by p ε (v, w) = 1 ε Ξ ϑ([v N ] + )(w 1 N + w 2 N ) dξ ∀ v, w ∈ V . (2.15)
We shall study the following variational formulation of the penalized problem.

Problem P ε : Find u ε ∈ W 2,2 (0, T ; H) ∩ W 1,2 (0, T ; V ) and β ε ∈ W 1,∞ (0, T ; L ∞ (Ξ)) such that u ε (0) = u 0 , uε (0) = u 1 in Ω 1 ∪ Ω 2 , β ε (0) = β 0 in Ξ, β ε (s) ∈ Λ for all s ∈ ]0, T [, and a.e. t ∈ ]0, T [ (ü ε , w -uε ) + a(u ε , w -uε ) + b( uε , w -uε ) + p ε (u ε , w -uε ) (2.16) +c(β ε , u ε , w -uε ) + J(β ε , u ε , uε , w) -J(β ε , u ε , uε , uε ) ≥ L, w -uε ∀ w ∈ V , ( βε , λ -β ε ) Ξ + γ(u ε , β ε , λ -β ε ) ≥ (χ, λ -β ε ) Ξ ∀ λ ∈ Λ.
(2.17)

General existence and uniqueness results

The existence and uniqueness of solutions of problems P ε will be obtained by using the following abstract problem.

Let (H 0 , |.|), (V 0 , . ) and (Π 0 , |.| Π 0 ) be three Hilbert spaces with corresponding scalar products denoted by (. , .), . , . and (. , .) Π 0 , respectively, such that V 0 is dense in H 0 with compact imbedding from V 0 into H 0 and let Λ 0 be a closed convex set in Π 0 . We assume that 0 ∈ Λ 0 and also that Λ 0 is bounded, to simplify the estimates.

We define two bilinear and symmetric forms, a 0 , b 0 :

V 0 × V 0 → R and the mapping γ 0 : V 0 × Π 0 × Π 0 → R such that ∃ m a , m b > 0 a 0 (u, v) ≤ m a u v , b 0 (u, v) ≤ m b u v , (3.1) 
∃ A, B > 0 a 0 (v, v) ≥ A v 2 , b 0 (v, v) ≥ B v 2 ∀ u, v ∈ V 0 , (3.2) ∀ u ∈ V 0 γ 0 (u, •, •) is a bilinear and symmetric form, (3.3) ∃ m γ > 0 such that ∀ u 1,2 ∈ V 0 , ∀ δ 1,2 ∈ Λ 0 , ∀ λ ∈ Π 0 , |γ 0 (u 1 , δ 1 , λ) -γ 0 (u 2 , δ 2 , λ)| ≤ m γ ( u 1 -u 2 + |δ 1 -δ 2 | Π 0 ) |λ| Π 0 , (3.4) 
γ 0 (u, λ, λ) ≥ 0 ∀ u ∈ V 0 , ∀ λ ∈ Π 0 . (3.5) 
Let φ 0 : [0, T ] × Λ 0 × V 3 0 → R and τ 0 : V 0 → R be two mappings satisfying φ 0 (t, λ, •, •, •) and τ 0 are sequentially weakly continuous, (3.6)

φ 0 (t, λ, u, v, w 1 + w 2 ) ≤ φ 0 (t, λ, u, v, w 1 ) + φ 0 (t, λ, u, v, w 2 ), (3.7) 
φ 0 (t, λ, u, v, θw) = θ φ 0 (t, λ, u, v, w), (3.8) 
φ 0 (0, 0, 0, 0, w) = 0, (3.9)

∃ η 0 > 0 such that |τ 0 (u)| ≤ η 0 u , (3.10) 
∀ t ∈ [0, T ], ∀ λ ∈ Λ 0 , ∀ u, v, w, w 1,2 ∈ V 0 , ∀ θ ≥ 0, ∃ η 1 > 0 such that ∀ t 1,2 ∈ [0, T ], ∀ λ 1,2 ∈ Λ 0 , ∀ u 1,2 , v 1,2 , w ∈ V 0 , |φ 0 (t 1 , λ 1 , u 1 , v 1 , w) -φ 0 (t 2 , λ 2 , u 2 , v 2 , w)| ≤ η 1 (|t 1 -t 2 | + |λ 1 -λ 2 | Π 0 + |τ 0 (u 1 -u 2 )| + |v 1 -v 2 |) w , (3.11) ∃ η 2 > 0 such that ∀ t 1,2 ∈ [0, T ], ∀ λ 1,2 ∈ Λ 0 , ∀ u 1,2 , v 1,2 , w 1,2 ∈ V 0 , |φ 0 (t 1 , λ 1 , u 1 , v 1 , w 1 ) -φ 0 (t 1 , λ 1 , u 1 , v 1 , w 2 ) + φ 0 (t 2 , λ 2 , u 2 , v 2 , w 2 ) -φ 0 (t 2 , λ 2 , u 2 , v 2 , w 1 )| ≤ η 2 (|t 1 -t 2 | + |λ 1 -λ 2 | Π 0 + u 1 -u 2 + |v 1 -v 2 |) w 1 -w 2 .
(3.12)

We assume that

L 0 ∈ W 1,∞ (0, T ; V 0 ), χ 0 ∈ W 1,2 (0, T ; Π 0 ), u 0 , u 1 ∈ V 0 , β 0 ∈ Λ 0 and the following compatibility condition: ∃ l 0 ∈ H 0 such that ∀ w ∈ V 0 (l 0 , w) + a 0 (u 0 , w) + b 0 (u 1 , w) + φ 0 (0, β 0 , u 0 , u 1 , w) = L 0 (0), w . (3.13)
We consider the following problem.

