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Efficient Location Training Protocols for
Heterogeneous Sensor and Actor Networks
F. Barsi, A.A. Bertossi, C. Lavault, A. Navarra, S. Olariu, M.C. Pinotti, and V. Ravelomanana

Abstract— In this work we consider a large-scale geographic
area populated by tiny sensors and some more powerful devices
called actors, authorized to organize the sensors in their vicinity
into short-lived, actor-centric sensor networks. The tiny sensors
run on miniature non-rechargeable batteries, are anonymous
and are unaware of their location. The sensors differ in their
ability to dynamically alter their sleep times. Indeed, theperiodic
sensors have sleep periods of predefined lengths, established at
fabrication time; by contrast, the free sensors can dynamically
alter their sleep periods, under program control.

The main contribution of this work is to propose an energy-
efficient location training protocol for heterogeneous actor-centric
sensor networks where the sensors acquire coarse-grain location
awareness with respect to the actor in their vicinity. Our
analytical analysis, confirmed by experimental evaluation, show
that the proposed protocol outperforms the best previously-
known location training protocols in terms of the number of
sleep/awake transitions, overall sensor awake time, and energy
consumption.

Index Terms— Sensor and actor networks, heterogeneous sen-
sors, coarse-grain localization, location training protocols, local-
ization protocols

I. I NTRODUCTION

We assume a large-scale deployment of heterogeneous
micro-sensors, each perhaps no larger than a dime, and pos-
sessing only limited functionality, along with more powerful
devices, calledactors. The actors are authorized to organize
the sensors in their vicinity into short-lived,actor-centricnet-
works in support of a specific mission; when the mission termi-
nates the networks are dissolved and the sensors return to their
unorganized state [1], [2]. As an example, imagine a blind per-
son that tries to cross the street in a sensor-instrumented city
block. The blind person will organize the sensors in his/herim-
mediate vicinity into a short-lived network whose stated goal is
to help them chart a safe course to their destination. Once the
blind person has been assisted, the sensor network is disbanded
and the sensors return to their dormant state. This view, illus-
trated in Figure 1, is similar to that in [9], [15], [18] but differs
from the prevalent contemporary view according to which
sensor networks are deployed in support of a remote user that
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is querying the network and where the collected/aggregated
data is sent to a remote site for final determination.

It is worth noting that in anactor-centric network the
concept of globality needs to be redefined to mean small-
scale spatial and temporal globality, the only viable form
of non-local interaction. Indeed, no global aggregation or
fusion of sensory data is performed because such operations
do not scale well with the size of the deployment area. It
has been argued that actor-centric sensor networks can detect
trends and unexpected, coherent, and emergent behaviors and
find immediate applications in environmental monitoring and
homeland security [18], [24].
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B

Fig. 1. Illustrating two actor-centric networks.

A number of applications benefit or even require that
the sensory data collected by sensors be supplemented with
exact location information, encouraging the development of
location-aware and perhaps location-dependent communica-
tion protocols [16], [22], [25], [26]. However, in large-scale
sensor deployments is it either infeasible or impractical to pre-
engineer the position of individual sensors. The net effectof
this state of affairs is that, as a rule, the sensors are initially
unaware of their location: they must acquire this information
post-deployment. In fact, in most of the existing literature,
the sensors are assumed to have learned their geographic
position [2], [3], [24]. The location awareness problemis
for individual sensors to acquire location information either
in absolute form (e.g. geographic coordinates) or relativeto
a reference point. Thelocalization problemis for individual
sensors to determine, as precisely as possible their geographic
coordinates. One simple solution to the localization problem
is to use GPS (global positioning system), where sensors
receive signals from several satellites and decide their position
directly. However, due to limitations in form factor, cost per
unit and energy budget, tiny sensors are not expected to
be GPS-enabled. Moreover, in many occluded environments
including those inside buildings, hangars or warehouses GPS
access is drastically curtailed [25].
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In many other applications, exact geographic location is
not necessary: all that individual sensors need iscoarse-grain
location awareness. The task of acquiring such a coarse-grain
location awareness, relative to a reference point, is referred to
as location training (training, for short). There is an obvious
trade-off: coarse-grain location awareness is lightweight but
the resulting accuracy is only a rough approximation of the
exact geographic coordinates. One can obtain this coarse-grain
location awareness by a protocol that imposes a coordinate
system onto the sensor network. Wadaaet al. [23] have shown
that an interesting by-product of such a training protocol is
that it provides a partitioning into clusters and a structured
topology with natural communication paths. The resulting
topology will make it simple to avoid collisions between
transmissions of nodes in different clusters, between different
paths and also between nodes on the same path. This is in
contrast with the majority of papers that assume routing along
spanning trees with frequent collisions.

