A generic tool to generate a lexicon for NLP from Lexicon-Grammar tables

Matthieu Constant, Elsa Tolone Université Paris-Est, IGM {mconstan,tolone}@univ-paris-est.fr

Lexicon Grammar Conference, L'Aquila September 10, 2008

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Motivations

- Lexicon-Grammar tables (or classes) are not directly exploitable for NLP applications
 - pieces of information are kept undefined (e.g. definitional properties)
 - described only in the literature
- Our work :
 - encode implicit properties in a global table
 - implement a generic tool that generates NLP syntactic lexicons thanks to this table

Related Work

- Some works to convert Lexicon-grammar classes into syntactic lexicons (e.g. Hathout and Namer, 98; Gardent et al., 06; Danlos and Sagot, 07; Sagot and Fort, 07)
- In general, for each class, use of a specific configuration defining the implicit properties and the structure of the output
 - e.g. (Gardent et al. 06) uses a configuration graph for each class
 - lexicon-grammar classes are continually updated => approach can be painful for maintenance
- Our approach :
 - implicit information encoded in a table of classes
 - a unique configuration for all classes of a given part-of-speech, where each property (or **feature**) is assigned a set of reformatting operations

Outline

- Lexicon-Grammar Classes
- Table of Classes
- LGExtract, a Generic Tool
- Example of a Generated Lexicon
- Evaluation
- Conclusions and Future Work

Lexicon-Grammar

A taxonomy of syntactic-semantic classes

- lexical items (or entries) can be verbs, nouns, adjectives, ...
- the lexical items of each class share some syntactic features
- each item has a specific meaning
- Application of a selection of features for each entry
 - encoding in the form of a table (row = entry, column = feature)
 - each feature is tested for each entry
 - binary encoding (+ : accepted feature; : forbidden feature)

lexical encoding (e.g. required prepositions)

Example of verb class

ND =: Mhine	i i	2	NU =: NM		Pres =: eo finó	i	- les		%	<ent></ent>	<ent2></ent2>		V U V	NO être V-ant	NO est Vpp	NO V de NOpc	N1 =: Nhum	N1 =: N-hum	N1 =: le fait Qu P	Ppv =: lui	Ppv =: y	N1 être V-n	NOhum V W sur ce point	M	NOidée V Loc N1esprit		<0PT>
+	-	-	-	1	-	-	-	-	%	renaître	< <u>E</u> >	I	+	+	-	-	-	+	-	-	+	-			+	Γ	Max §renaît§ au bonheur de vivre
+	-	-	-	I	+	-	-	-	%	rendre	< <u>E</u> >	I	+	-	-	-	+	+	+		+		+	+		Ι	Max s'est §rendu§ à mon (opinion+avis)
+		-	-	1	+	-	-	-	%	rendre	<e></e>	I	+	-	-		+	-					-				Le caporal s'est §rendu§ à l'ennemi
+	-	-	-	1	-	-	-	-	%	renoncer	< <u>E</u> >	I	-		-		+	+	-	-	+	-	-		-	I	Max §renonce§ à son héritage

FIG.: sample of verb class 33

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ● □ >

Example of noun class

N~ TTM Andrea	autre Det	Det ≕ un	Det =: un-Modif	Det =: du	Det =: des	NO faire le N de VO-inf W	N0hum faire Det N à N1hum sur ce point
cadeau	-	+	+	-	+	+	-
calembour	-	+	+	-	+	-	+
câlin	-	+	+	-	+	-	-
canular	-	+	+	-	+	+	+
carambouilles	-	-	-	-	+	-	-
cardiogramme	-	+	+	-	+	-	-

FIG.: sample of noun class FNAN

Table of Classes

Current version of Lexicon-Grammar

- basic pieces of information are left implicit
- e.g. constant definitional features of a class are only mentioned informally in literature
- Use of a table of classes
 - for each class, all features are taken into account, not only a selection ! (Paumier, 03)
 - encoding in the form of a table
 - each row stands for a class and each column stands for a feature

each cell corresponds to the validity of a feature in a class

Table of Classes (cont.)

Encoding of a cell

- case 1 : the value depends on the entries of the class; the cell is then filled with the symbol 'o', i.e. the information can be found in the class for each entry;
- case 2 : the value is uniform over the class and can be assigned in the cell with the constant symbols '+' or '-'.
- Practical construction of tables of classes at the Université Paris-Est
 - verbs : Laporte, Tolone, Constant, Leclère, Nakamura, Paumier
 - nouns : Tolone

(all definitional features have been encoded for all classes but other features are not encoded yet)

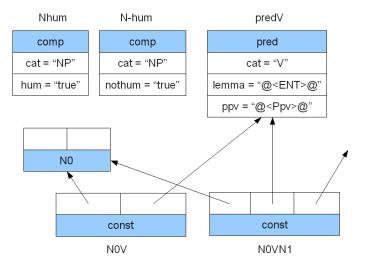
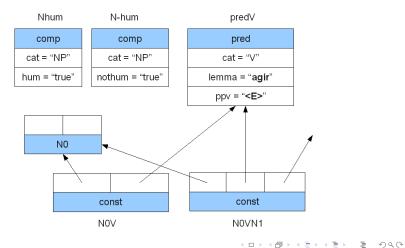
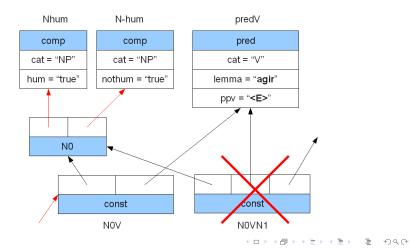