Problem Q : Find u ∈ W 2,2 (0, T ; H 0 ) ∩ W 1,2 (0, T ; V 0 ), β ∈ W 1,∞ (0, T ; Π 0 ) such that u(0) = u 0 , u(0) = u 1 , β(0) = β 0 , β(s) ∈ Λ 0 for all s ∈ ]0, T [, and a.e. t ∈ ]0, T [ (ü, v -u) + a 0 (u, v -u) + b 0 ( u, v -u) (3.14) +φ 0 (t, β, u, u, v) -φ 0 (t, β, u, u, u) ≥ L 0 , v -u ∀ v ∈ V 0 , ( β, λ -β) Π 0 + γ 0 (u, β, λ -β) ≥ (χ 0 , λ -β) Π 0 ∀ λ ∈ Λ 0 . (3.15)
The existence and uniqueness of the solution for problem Q will be proved by using a result presented in [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF], an incremental technique and a fixed point argument.

We define the set

X = {λ ∈ C 0 ([0, T ]; Π 0 ) ; λ(0) = β 0 , λ(t) ∈ Λ 0 ∀ t ∈ ]0, T ]},
where the Banach space C 0 ([0, T ]; Π 0 ) is endowed with the norm

λ k = max t∈[0,T ] [exp(-kt) |λ(t)| Π 0 ] for all λ ∈ C 0 ([0, T ]; Π 0 ), k ≥ 0.
Using the Theorem 3.2 of [START_REF] Cocou | Analysis of a dynamic unilateral contact problem for a cracked viscoelastic body[END_REF], which for every β ∈ X clearly can be applied with minor modifications to (3.14) with the initial conditions u 0 , u 1 , we have the following result.

Lemma 3.1. For each β ∈ X there exists a unique

u β ∈ W 2,2 (0, T ; H 0 ) ∩ W 1,2 (0, T ; V 0 ) solution of the inequality (3.14) such that u β (0) = u 0 , uβ (0) = u 1 .
Lemma 3.2. Let β 1 , β 2 ∈ X and let u β 1 , u β 2 be the corresponding solutions of (3.14) with the same initial conditions u 0 , u 1 , respectively. Then there exists a constant

C 1 > 0, independent of β 1 , β 2 , u β 1 , u β 2 , such that for all t ∈ [0, T ] | uβ 1 (t) -uβ 2 (t)| 2 + u β 1 (t) -u β 2 (t) 2 ≤ C 1 t 0 |β 1 (s) -β 2 (s)| 2 Π 0 ds. (3.16) Proof. Let u β 1 , u β 2 be the solutions of (3.14) corresponding to β 1 , β 2 ∈ X.
Taking in each inequality v = uβ 2 and v = uβ 1 , respectively, for a.e. s ∈ ]0, T [ we have

(ü β 1 -üβ 2 , uβ 1 -uβ 2 ) + a 0 (u β 1 -u β 2 , uβ 1 -uβ 2 ) + b 0 ( uβ 1 -uβ 2 , uβ 1 -uβ 2 ) ≤ φ 0 (s, β 1 , u β 1 , uβ 1 , uβ 2 ) -φ 0 (s, β 1 , u β 1 , uβ 1 , uβ 1 ) +φ 0 (s, β 2 , u β 2 , uβ 2 , uβ 1 ) -φ 0 (s, β 2 , u β 2 , uβ 2 , uβ 2 ) ≤ η 2 ( |β 1 -β 2 | Π 0 + u β 1 -u β 2 + | uβ 1 -uβ 2 | ) uβ 1 -uβ 2 ,
where the second inequality follows by (3.12). For all t ∈ [0, T ], as the solutions u β 1 , u β 2 verify the same initial conditions, by integrating between 0 and t we obtain

1 2 | uβ 1 (t) -uβ 2 (t)| 2 + 1 2 a 0 (u β 1 (t) -u β 2 (t), u β 1 (t) -u β 2 (t)) + t 0 b 0 ( uβ 1 -uβ 2 , uβ 1 -uβ 2 ) ds ≤ η 2 t 0 |β 1 -β 2 | Π 0 uβ 1 -uβ 2 ds +η 2 t 0 ( u β 1 -u β 2 uβ 1 -uβ 2 + | uβ 1 -uβ 2 | uβ 1 -uβ 2 ) ds.
Using Young's inequalities for the last three terms with an appropriate constant, and V 0 -ellipticity of a 0 , b 0 , it follows that

1 2 | uβ 1 (t) -uβ 2 (t)| 2 + A 2 u β 1 (t) -u β 2 (t) 2 + B 2 t 0 uβ 1 -uβ 2 2 ds ≤ 3η 2 2 2B t 0 |β 1 -β 2 | 2 Π 0 ds + 3η 2 2 2B t 0 ( u β 1 -u β 2 2 + | uβ 1 -uβ 2 | 2 ) ds.
By Gronwall's lemma we obtain the estimate (3.16). Now, for every element u ∈ W 1,2 (0, T ; V 0 ), we consider the inequality (3.15) with the initial condition β 0 , the solution of which is denoted by β u .

The existence and uniqueness results for this parabolic inequality follow by classical references, see, e.g., [START_REF] Brézis | Problèmes unilatéraux[END_REF] or [START_REF] Barbu | Semigroups and Differential Equations in Banach Spaces[END_REF], but we prefer to present a direct proof based on an incremental technique, for the convenience of the reader. Proposition 3.3. For each u ∈ W 1,2 (0, T ; V 0 ) there exists a unique β u ∈ X ∩ W 1,∞ (0, T ; Π 0 ), solution of the inequality (3.15).