Recently, a number of papers have studied location training
protocols which impose a coordinate system by an actor,
see [5], [18]. The typical mode of operation of an actor is
to move towards the place where an event occurs, stationing
there for a while so as to task the sensors in the circular field,
centered at one of the actors (see Figure 2), for collecting
data relevant to the mission at hand. In support of its mission,
the actor is provided with a steady power supply and a radio
interface for long distance communications. We assume that,
in general, the actors are equipped with both isotropic and
directional antennas. By means of the isotropic antenna, the
actor is able to broadcast with variable-rangeR to reach all the
sensors at distance at mostR from the actor. Moreover, using
the directional antenna, the actor can broadcast at full-range
to all the sensors lying in a circular sector of arbitrary angle
α with respect to the polar axis. When the actor transmits,
all the awake sensors belonging to the area covered by the
current transmission passively receive the actor’s message. The
potential of such an actor to train the sensors in its vicinity
has been explored in [5], [6], [23] where location training
protocols were presented which divide the sensor deployment
area, consisting of a disk around the actor, into equiangular
circular sectors and concentric coronas (i.e. areas between two
concentric circles both centered at the actor). In this way,a
large sensor deployment area of any shape is organized into
several cooperating actor-centric subnetworks, one for each
deployed actor (where sensors lying in the intersection ranges
of many actors should refer to just one actor, choosing one of
them).

As illustrated in Figure 2, after training, each sensor in a
disk of radiusR around the actor has acquired two coordinates,
namely the corona and the sector to which it belongs. Notice
that training provides for free aclusteringof the sensors, where
a cluster consists of all sensors having the same coordinates.
After training, routing can be easily performed as follows.
Cluster-to-actor messages are trivially routed inward within a
single sector, while cluster-to-cluster messages can be routed
following several paths, e.g., first along the sector of the sender
to reach the corona of the receiver, and then within such a
corona (clockwise or counterclockwise, depending on which

is the shortest path) to reach also the sector of the receiver
[23]. In addition, to help the actor locate an event that has
occurred in the network, each sensor can add its coordinates
to the sensed data before delivering the messages to the actor.
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Fig. 2. A trained actor-centric subnetwork

The location training protocols studied thus far in the
literature work onhomogeneoussensors in terms of computing
and communication capabilities as well as energy budget.
By contrast, in this paper we look at training protocols
that handle sensors with different capabilities. With sensors
being deployed at various times by different infrastructure
providers, heterogeneity is expected to be the norm in the
sensor networks of the future.

We assume that the sensors run on miniature non-
rechargeable batteries. When a sensor is awake, its CPU is
active, along with its timer, and its radio is on; is sleep mode,
the CPU is inactive, the radio interface is powered off, and
only the timer is on. In order to promote longevity, the sensors
spend most of the time in sleep mode, waking up for brief
time periods only [1], [8], [19]. The heterogeneous actor-
centric sensor networks considered hereafter involve two types
of sensors: on the one hand, theperiodic sensors have sleep
periods predetermined fabrication-time that cannot be altered;
on the other, thefree sensors may alter their sleep periods
dynamically under program control.

The main contribution of the present paper is to propose
a novel location training protocol for actor-centric sensor
networks with a heterogeneous sensor population. The be-
havior of the actor is based on linearly decreasing strength
transmissions alternating with full strength transmissions. On
the other hand, the sensors perform a binary search among the
actor transmissions to locate their correct corona. Although the
two types of sensors are driven by the same actor protocol,
they locally act in different ways. The sensors are anonymous
and indistinguishable to the actor. Each sensor starts the
training task when it wakes up for the first time, without any
initial explicit synchronization. It is assumed that, during the
training task, both sensors and actor measure the time in slots,
which are equal in both lengths and phase. However, every
time a sensor receives a transmission from the actor, it can re-
phase its own slot. This makes the protocol resilient to sensor
clock drift.

The remainder of this work is organized as follows. Section
II offers a succinct survey of localization protocols. Section
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III introduces our actor-centric network model and details
the actor and the sensor behavior of the proposed protocol.
Section IV exhibits the worst-case performance analysis of
the protocol, in terms of the number of sleep/awake transitions
per sensor and thus in terms of energy consumed. Section V
presents an experimental evaluation of the performance, tested
on randomly generated instances, confirming the analytical
results, and showing a much better average-case behavior. The
performance is then compared with that of all the previous
location training algorithms known for the periodic sensors,
showing that the new protocol requires fewer sleep/awake
transitions, and hence consumes much less energy per sensor.
Finally, Section VI offers concluding remarks.