table	NO =: Nhum	uny-N := 0N	NO =: Mnc	NO =: Nnr	NO =: V1-inf W	<ent></ent>	Ppv =: se figé	VO V	IN A ON	zone 1	ND V à N1	N1 =: Nhum	N1 =: N-hum	N1 =: Qu P	N1 =: Qu Psubj	NO V Prep N1 VO-inf W	NO V N1 VO-inf W	NO V VO-inf W	NO U prep VO-inf	NO U Prep Nhum	NO U Prep N-hum	NO U Nhum	MD U N-hum
V_1	o	-	o	-	-	o	o	-	-	o	-	-	-	-	-	-	-	-	+	o	o	o	o
V_ 2	+	-	-	-	-	o	o	-	-	-	-	-	+	-	-	o	0	+	-	-	-	-	-
V_4	-	-	-	+	+	o	-	o	+	-	-	o	o	-	-	-	-	-	-	-	-	-	-
V_31R	o	o	-	-	-	o	o	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V_31H	+	-	-	-	-	o	0	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
V_33	o	0	-	o	-	o	0	o	-	-	+	o	0	-	-		-	-	-	-	-	-	-
V_32H	0	-	-	0	-	0	0	-	+	-	-	+	-	-	-	-	-	-	-	-	-	-	-

FIG.: sample of the table of verb classes

LGExtract


- LGExtract : a generic tool to generate NLP syntactic lexicons from Lexicon-Grammar classes
 - input : a table of classes, lexicon-grammar classes, a configuration script
 - output : a syntactic lexicon in XML or in a raw text format
- Given a set of linguistic objects that can be parameterized by features
- For each lexical item,
 - combination of a selection of linguistic objects according to feature encoding
 - resolution of parameters in the objects
 - generation of the content of the resulting objects in the output

Example


Example - entry agir

- @<ENT>@ = agir
- ▶ @<Ppv>@ = <E>

Example - entry agir

- @N0 = : Nhum@ = + (add Nhum in N0)
- @N0 = : N-hum@ = + (add N-hum in N0)
- @N0 V@ = + (add N0V in constructions)

Configuration script

- Definition of a set of linguistic objects
 - they are in the form of lists and feature structures

define const Nhum [cat="NP",hum="true"]; define dist X0 [dist=(Nhum,N-hum),pos="0"]

they can be parameterized by features

define pred predV [cat="verb",lemma="@<ENT>@"];
define lexicalRule passivePar {passivePar="@[passif par]@"};

 For each feature, declaration of a set of operations combining objects together

```
prop @N0 = : Nnc@{
add N0 in constituents;
add Nhum in N0.dist;
add N-hum in N0.dist;
```

```
}
```

Misc.

Output format :

- the resulting lexicon can be generated in an XML format
- elements and attributes in XML can be defined by relating them with the linguistic objects
- Technical characteristics :
 - implemented in Java
 - configuration script parsed with a parser generated from Tatoo (Cervelle et al., 06)

Example of a generated lexicon

Input :

- a selection of lexicon-grammar tables : all tables of verbs and nouns that are freely available under the LGPL-LR license
- two tables of classes : verbs and nouns (incomplete)
- two configuration scripts (encoded for a selection of features)
- Output :
 - 8,341 verbal entries (from 35 tables) and 4,475 nominal entries (from 30 tables)
 - available under the LGPL-LR license
 - url:http ://infolingu.univ-mlv.fr

A lexical entry

```
ID=N fnan 29
lexical-info:[cat="noun".
              Vsup:[cat="verb",list:(value="faire")],
              noun: [noun1="canular"],
              list-det:(det:[value="un",modif="false"],
                        det:[value="un",modif="true"],
                        det:[value="des".modif="false"]
args:(const:[pos="0",
             dist:(comp:[hum="true",cat="NP"])
      const: [pos="1",
             dist: (comp: [hum="true", cat="NP"])
constructions:(construction="N0 faire Det N à N1",construction="N0 faire Det N")
```

Evaluation

- Advantages :
 - a more global linguistic view of classes
 - maintenance simplification (two files !)
- Drawbacks :
 - defining similar linguistic objects can be boring : no dynamic creation of objects !
 - the program cannot deal with operations requiring order : e.g. concatenating components of compound nouns

Concluding remarks

- implementation of a generic tool to produce lexicons for NLP from lexicon-grammar classes
 - use of table of classes to encode definitional features of the classes
 - definition of a unique configuration script for all classes of a given part-of-speech

- Generation of an example lexicon for verbs and nouns
 - available under the LGPL-LR license
 - http://infolingu.univ-mlv.fr

Future Work

 Improve LGExtract : use of macros and integrate dynamic creation of linguistic objects

- Continue encoding of tables of classes
- Generate a lexicon of frozen expressions
- Plug the lexicon in a parser!

THANK YOU!

http://infolingu.univ-mlv.fr

Resolution of parameters

- Resolution of parameters @feat@for the lexical entry entry in class c
- Two cases according to the value of the cell for class c and feature *feat* in table of classes :
 - case 1 : if the value is 'o', the result is the value of the cell in class c for entry entry and feature feat

case 2 : if the value is constant, the result is this value