Proof. We consider an incremental formulation obtained by using an implicit time discretization scheme for (3.15). For n ∈ N * , we set ∆t := T /n and t i := i ∆t, i = 0, 1, ..., n, and β 0 := β 0 . If ψ is a continuous function of t ∈ [0, T ] valued in some vector space, we use the notations ψ i := ψ(t i ) and if (θ i ) i∈{0,1,...,n} are elements of some vector space, then for all i ∈ {0, 1, ..., n -1} we set ∆θ i := θ i+1 -θ i . We then approximate (3.15) using the sequence of following incremental problems: for i = 0, 1, ..., n -1, find

β i+1 ∈ Λ 0 such that ∆β i ∆t , λ -β i+1 Π 0 + γ 0 (u i+1 , β i+1 , λ -β i+1 ) ≥ (χ i+1 0 , λ -β i+1 ) Π 0 ∀ λ ∈ Λ 0 .
(3.17) As the previous inequality can be written in the equivalent form

(β i+1 , λ -β i+1 ) Π 0 + ∆t γ 0 (u i+1 , β i+1 , λ -β i+1 ) ≥ (∆t χ i+1 0 + β i , λ -β i+1 ) Π 0 ∀ λ ∈ Λ 0 ,
which is an elliptic variational inequality of the first kind that contains the scalar product in Π 0 and γ 0 satisfying (3.3)-(3.5), by a classical result it follows that there exists a unique solution β i+1 of (3.17).

Taking in (3.17) λ = β i , using (3.4) and Cauchy-Schwarz inequality, we have

∆β i ∆t , ∆β i Π 0 ≤ -γ 0 (u i+1 , β i+1 , ∆β i ) + (χ i+1 0 , ∆β i ) Π 0 ≤ m γ ( u i+1 + |β i+1 | Π 0 )|∆β i | Π 0 + |χ i+1 0 | Π 0 |∆β i | Π 0 . Hence, |∆β i | Π 0 ∆t ≤ m γ ( u i+1 + |β i+1 | Π 0 ) + |χ i+1 0 | Π 0 , for i = 0, 1, ..., n -1. (3.
18) Let us define the following functions: and the estimates (3.18), i = 0, 1, ..., n -1, imply the following relation:

β n (0) = βn (0) = β 0 , u n (0) = u 0 , χ n (0) = χ 0 0 and ∀ i ∈ {0, 1, ..., n -1}, ∀ t ∈ ]t i , t i+1 ], β n (t) = β i+1 , βn (t) = β i + (t -t i ) ∆β i ∆t , u n (t) = u i+1 , χ n (t) = χ i+1 0 . (3.19) Then β n ∈ L 2 (0, T ; Π 0 ), βn ∈ W 1,2 (0, T ; Π 0 ), u n → u in L 2 (0, T ; V 0 ), χ n → χ 0 in L 2 (0, T ; Π 0 ) and β n (t) ∈ Λ 0 , u n (t) → u(t) in V 0 , χ n (t) → χ 0 (t) in Π 0 ∀ t ∈ [0, T ]. Since u ∈ W 1,2 (0, T ; V 0 ) ⊂ C 0 ([0, T ]; V 0 ), χ 0 ∈ W 1,2 (0, T ; Π 0 ) ⊂ C 0 ([0, T ]; Π 0 ),
d dt βn (t) Π 0 ≤ m γ ( u n (t) +|β n (t)| Π 0 )+|χ n (t)| Π 0 for a.e. t ∈ ]0, T [. (3.21)
Thus, there exists a constant C 2 > 0 satisfying βn W 1,∞ (0,T ;Π 0 ) ≤ C 2 for all n ∈ N * , so that there exists a subsequence, still denoted by ( βn ) n , and an element

β u ∈ W 1,∞ (0, T ; Π 0 ) such that βn ⇀ * β u in W 1,∞ (0, T ; Π 0 ), (3.22) 
and, by (3.20),

β n ⇀ * β u in L ∞ (0, T ; Π 0 ). (3.23)
Applying a diagonal process, see, e.g., [START_REF] Cocou | Formulation and approximation of quasistatic frictional contact[END_REF], it follows from (3.22), (3.20) that, up to a subsequence,

β n (t) ⇀ β u (t) in Π 0 ∀ t ∈ [0, T ], (3.24) 
which implies that β u (0) = β 0 and β u (t) ∈ Λ 0 for all t ∈ ]0, T [. We shall prove that the limit β u is a solution of the inequality (3.15). The sequence of inequalities (3.17), i = 0, 1, ..., n -1, is equivalent to the following incremental formulation: β n (t) ∈ Λ 0 for all t ∈ [0, T ] and

d dt βn (t), λ -β n (t) Π 0 + γ 0 (u n (t), β n (t), λ -β n (t)) (3.25) ≥ (χ n (t), λ -β n (t)) Π 0 ∀ λ ∈ Λ 0 , for a.e. t ∈ ]0, T [.
Integrating both sides of (3.25) over [0, T ] it follows that for all λ ∈ L 2 (0, T ; Π 0 ) such that λ(t) ∈ Λ 0 for a.e. t ∈ ]0, T [,

T 0 d dt βn (t), λ(t) -β n (t) Π 0 dt + T 0 γ 0 (u n (t), β n (t), λ(t) -β n (t)) dt (3.26) ≥ T 0 (χ n (t), λ(t) -β n (t)) Π 0 dt.
Using the properties of the corresponding sequences, of the scalar product and of γ 0 , we have

T 0 d dt βn (t), β n (t) Π 0 dt ≥ 1 2 [(β n (T ), β n (T )) Π 0 -(β 0 , β 0 ) Π 0 ], lim n→∞ T 0 [γ 0 (u n (t), β n (t), β n (t)) -γ 0 (u(t), β n (t), β n (t))] dt = 0.
Therefore, by passing to the limit we obtain 