II. RELATED WORK

The task of determining the exact location of sensors,
referred to aslocalization, has been extensively studied in
the literature [4], [13], [22], [24]. Since GPS is considered
prohibitive, most solutions assume the existence of several
GPS-enabled anchors. Localization algorithms can then be
divided into two categories:range-basedand range-free[12],
[21]. In range-based algorithms, the sensors estimate their
distance to anchors using some specialized hardware, and
applying methods like triangulation or trilateration [4].Other
range-based algorithms use received signal strength, angle
and/or time of arrival of signals, or difference of time of
arrivals. Although range-based algorithms result in a fine-grain
localization, all of them need special hardware which may not
be feasible to provide at the sensor level. On the other hand,
range-free algorithms do not use any special hardware but
accept a less accurate localization. For example, in the range-
free centroid algorithm, the sensors receive the anchor posi-
tions, and using this proximity information, a simple centroid
model is applied to estimate the position of the listening nodes
[7]. Other solutions use methods similar to distance vector
routing to allow the nodes to find the number of hops from the
anchors. Anchors flood their location throughout the network
maintaining a running hop-count at each node along the way.
Nodes calculate their position based on the received anchor
locations, on the hop-count from the corresponding anchor,
and on the average-distance per hop [17]. In [12], an iterative
method is pursued to narrow down the position accuracy until
a tolerable error in the positioning is reached. In practice,
each sensor repeatedly chooses a triple of anchors from all
audible anchors and tests whether it is inside the triangle
formed by them, until all triples are exhausted or the required
accuracy is achieved. At this point, the center of gravity of
all of the triangles in which a node resides is assumed to
be the sensor estimated position. Finally, some localization
algorithms, calledproximity-basedalgorithms, determine the
node positions by making use of neighbor nodes, which act
as anchors for other nodes [20].

The localization algorithms discussed so far assume that the
anchor nodes are special nodes, mainly because they know
their spatial coordinates, and that localization is performed as
a primitive operation with all the sensors awake, thus ignoring
energy saving achievable by utilizing the sleep-awake duty

cycle of the sensors. Instead, several recent papers [6], [5],
[23] have considered the localization problem in a network
whose anchor nodes, called actors, are provided with special
transmission capabilities and steady power supply (while do
not necessarily need GPS receivers) and whose sensor nodes
exploit sleep-awake duty cycles for saving energy. The main
novelty of such papers is in using an actor to impose a
discretized polar coordinate system and in combining for the
first time localization and energy-efficient MAC protocols.In
[6], [5], [23], localization is intended as the task of making
each sensor able to acquire a coarse-grain location with respect
to a given actor node and is referred to as location training.The
process is centralized and uses only asymmetric broadcasts
(from the actor to the sensors) without multihop communi-
cations among the sensors. The sensors deduce their coarse-
grain location exploiting the information received by the actor
without performing any local communication. In particular,
the Flat corona training protocol and its variants, Flat+ and
TwoLevel, proposed in [5], deal with a homogeneous network
of periodic sensors. They are calledasynchronousprotocols
because each periodic sensor learns the identity of the corona
to which it belongs, regardless of the moment when it wakes
up for the first time. On the other hand, the two protocols
proposed in [6] deal with a homogeneous network of free
sensors, and are fully synchronous.

In the Flat protocol, the actor cyclically repeats a trans-
mission cycle which involvesk broadcasts at successively
decreasing transmission ranges, wherek is the number of
coronas. Each broadcast lasts for a slot and transmits a beacon
equal to the identity of the outmost corona reached. On the
other side, each sensor wakes up at random between the0-th
and the(k−1)-st time slot and starts listening to the actor for
d time slots, that is, its awake period. Then, the sensor goes
back to sleep forL−d time slots, that is, its sleep period. Such
a behavior is repeated until the sensor learns the identity of the
coronac to which belongs, because it heard beaconc but not
beaconc−1 although it knows that this latter beacon has been
transmitted. The Flat+ extends the Flat protocol exploiting the
fact that when a sensor hears a beaconc, it knows that it will
also hear all the beacons greater thanc. Similarly, when a
sensor knows that a beaconc has been transmitted but not
heard, it knows also that it cannot hear any beacon smaller
thanc. In contrast to the Flat protocol, the sensor now keeps
track of beacons not yet transmitted during its awake periods,
and thus it can look ahead and skip its next awake period.
However, as proved in [5], the worst case performance remains
the same as Flat. In a further improvement, called theTwo-
Levelprotocol, the actor follows a nesting approach in which
the k coronas are viewed ask1 macro-coronas ofk2 adjacent
micro-coronas each. Each sensor is trained to learn first its
macro-corona and then its micro-corona. Although Two-Level
is the most efficient protocol known so far, it cannot reduce
the number of sensor sleep/awake transitions below the square
root of the number of transitions needed by the Flat protocol
[5]. However, the actor behavior of Two-Level is designed ad
hoc for periodic sensors and cannot handle free sensors.

The two training protocols presented in [6] assume that the
sensors are free and synchronized to the master clock running
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at the actor. The actor behavior in such protocols can be
thought of as traversals of complete binary/d-ary trees, whose
leaves represent coronas, whose node preorder/BFS numbers
are related to the time slots, and whose node inorder/BFS num-
bers are related to the actor transmission ranges, respectively.
By exploiting the fully synchronized model and by perform-
ing a distributed phase where the sensors that have already
learned their corona inform those in their neighborhood, the
protocols in [6] require a logarithmic number (in the number
of coronas) of sensor sleep/awake transitions and achieve an
optimal square root time (also in the number of coronas) for
terminating the training task. However, the need of a strong
synchronization between the actor and the sensors makes this
protocol difficult to extend to periodic sensors.

This paper presents an asynchronous protocol, where the
actor repeats a transmission cycle at decreasing transmission
ranges, which can simultaneously train both free and periodic
sensors. Our protocol improves over all the previously asyn-
chronous protocols by reducing the number of sleep/awake
transitions to a logarithmic number, thus matching the fastest
synchronous protocol presented in [6].

III. T HE BINARY TRAINING PROTOCOL

This section serves the dual purpose of specifying the details
of our network model and that of presenting the training
protocol. As a result of running the training protocol, each
sensor will acquire the desired coarse-grain location awareness
(namely, the identity of the corona and sector to which it
belongs), regardless of its type and of the moment when the
sensor wakes up for the first time.

A. Network Model and Problem Formulation

We restrict our attention to an actor-centric sensor network
consisting of an actor and the set of sensors in a disk centered
at the actor. For simplicity we assume that the disks coveredby
distinct actors are disjoint. This is the case in many practical
applications [18].The actors have a steady power supply and
a special radio interface for long distance communications.
Time is ruled into slots. Both the sensors and the actors use
identical, in phase, slots. If the slot maintained at a sensor
drifts from that at the actor, the sensor can easily re-phaseits
slot every time it wakes up, as it will be shown in the protocol.
The sensors operate subject to the following fundamental
constraints:

• The sensors areanonymous– to assume the simplest
sensor model, the sensors lack individually unique IDs;

• The sensors have a modest non-renewable energy budget;
• No sensor has global information about the network

topology;
• All sensors can receive isotropic transmissions emanating

from the actor;
• The sensors areasynchronous– they wake up for the first

time according to their internal clock and do not engage in
explicit synchronization protocol with the actor or other
sensors.

We assume that the sensors come in two flavors:

• The periodic sensors alternate between sleep and awake
periods, both of fixed length. The sensor sleep-awake
cycle has a total length ofL time slots, out of which
the sensor is awake ford ≤ L slots. Periodic sensors
may sleep for their entire cycle, skipping awake periods,
as depicted in Figure 3;
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Fig. 3. Illustrating the sleep-awake cycle of a periodic sensor. The darkestd
slots represent a time interval in which the sensor was scheduled to be awake
but decided to sleep instead.

• The free sensors alternate between sleep periods, whose
lengths depend on the executed protocol and can assume
arbitrary values, and awake periods of fixed lengthd, as
shown in Figure 4.

awake

d d

awake sleep awake

d

sleep sleep

Fig. 4. Illustrating a free sensor that alternates between awake periods of
fixed lengthd and sleep intervals of arbitrary lengths.

The training problem considered in this paper asks for
imposing a coordinate system onto the sensor deployment area
by establishing:

1. Coronas: The deployment area is covered byk coronas
C0, C1, . . . , Ck−1 determined byk concentric circles,
centered at the actor, whose radii are0 < r0 < r1 <
· · · < rk−1;

2. Sectors: The deployment area is ruled intoh equiangular
sectorsS0, S1, . . . , Sh−1, centered at the actor, each
having a width of2π

h
radians;

wherek and h are system parameters determined before the
algorithm starts. The objective is for each sensor to acquire the
identity of the corona and sector to which it belongs, while
consuming as little energy as possible.