Π 0 dt = T 0 ( βu (t), λ(t)) Π 0 dt, lim n→∞ T 0 γ 0 (u n (t), β n (t), λ(t)) dt = lim n→∞ T 0 [γ 0 (u n (t), β n (t), λ(t)) -γ 0 (u(t), β n (t), λ(t))] dt + lim n→∞ T 0 γ 0 (u(t), β n (t), λ(t)) dt = T 0 γ 0 (u(t), β u (t), λ(t)) dt, lim n→∞ T 0 (χ n (t), λ(t) -β n (t)) Π 0 dt = T 0 (χ 0 (t), λ(t) -β u (t)) Π 0 dt,
finally by passing to the limit in (3.26), we obtain that for all λ ∈ L 2 (0, T ; Π 0 ) such that λ(t) ∈ Λ 0 for a.e.

t ∈ ]0, T [ T 0 ( βu (t), λ(t) -β u (t)) Π 0 dt + T 0 γ 0 (u(t), β u (t), λ(t) -β u (t)) dt ≥ T 0 (χ 0 (t), λ(t) -β u (t)) Π 0 dt.
By Lebesgue's theorem, it follows that β u is a solution of the parabolic inequality (3.15). In order to show the uniqueness of β u , let β 1 , β 2 be two solutions of (3.15) corresponding to u ∈ W 1,2 (0, T ; V 0 ). Taking in each inequality λ = β 2 and λ = β 1 , respectively, we derive that for a.e. s ∈ ]0, T [

( β1 (s) -β2 (s), β 1 (s) -β 2 (s)) Π 0 + γ 0 (u(s), β 1 (s) -β 2 (s), β 1 (s) -β 2 (s)) ≤ 0.
Using that β 1 , β 2 satisfy the same initial condition, for all t ∈ ]0, T [ by integrating over [0, t] we have

1 2 |β 1 (t) -β 2 (t)| 2 Π 0 + t 0 γ 0 (u(s), β 1 (s) -β 2 (s), β 1 (s) -β 2 (s)) ds ≤ 0, which implies that β 1 = β 2 .
Lemma 3.4. Let u 1 , u 2 ∈ W 1,2 (0, T ; V 0 ) and let β u 1 , β u 2 ∈ X be the corresponding solutions of (3.15) with the same initial condition β 0 , respectively. Then there exists a constant C 3 > 0, independent of u 1 , u 2 , β u 1 , β u 2 , such that for all t ∈ [0, T ]

|β u 1 (t) -β u 2 (t)| 2 Π 0 ≤ C 3 t 0 u 1 (s) -u 2 (s) 2 ds. (3.27) Proof. Let β u 1 , β u 2 be the solutions of (3.15) corresponding to u 1 , u 2 . Tak- ing in each inequality λ = β u 2 , λ = β u 1 , respectively, for all t ∈ ]0, T [, by
integrating over [0, t], using (3.4) and some elementary inequality we have

1 2 |β u 1 (t) -β u 2 (t)| 2 Π 0 ≤ t 0 [γ 0 (u 2 , β u 2 , β u 1 -β u 2 ) -γ 0 (u 1 , β u 1 , β u 1 -β u 2 )] ds = t 0 [γ 0 (u 2 , β u 2 , β u 1 -β u 2 ) -γ 0 (u 2 , β u 1 , β u 1 -β u 2 )] ds + t 0 [γ 0 (u 2 , β u 1 , β u 1 -β u 2 ) -γ 0 (u 1 , β u 1 , β u 1 -β u 2 )] ds ≤ m γ t 0 |β u 1 -β u 2 | 2 Π 0 ds + m γ t 0 u 1 -u 2 |β u 1 -β u 2 | Π 0 ds ≤ m γ 2 t 0 u 1 (s) -u 2 (s) 2 ds + 3 m γ 2 t 0 |β u 1 (s) -β u 2 (s)| 2 Π 0 ds,
where, to simplify, the variable s was omitted in some relations. By Gronwall's lemma we obtain the estimate (3.27).

Now we can prove the following existence and uniqueness result. Proof. For every β ∈ X let u β ∈ W 2,2 (0, T ; H 0 ) ∩ W 1,2 (0, T ; V 0 ) be the solution of the inequality (3.14) corresponding to β such that u β (0) = u 0 , uβ (0) = u 1 and let β u β ∈ X ∩ W 1,∞ (0, T ; Π 0 ) be the solution of the inequality (3.15) corresponding to u β . We define the mapping T : X → X by ∀ β ∈ X T β = β u β and we will prove that T : X → X has a unique fixed point, which is equally the solution of the problem Q. For all β 1 , β 2 ∈ X, for all t ∈ [0, T ], using (3.27) and (3.16), we have

|T β 1 (t) -T β 2 (t)| 2 Π 0 ≤ C 3 t 0 u β 1 (s) -u β 2 (s) 2 ds ≤ C 1 C 3 t 0 s 0 exp(-2kr) exp(2kr) |β 1 (r) -β 2 (r)| 2 Π 0 dr ds ≤ C 1 C 3 β 1 -β 2 2 k t 0 exp(2ks) 2k ds ≤ C 1 C 3 4k 2 • exp(2kt) β 1 -β 2 2 k .
Then

T β 1 -T β 2 k = max t∈[0,T ] [exp(-kt) |T β 1 (t) -T β 2 (t)| Π 0 ] ≤ √ C 1 C 3 2k β 1 -β 2 k .
Hence, for all

β 1 , β 2 ∈ X T β 1 -T β 2 k ≤ √ C 1 C 3 2k β 1 -β 2 k ,
so that if k is sufficiently large it follows that T is a contraction and its fixed point is the solution of the problem Q.