To avoid handling tedious and inconsequential details, we
assume that all coronas and sectors have the same width,
although this is not strictly required [19]. In a practical setting,
the corona width might equal the sensor actor’s transmission
range, sayr, and hence the (outer) radiusri of coronaCi might
be equal to(i + 1)r. In such a case, then, the corona number
plus one gives the number of hops needed for a sensor-to-actor
communication. Moreover, a sectorSj might consist of the
portion of the area between the two directional transmission
anglesj 2π

h
and (j + 1)2π

h
. It is further assumed that the free

and periodic sensors share the same awake period lengthd and
that all periodic sensors share the same sleep period length
L− d, and that bothd andL are even. However, the protocol
to be discussed can handle sensors with different sleep and
awake parameters, where each single free sensorf has its
own (even) awake period lengthdf , and each single periodic
sensorp has its own (even) awake and sleep periods of length
dp andLp − dp, respectively.

B. The Actor Behavior

Consider first the training of the coronas. The pseudocode
of the actor behavior is given in Figure 6. The actor repeats
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a cycle of2k time slots and transmits in each slot a message,
called abeacon, consisting of a corona identity. At time slots
2(k−1−i) and2(k−1−i)+1, with i = k−1, . . . , 0, the actor
broadcasts acontrol-broadcast, followed by adata-broadcast,
using its isotropic antenna. Both broadcast the beaconi, the
former at full power, reaching all the sensors, and the latter
at a power level reaching only those sensors up to coronaCi.
The actor transmission cycle, featured in Figure 5, is repeated
for a timeτ sufficient to accomplish the training protocol. An
evaluation ofτ will be given in Theorems IV.6 and IV.9 (for
free and periodic sensors, respectively).
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Fig. 5. An actor transmission cycle of2k time slots withk = 16. The actor
alternates control-broadcasts at full power level (black)with data-broadcasts
at decreasing power levels (gray), transmitting corona identities in decreasing
order.

The redundancy inherent in the control-broadcasts allows
the sensors to hear the beacons transmitted in the data-
broadcasts even when they are out of the data-broadcast
ranges, and thus to acquire information about their distance
from the actor. One reason for performing data-broadcasts in
descending order of coronas is that the outer coronas, which
contain more sensors than the inner ones, are reached first.
Moreover, since for free sensors, as proved in Lemma IV.4,
the inner coronas complete their training earlier than the outer
coronas, a subnetwork connected to the actor grows and could
start operating before the whole training task terminates.

The training of sectors is analogous to the training of
coronas, except that now the actor broadcasts using the di-
rectional antenna a beacon consisting of a sector identity.The
actor cyclically repeats a transmission cycle of2h directional
broadcasts with successively smaller angles. Specifically, at
time slots2(h−1−i) and2(h−1−i)+1, with i = h−1, . . . , 0,
the actor broadcasts at a full power level a control-broadcast
and a data-broadcast both transmitting the same beacon. The
actor uses in such two broadcasts proper angles of transmission
so as to reach all the sensors lying in all the sectors and those
up to sectorSi, respectively. Since sector training is the same
as corona training once the directional broadcasts replacethe

Procedure Actor (k);
t := 0;
repeat
for i := k − 1 downto 0 do

transmit beaconi up to coronaCk−1;
transmit beaconi up to coronaCi;

t := t + 2k;
until t > τ

Fig. 6. Illustrating the actor protocol.

isotropic ones andh replacesk, all the results that will be
presented for coronas hold also for sectors. Therefore, sector
training will not be further discussed and we shall focus on
corona training only.

C. The Sensor Behavior

In order to describe the protocol for the sensors, it is crucial
to point out that the sensors are aware of the actor behavior
and of the number of coronask, which they can learn from
the control-broadcast beacons.

We begin by sketching the behavior of a generic sensor,
regardless of its type. To determine its corona, a sensor uses
two (⌊log k⌋ + 1)-bit registers, namedmin and max. At any
instant, themin (max) register keeps track of the largest
(smallest) corona identity, heard so far via a control-broadcast
(data-broadcast), smaller than (larger than or equal to) the
corona to which the sensor belongs. Themin andmaxregisters
are initialized to−1 andk − 1, respectively, because initially
each sensor can belong to any corona in[0, . . . , k − 1].

From now on, the interval[min+1, . . . , max] is called the
corona identity range, and its widthmax−min is denoted by
λ. From the above discussion, the followingtraining condition
is verified:

Lemma III.1. A sensor which belongs to coronac, with
c ≥ 0, is trained whenmax = c and min = c − 1, and
henceλ = 1.

We assume that each sensor wakes upat randombetween
the0-th and the2(k−1)-st time slot and starts listening to the
actor for d time slots, withd ≥ 2. During its awake period,
the sensor properly sets themin andmax registers according
to the actor’s transmissions received. After its first awake
period, each sensor guesses to belong to corona⌈min+ max

2 ⌉
and goes to sleep until the actor transmits such a corona
identity. At its next awakening, if the sensor receives the data-
broadcast relative to the corona identity it guessed, its corona
identity range becomes[Cmin+1, . . . , C⌈min+ max

2
⌉], otherwise

the corona range becomes[C⌈min + max

2
⌉+1, . . . , Cmax]. Such a

binary search continues until the range boundaries differ by
one, and thus the sensor is trained.

The details are spelled out in Figure 7. A sensor listens for
an awake period ofd consecutive time slots. Since the sensor
is asynchronous, it keeps track of two slots, one even and one
odd, to understand whether it woke up at a data-broadcast or
a control-broadcast. During the even slots, it stores in variable
first either the beacon received, if any, ork (lines 4–7). During
the odd slots, if the sensor does not receive any beacon, it is
sure that it woke up at a control-broadcast. Thus, the actor
is now data-broadcasting the beaconfirst and the corona of
the sensor must be larger thanfirst. In variablecontrol, the
sensor remembers the local time when the control-broadcast
was received (lines 8–11).

On the other hand, if during the odd slots the sensor receives
beaconc, three cases arise depending on what happened in
the previous slot, namely, a control-broadcast was received
(lines 13–15), a data-broadcast was received (lines 17–19),
or a data-broadcast was not received (lines 21–24). The first
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Procedure Binary-Training (k, d);
1 trained:= false; ν := t := 0; min := −1; max := k − 1;
2 while ¬ traineddo
3 for i := 0 to d − 1 do
4 if even(i) then
5 if received beaconc then
6 first := c;

else
7 first := k;

else
8 if ¬ received beaconc then
9 if min ≤ first then

10 min := first; update:=left;
11 control:= t + i − 1;

else
cases

12 c = first:
13 if max ≥ c then
14 max := c; update:=right;
15 control:= t + i − 1;
16 first6= k and c = (first−1) mod k:
17 if max ≥ first then
18 max := first; update:=right;
19 control:= t + i;
20 first = k:
21 if min ≤ (c + 1) mod k then
22 min := (c + 1) mod k;
23 update:=left;
24 control:= t + i;
25 t := t + d − 1;
26 if max−min = 1 then
27 mycorona:= max;
28 trained:= true;

else
29 guess:= ⌈min + max

2
⌉;

30 alarm-clock:= control + Wait();
31 sleepuntil alarm-clock rings;

Fig. 7. Training protocol for a generic sensor.

case is detected because the sensor hears the same beaconc
twice, which implies that the sensor belongs to a corona whose
identity is smaller than or equal toc. The second case happens
when the sensor hears two distinct beacons differing by1 mod
k, yielding that the sensor belongs to a corona smaller than
or equal tofirst. The third case occurs when the sensor hears
only the beaconc during the second slot, with the consequence
that the sensor belongs to a corona larger than(c+1) mod k.
At the end of the awake period, the sensor tests the training
condition (lines 26–28). If it is not trained, by invoking the
Wait procedure, the sensor intends to wake up again when the
actor broadcasts the corona identity in the middle of the sensor
corona identity range (lines 29–31). The time complexity of
the Binary-Training protocol isO(d) plus the time required
for executing theWait procedure.

So far, the behavior of the sensors during the Binary-
Training task has been described independent of their type.
Indeed, only the procedureWait, which determines how long
a sensor has to sleep in order to receive the beacon corre-
sponding to theguesscorona, depends on the sensor type.
Such a procedure mainly influences the total time each sensor
employs to be trained, and thus the total timeτ of the training
task.

In the following, theWait procedures, one for free and one
for periodic sensors, are specified and analyzed.

1) Free Sensor Behavior:This subsection deals with sen-
sors that can freely choose their awakening time. So they set
the alarm clock when, according to their local time, the actor
transmits theguesscorona identity.

The Wait procedure is outlined in Figure 8. The sensor

Function Wait: integer;
1 if update= right then

2 Wait := 2⌊max−min
2

⌋;
else

3 Wait := 2
“

k − ⌊max −min

2
⌋

”

;

Fig. 8. TheWait procedure invoked for the free sensors.

sleeps for an interval which depends on theguesscorona and
the last modified boundary of the corona identity range.