Approximation and existence of variational solutions

Now, the previous general results are applied to analyse the penalized and the unilateral contact problems.

Existence and uniqueness of penalized solutions

We prove the following existence and uniqueness result for the penalized problem.

Theorem 4.1. There exists a unique solution to the problem P ε .

Proof. We apply Theorem 3.5 to

H 0 = H, V 0 = V , Π 0 = L 2 (Ξ), Λ 0 = Λ, u 0 = u 0 , u 1 = u 1 , a 0 = a, b 0 = b, L 0 = L, (. , .) Π 0 = (. , .) Ξ , |.| Π 0 = |.| Ξ , γ 0 = γ, χ 0 = χ and φ 0 (t, λ, u, v, w) = p ε (u, w) + c(λ, u, w) + J(λ, u, v, w) ∀ t ∈ [0, T ], ∀ λ ∈ L 2 (Ξ), ∀ u, v, w ∈ V .
As meas(Γ α U ) > 0, the ellipticity property of the coefficients A α ijkl , B α ijkl and the Korn's inequality imply that there exist A α , B α > 0 such that

a α (v α , v α ) ≥ A α v α 2 V α , b α (v α , v α ) ≥ B α v α 2 V α ∀ v α ∈ V α , α = 1, 2,
and we obtain

a(v, v) ≥ A v 2 , b(v, v) ≥ B v 2 ∀ v ∈ V , (4.1) 
where

A = min(A 1 , A 2 ), B = min(B 1 , B 2 ). For all u 1,2 ∈ V , δ 1,2 ∈ Λ, λ ∈ L 2 (Ξ)
, we have the following relations:

|γ(u 1 , δ 1 , λ) -γ(u 2 , δ 2 , λ)| = C N b Ξ (ϑ([u 1N ] 2 ) δ 1 -ϑ([u 2N ] 2 ) δ 2 ) λ dξ = C N b Ξ [(ϑ([u 1N ]) 2 -ϑ([u 2N ]) 2 ) δ 1 + ϑ([u 2N ] 2 )(δ 1 -δ 2 )] λ dξ ≤ C N b Ξ [2r|ϑ([u 1N ]) -ϑ([u 2N ])| + r 2 |δ 1 -δ 2 |] |λ| dξ ≤ max(2r, r 2 ) C N b Ξ (|[u 1N ] -[u 2N ]| + |δ 1 -δ 2 |) |λ| dξ = max(2r, r 2 ) C N b Ξ (|u 1 1N + u 2 1N -u 1 2N -u 2 2N | + |δ 1 -δ 2 |) |λ| dξ ≤ m γ ( u 1 -u 2 + |δ 1 -δ 2 | Ξ ) |λ| Ξ .
Thus, (

are satisfied. We can also easily verify (

. For all λ ∈ L 2 (Ξ), u ∈ V , the mappings p ε (u, •), c(λ, u, •) are linear on V and the mapping J(λ, u, v, •) is a semi-norm on V , which imply that φ 0 satisfies conditions (3.7), (3.8). The mapping φ 0 equally satisfies (3.6) and (3.9).

We set

τ 0 : V → R, τ 0 (v) = |v 1 N + v 2 N | Ξ + |v| ∀ v ∈ V .
The mapping τ 0 , which clearly verifies (3.10), is weakly continuous on V , since it contains a trace term considered in L 2 (Ξ) and the norm in H. As the function s → (s -g) + is Lipschitz continuous on R, using (3.10) we also have

∃ ηε , η ε > 0 |p ε (u 1 , w 1 ) -p ε (u 1 , w 2 ) + p ε (u 2 , w 2 ) -p ε (u 2 , w 1 )| = |p ε (u 1 , w 1 -w 2 ) -p ε (u 2 , w 1 -w 2 )| ≤ ηε |τ 0 (u 1 -u 2 )| w 1 -w 2 ≤ η ε u 1 -u 2 w 1 -w 2 ∀ u 1,2 , w 1,2 ∈ V , (4.2) and ∃ ηc , η c > 0 |c(λ 1 , u 1 , w 1 ) -c(λ 1 , u 1 , w 2 ) + c(λ 2 , u 2 , w 2 ) -c(λ 2 , u 2 , w 1 )| = |c(λ 1 , u 1 , w 1 -w 2 ) -c(λ 2 , u 2 , w 1 -w 2 )| ≤ ηc (| λ 1 -λ 2 | Ξ + |τ 0 (u 1 -u 2 )|) w 1 -w 2 ≤ η c (| λ 1 -λ 2 | Ξ + u 1 -u 2 ) w 1 -w 2 ∀ λ 1,2 ∈ Λ, u 1,2 , w 1,2 ∈ V . (4.3)
Using the relations (2.11) and (3.10) one can clearly establish the following estimates: ∃ ηJ , η J > 0 such that

|J(λ 1 , u 1 , v 1 , w 1 ) -J(λ 1 , u 1 , v 1 , w 2 ) + J(λ 2 , u 2 , v 2 , w 2 ) -J(λ 2 , u 2 , v 2 , w 1 )| ≤ ηJ (| λ 1 -λ 2 | Ξ + |τ 0 (u 1 -u 2 )| + |v 1 -v 2 |) w 1 -w 2 ≤ η J (| λ 1 -λ 2 | Ξ + u 1 -u 2 + |v 1 -v 2 |) w 1 -w 2 ∀ λ 1,2 ∈ Λ, u 1,2 , v 1,2 , w 1,2 ∈ V . (4.4)
From (4.2)-(4.4) it follows that (3.12) is satisfied and if we set w = w 1 , w 2 = 0, we obtain (3.11). Finally, relation (2.12) implies the validity of (3.13).