Consider a sensor that finishes its current awake period and
invokes theWait procedure. Ifupdate=right, thenmax is the
beacon transmitted via a control-broadcast at time slotcontrol
(see Figure 7). Since theguesscorona is smaller thanmax,
guesswill be broadcast in the current actor cycle at time slot
control+2⌊max−min

2 ⌋. Whereas, ifupdate=left, thenmin has
been transmitted by the actor at the beginning of the current
awake period. Sinceguesscan only be larger thanmin, guess
will be transmitted during the next actor cycle, at slotcontrol+
2(k − ⌈max−min

2 ⌉). Clearly, the time complexity of theWait
procedure for the free sensors isO(1).

Note that the sensor, setting thecontrol variable, intends
to wake up in the next period when the actor is transmitting
the control-broadcast relative to theguesscorona. However,
the pseudo-code does not exploit this property. Indeed, the
protocol works properly even if the sensor wakes up again
when any data-broadcast or control-broadcast is transmitted.
Moreover, since the sensor updates themin andmax registers
listening to the effective actor transmission, the sensor does not
infer any information from its knowledge of the actor behavior,
contrary to the previously known protocols [5], [6]. For all
these reasons, the new protocol is robust to clock drift.

2) Periodic Sensor Behavior:In this subsection, theWait
procedure for the periodic sensors is devised. For the sake of
the analysis, each sensor is assumed to wake up for the first
time at a random instant2s, with 0 ≤ s ≤ k − 1. Recall that
a sensor running this protocol always alternatesd slots during
which it is awake andL − d slots in which it sleeps. In each
of thed slots where the sensor is awake, it updates its position
according to the heard data. At each awakening, each sensor
hears groups ofd2 consecutive corona identities, broadcast by
the actor. Since two consecutive awake periods startL time
slots apart, the corresponding first beacons transmitted bythe
actor areL

2 mod k apart. Hence, a periodic sensor which does
not skip any awake period hears thek corona identities in
a specific order which depends on the parametersd, L, and
on the time slots at which the sensor wakes up for the first
time. On the top of such an order, the Binary-Training protocol
imposes the binary search scheme on the corona identity range
by means of theWait procedure, which forces a sensor to skip
awake periods until that in whichguessis transmitted.

The Wait procedure is given in Figure 9. Consider a sensor
that finishes its current awake period at slott and invokes the
Wait procedure. At first, the sensor recomputes in variable
firstcorona the beacon which was transmitted by the actor
at the beginning of its current awake period. Indeed, if
update=right, thenmax has been updated at each time slot
andfirstcoronais (max+ d

2 ) mod k. Whereas, ifupdate=left,
then min has been updated only at the first time slot of the
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Function Wait: integer;
1 if update= right then
2 firstcorona:= (max+ d

2
) mod k;

else
3 firstcorona:= min;
4 γ := 1;
5 while guess6∈

ˆ

(firstcorona− γ L
2

− d
2

+ 1 mod k, (firstcorona− γ L
2
) mod k

˜

do
6 γ := γ + 1;
7 Wait := γL − d + 1;

Fig. 9. TheWait procedure invoked for the periodic sensors.

awake period, andfirstcorona is exactly the corona identity
stored in registermin (lines 2-3). Note that in the first
awake period, if two boundaries have been updated, register
updatemust be equal toright. Thus, in a lookup process,
the sensor checks during which subsequent awake period the
guessbeacon will be transmitted (lines 5–6), and stores inγ
the number of awake periods to be skipped plus one. Indeed,
since the corona identities transmitted at the beginning oftwo
consecutive awake periods differ byL

2 mod k, and d
2 beacons

are transmitted in each awake period, the sensor knows which
beacons it can receive in every awake period.

The time complexity of the Wait procedure, shown in
Figure 9, is O(γd). However, such a complexity can be
reduced by storing in each sensor a look-up table, as it will
be shown at the end of Subsection IV-B.

IV. CORRECTNESS ANDPERFORMANCEANALYSIS

In this section, the correctness and the performance of the
Binary-Training protocol are discussed. The results proved in
the next lemmas hold for both free and periodic sensors.

Lemma IV.1. Each sensor requires at least2 consecutive time
slots to learn its relative position with respect to the beacon
transmitted in the last data-broadcast.