Thus, by Theorem 3.5 the problem P ε admits a unique solution.

Existence of a variational solution

We shall use several times the following compactness theorem proved by J. Simon [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF].

Theorem 4.2. Let X, U and Y be three Banach spaces such that X ⊂ U ⊂ Y with compact imbedding X → U . Let F be bounded in L p (0, T ; X), where 1 ≤ p < ∞, and ∂F/∂t = { ḟ ; f ∈ F} be bounded in L 1 (0, T ; Y ). Then F is relatively compact in L p (0, T ; U ).

Let F be bounded in L ∞ (0, T ; X) and ∂F/∂t be bounded in L r (0, T ; Y ), where r > 1. Then F is relatively compact in C 0 ([0, T ]; U ). Theorem 4.3. Under the assumptions of Section 2 there exists a solution of the problem P v .

Proof. First, we establish some estimates on the penalized solutions u ε and β ε which will enable us to pass to the limit in P ε in order to obtain a solution of P v . If we choose w = 0 in (2.16), by integrating from 0 to t ∈ ]0, T [ we have

t 0 (ü ε , uε ) ds + t 0 a(u ε , uε ) ds + t 0 b( uε , uε ) ds + t 0 p ε (u ε , uε ) ds + t 0 c(β ε , u ε , uε ) ds ≤ t 0 L, uε ds.
As a is a symmetric bilinear mapping, g 0 is independent of time and u 0 belongs to K, we obtain for all t ∈ ]0, T [

1 2 | uε (t)| 2 + 1 2 a(u ε (t), u ε (t)) + t 0 b( uε , uε ) ds + 1 2ε |ϑ([u εN (t)] + )| 2 Ξ ≤ t 0 L, uε ds - t 0 c(β ε , u ε , uε ) ds + 1 2 |u 1 | 2 + 1 2 a(u 0 , u 0 ).
Using (4.1), Young's inequality, the properties of the truncation operator ϑ and Gronwall's lemma, it follows that there exists a positive constant M independent of ε such that, for all ε > 0, the following estimates on u ε hold

| uε (t)| ≤ M, u ε (t) ≤ M |[u εN (t)] + | Ξ ≤ M √ ε ∀ t ∈ ]0, T [, T 0 uε 2 ds ≤ M. (4.5) 
From (2.16) we obtain for all ϕ = (ϕ

1 , ϕ 2 ) ∈ L 2 (0, T ; [H 1 0 (Ω 1 )] d × [H 1 0 (Ω 2 )] d ) T 0 (ü ε , ϕ) dt + T 0 a(u ε , ϕ) dt + T 0 b( uε , ϕ) dt = α=1,2 T 0 Ω α f α • ϕ α dx dt.
Hence, the term üε is bounded in L 2 (0, T ; H -1 ) by a constant independent of ε. For all v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H) such that v(t) ∈ K for almost every t ∈ ]0, T [, we choose in (2.16) w = uε + 1 κ (vu ε ). Then, integrating with respect to t ∈ ]0, T [ from (2.16), we obtain

T 0 (ü ε , v -u ε ) dt + T 0 a(u ε , v -u ε ) dt + T 0 b( uε , v -u ε ) dt + T 0 p ε (u ε , v -u ε ) dt + T 0 c(β ε , u ε , v -u ε ) dt (4.6) + T 0 {J(β ε , u ε , uε , v + κ uε -u ε ) -J(β ε , u ε , uε , κ uε )} dt ≥ T 0 L, v -u ε dt.
Integrating by parts the acceleration term in (4.6) and by a monotonicity argument for p ε we derive

uε (T ), v(T ) -u ε (T ) -1/2, 1/2 -(u 1 , v(0) -u 0 ) - T 0 ( uε , v -uε ) dt + T 0 {a(u ε , v -u ε ) + b( uε , v -u ε ) + c(β ε , u ε , v -u ε )} dt (4.7) + T 0 {J(β ε , u ε , uε , v + κ uε -u ε ) -J(β ε , u ε , uε , κ uε )} dt ≥ T 0 L, v -u ε dt ∀ v ∈ L ∞ (0, T ; V ) ∩ W 1,2 (0, T ; H) with v(t) ∈ K a.e. t ∈ ]0, T [.
From the estimates (4.5) and the previous estimate on the acceleration, it follows that there exists u such that, up to a subsequence,

u ε ⇀ * u in L ∞ (0, T ; V ), uε ⇀ u in L 2 (0, T ; V ), uε ⇀ * u in L ∞ (0, T ; H), üε ⇀ ü in L 2 (0, T ; H -1 ). (4.8) 
As W 1,2 (0, T ; V ) ⊂ C 0 ([0, T ]; V ), it follows that, for all t ∈ [0, T ], (u ε (t)) ε is bounded in V by a constant independent of ε and of t, so that by a diagonal process we can extract a subsequence, still denoted by (u ε ) ε , such that

u ε (t) ⇀ u(t) in V ∀ t ∈ [0, T ]. (4.9) 
By (4.8) we can easily pass to the limit in the linear terms of (4.7). To pass to the limit in the nonlinear terms we need the compactness result of Theorem 4.2. As ∂Ω α is Lipschitz continuous, the imbeddings from

V α into H α , from V α into [H 1/2 (Ω α )] d and from H α into [H -1/2 (Ω α )] d are compact, α = 1, 2.
Then we may apply Theorem 4.2 with

F = ( uε ) ε , X = V , U = H, Y = H -1 , p = 2, F = (u ε ) ε , X = V , U = H 1/2 , Y = H, r = 2, F = ( uε ) ε , X = H, U = H -1/2 , Y = H -1 , r = 2,
so that, up to a subsequence, we obtain

uε → u in L 2 (0, T ; H), u ε → u in C 0 ([0, T ]; H 1/2 ), uε → u in C 0 ([0, T ]; H -1/2 ). (4.10) Hence, uε (T ), v(T ) -u ε (T ) -1/2,1/2 → u(T ), v(T ) -u(T ) -1/2,1/2 . (4.11)
The functional v → T 0 a(v, v) dt is convex and continuous on L 2 (0, T ; V ), so it is sequentially weakly lower semicontinuous, which implies that lim inf (4.12)

Since v → b(v, v) is convex and continuous on V , it is sequentially weakly lower semicontinuous on V . Thus, as u ε (T ) ⇀ u(T ) in V , we obtain

lim inf ε→0 T 0 b( uε , u ε ) dt = lim inf ε→0 1 2 b(u ε (T ), u ε (T )) - 1 2 b(u 0 , u 0 ) ≥ 1 2 b(u(T ), u(T )) - 1 2 b(u 0 , u 0 ) = T 0 b( u, u)dt. (4.13)
As the imbedding from H 1/2 (Ξ) into L 2 (Ξ) is compact, by (4.9) we have

[u εN ](t) → [u N ](t) in L 2 (Ξ) ∀ t ∈ [0, T ]. (4.14)
Then from (4.5) 3 we derive

0 = lim ε→0 |[u εN (t)] + | Ξ = |[u N ] + (t)| Ξ ∀ t ∈ [0, T ].
Hence, [u N (t)] ≤ 0 almost everywhere on Ξ and for all t ∈ [0, T ], which implies u(t) ∈ K for all t ∈ [0, T ]. Let β := β u ∈ W 1,∞ (0, T ; L ∞ (Ξ)), with β(s) ∈ Λ for all s ∈ ]0, T [, be the solution, which by Proposition 3.3 exists and is unique, of the parabolic variational inequality

( β, λ -β) Ξ + γ(u, β, λ -β) ≥ (χ, λ -β) Ξ ∀ λ ∈ Λ (4.15)
with the initial condition β 0 . We will verify that (u, β) is a solution of the problem P v . By a similar result as in Lemma 3.4, it follows that there exists a constant M ′ > 0, independent of u ε , u, β ε , β, such that for all t ∈ [0, T ]

|β ε (t) -β(t)| 2 Ξ ≤ M ′ t 0 |[u εN ](s) -[u N ](s)| 2 Ξ ds. (4.16) 
Then by (4.5) 2 and (4.14) we have

β ε (t) → β(t) in L 2 (Ξ) ∀ t ∈ [0, T ]. ( 4 
.17)

To pass to the limit in the friction term, we apply Theorem 4.2 with F = 

( uε ) ε , X = V , U = H 1-ι , where 1/2 > ι > 0, Y = H -1 , p = 2 and we obtain u ε → u in W 1,2 (0, T ; H 1-ι ). As the mapping v → [v T ] defined from H 1-ι into [L 2 (Ξ)] d is compact, we have [u εT ] → [u T ] in W 1,2 (0, T ; [L 2 (Ξ)] d ). ( 4 
( βε , λ -β ε ) Ξ dt + T 0 γ(u ε , β ε , λ -β ε ) dt ≥ T 0 (χ, λ -β ε ) Ξ dt (4.19) ∀ λ ∈ L 2 (0, T ; L 2 (Ξ)
) with λ(t) ∈ Λ a.e. t ∈ ]0, T [, so that using (4.14), (4.17) and a weakly lower semicontinuity argument, by passing to the lower limit we obtain

T 0 ( β, λ -β) Ξ dt + T 0 γ(u, β, λ -β) dt ≥ T 0 (χ, λ -β) Ξ dt ∀ λ ∈ L 2 (0, T ; L 2 (Ξ)) with λ(t) ∈ Λ a.e. t ∈ ]0, T [.
By Lebesgue's theorem, it follows that (u, β) verify also the parabolic inequality (2.14).

We note that the abstract results presented in section 3 can be also applied to prove the existence and uniqueness of solutions to dynamic contact problems with normal compliance and adhesion between a viscoelastic body and an obstacle.

Similar results as the previous ones are easily seen to hold for the contact with irreversible adhesion, where the evolution of the intensity of adhesion is governed by a differential equation satisfying the relation (3.27), see, e.g., [START_REF] Sofonea | Analysis and Approximation of Contact Problems with Adhesion or Damage[END_REF].

Numerical examples

In this section, an example is presented to illustrate the mechanical behaviour associated with this interface law and to study the influence of the main mechanical parameters on the solution. The dynamic behaviour of a cylindrical viscoelastic block in adhesive frictional contact (µ = 0.2) under axisymmetric conditions with a stiff sphere is analysed, see Figure 1.

The previous sections concern a dynamic contact problem in viscoelasticity, which constitutes an extension of the model considered in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF] to the case of recoverable adhesion. In elastodynamics, the discrete problem, the algorithms and the numerical solution were given in [START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF][START_REF] Acary | Formulation dynamique d'un modèle de zone cohésive tridimensionnelle couplant endommagement et interface[END_REF] for non recoverable adhesion. They are based on a combination of the Non Smooth Contact Dynamics (NSCD) method, developed by M. Jean and J.J. Moreau [START_REF] Jean | The non smooth contact dynamics method[END_REF][START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF][START_REF] Dubois | LMGC90 -Une plateforme de développement dédiée à la modélisation de problèmes d'interaction[END_REF], and the methods proposed in [START_REF] Raous | A consistent model coupling adhesion, friction, and unilateral contact[END_REF][START_REF] Raous | Unilateral contact, friction and adhesion: 3D cracks in composite materials[END_REF] for the treatment of the adhesion. This approach is extended here to viscoelasticity and to healing process, see also [START_REF] Raous | Recoverable adhesion and friction[END_REF][START_REF] Schryve | Modèle d'adhésion cicatrisante et applications au contact verre/élastomère[END_REF]. The evolution of the adhesion β is computed by using an implicit method and so a fixed point on β is necessary (the convergence test on the relative variation is taken as 10 -5 ). The convergence of the relaxation method included in the NSCD algorithm is tested on the relative variation of the contact power (test condition : 10 -5 ). The implementation of the model with recoverable adhesion was conducted in the finite element code LMGC90 [START_REF] Dubois | LMGC90 -Une plateforme de développement dédiée à la modélisation de problèmes d'interaction[END_REF].

The finite element discretizations consist of P 1 elements and an initial triangulation with 480 nodes for the cross-section of the block and 270 nodes for the cross-section of the sphere is considered. The corresponding size of minimal length of edge mesh is h c = 0.33 µm. A θ-method is used to solve the dynamic equations and the choice θ = 0.51 gives good stability and a small numerical damping.

The sphere is initially in contact with the viscoelastic block at the point O. A compressive cycle is imposed with a prescribed displacement U 1 (t) = u z (t)e z on the upper part of the sphere, see Figure 2. The viscoelastic con-Figure 2: Imposed displacement on the upper face of the sphere u z . stitutive law is described by the following relations:

σ = σ r + σ ir , ε = 1 + ν E σ r - ν E tr(σ r )I, ε = 1 + ν Ẽ σ ir - ν Ẽ tr(σ ir )I,
where E is Young's modulus, ν is Poisson's ratio and Ẽ, ν are the viscosity coefficients. We considered for the sphere E (1) = 2.10 11 Pa, ν (1) = 0.3, ρ (1) =7800 kg.m -3 , Ẽ(1) = η (1) E (1) with η (1) → 0, and for the block Ẽ(2) = η (2) E (2) with η := η (2) ∈ ]0, 10] s, E (2) = 5.10 6 Pa, ν (2) = ν(2) = 0.48, ρ (2) = 1000 kg.m -3 . This example is used to investigate the dependency of the solution on the variation of the following parameters: -the adhesion parameters C N and w, -the volumic viscosity parameter η, -the mesh size.

Effect of adhesion parameters

We consider here three cases of interfacial behaviour with different choices of the adhesion parameters C N and w as given in Table 1.

For η = 1 s, the evolution of β at the candidate contact point B (see Figure 1) and the evolution of contact radius, characterized by the relation g = 0, in these three cases are presented in Figures 3 and4, respectively.

In case 1, the bonds are weak and brittle. Adhesion has minor effect on the solution and a loss of contact is observed. In case 2, the bonds are strong and brittle. An initial contact is observed (radius 0.9 mm), which is due to the stronger adhesion that acts during the initial step, when only gravity is Adhesion has major effect on the solution and the two bodies remain always in contact even at t=10 s.

Effect of the volumic viscosity

The evolutions of the displacement vector and of the intensity of adhesion in case 1, as presented in Figures 5 and6, show a good convergence of viscoelastic solutions towards an elastic solution as η tends to 0.

Effect of the mesh size

We consider the case 3 with η equal to 1 s. The distributions of the normal and tangential components of the stress vector, σ N and σ T , versus the position r are displayed at t = 8 s in Figure 7 for different meshes, as given in Table 2.

The bodies are in contact (σ N ≤ 0 and g = 0) for r ≤ r C , where r C ≃ 4.5 mm is the contact radius, and the bodies are in adhesion (σ N ≥ 0) for Table 2: The different meshes.

r A > r > r C , where r A ≃ 5.5 mm is the adhesion radius. For r ≥ r A the stress vector is negligible.
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 35 Assume that (3.1)-(3.12) and the compatibility condition (3.13) hold. Then there exists a unique solution of the problem Q.

  ε , u ε ) dt ≥ T 0 a(u, u) dt.

Figure 1 :

 1 Figure 1: Initial configurations, boundary conditions, finite element discretization of the problems and points O(r =0, z =0), A(1.63, 0), B(3.2, 0). Γ 1 C and Γ 2 C are bounded by O, C 1 (10.1, 3.98) and O, C 2 (9.82, 0), respectively (length unit is mm).

  Bonds behaviourw (J.m -2 ) C N (N.m -3 ) b (N.s.m -1

Figure 3 :

 3 Figure 3: Evolution of β at point B in three cases.

Figure 4 :

 4 Figure 4: Evolution of the contact radius (g = 0) in three cases.

Figure 5 :

 5 Figure 5: Evolutions of the displacement at point O for different values of η in case 1.

Figure 6 :

 6 Figure 6: Evolutions of β at point A for different values of η in case 1.

Figure 7 :

 7 Figure 7: Distributions of the normal and tangential interfacial stress σ N and σ T versus position r for different mesh sizes of the interaction surfaces Γ 1 C

  it follows that ( u n (t) ) n∈N * and (|χ n (t)| Π 0 ) n∈N * are bounded by constants independent of t ∈ [0, T ].Also, for all n ∈ N * we have

	|β n (t) -βn (t)| Π 0 ≤	T n	d dt	βn (t)	Π 0	for a.e. t ∈ ]0, T [	(3.20)

Table 1 :

 1 Three cases of interfacial behaviour
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