Proof. By contradiction, consider a sensor that listens to the
actor for just one slot. If the sensor receives beaconc, it cannot
distinguish whether it hears a control- or a data-broadcast. On
the other hand, if the sensor does not receive any beacon,
although it is aware that the actor transmits a data-broadcast,
it cannot update themin register because it does not know the
transmitted beacon. Therefore, in both cases the sensor cannot
update its corona identity range. Consider now a sensor that
has listened for two consecutive time slots. Sincei = 1, the
sensor executes the code in lines 8–24, and hence it sets either
min or max learning its relative position with respect to the
last data-broadcast beacon.

As a consequence of Lemma IV.1, it is necessary that the
lengthd of the awake period of both free and periodic sensors
be at least2 to allow all the sensors to be trained (such a
condition is also sufficient only for free sensors, as it willbe
shown later). Let us now concentrate on how the widthλ of
the corona identity range decreases for any sensor. Precisely,
in the first awake period of a sensor,λ reduces as follows:

Lemma IV.2. Consider a sensor belonging to coronac that
wakes up at time slots, 0 ≤ s ≤ 2k − 1, when the actor
transmits beaconKs, with 0 ≤ c, Ks ≤ k − 1. If the sensor

is untrained at the end of the first awake period, the width
λ = max − min of its corona identity range is:

λ =

{

min{k − Ks − 1, k − d
2} if c > Ks

Ks −
d
2 + 1 if c ≤ Ks

Proof. Consider the behavior of a sensor that at the end of its
first awake period is still untrained. Assume that the sensor
does not receive the data-broadcast transmitting beaconKs,
that is, c > Ks. If Ks ≥ d

2 , then themin boundary of
its corona identity range is updated toKs. Since the actor
transmits at decreasing power levels, the nextd transmissions
will not update registermin. Hence, the corona identity range
becomes[Ks + 1, . . . , k − 1]. Whereas, ifKs < d

2 − 1, the
registermax is updated because the sensor is awake while the
actor transmits beaconk − 1. However, overalld2 coronas are
excluded, leading to a corona range of widthk − d

2 . Assume
now that the sensor receives the data-broadcast transmitting
beaconKs, that is, c ≤ Ks. Then, the sensor updates the
max boundary ford

2 times. Therefore, the new corona range
becomes[0, . . . , Ks−

d
2 ]. Note that ifKs < d

2 , the sensor will
be trained.

The following two results hold for trainable sensors, that is,
for those sensors that after a finite time haveλ = 1.

Lemma IV.3. In each awake period but the first, every
trainable sensor, which belongs to coronac > 0, updates only
one boundary of its corona identity range unless it becomes
trained. Every sensor in corona0, always updates only one
boundary.

Proof. We proceed by contradiction; consider a sensor in
coronac > 0 that updates both boundaries in the same awake
period, but remains untrained. Letmin andmaxbe the values
of the boundaries at the beginning of the awake period.
During such an awake period, the sensor must have received
the control-broadcast for a corona identity larger thanmin
down to the data-broadcast for a corona identity smaller
than max (passing through the control-broadcasts for corona
identities0 andk − 1). However, this takes more thand time
slots since, already at the end of the first awake period, at
least (min + 1) + (k − max) ≥ d

2 coronas are excluded by
the corona identity range.

A sensor belonging to corona0, whenever it wakes up,
it will receives the actor’s transmission. Thus, it setsmax in
each awake period. When it receives beacon0, it is trained
becausemax − min = 0 − (−1) = 1.

As explained in Subsection III-C, in each awake period
but the first, the widthλ of the corona identity range is
reduced by applying a binary search scheme on the interval
[min, . . . , max] until λ = 1. This process requires a number
of sleep/awake transitions, whose worst value is denoted by
νmax, bounded as follows:

Lemma IV.4. A trainable sensor that belongs to coronac and
wakes up for the first time at time slots, 0 ≤ s ≤ 2k − 1,
while the actor transmits beaconKs, with 0 ≤ c, Ks ≤ k−1,
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requires

νmax ≤

{

1 + ⌈log(min{k − Ks − 1, k − d
2})⌉ if c > Ks

1 + ⌈log(Ks −
d
2 + 1)⌉ if c ≤ Ks

transitions to be trained.

Proof. After the first awake period, the corona identity range
reduces by half at each awakening because the sensor learns
its relative position with respect to theguesscorona, which
is in the middle of the corona identity range. Therefore, by
Lemma IV.2, the result follows.

It is worth noting that a free sensor is always trainable
provided thatd ≥ 2 because, being free to set its alarm-
clock, it is guaranteed to hear the beacon corresponding to the
guesscorona. In contrast, a periodic sensor is constrained in
its awakenings and thus it is trainable only if some conditions
on the parametersL, k andd are verified, as it will be proved
in Subsection IV-B.

In order to analytically evaluate the performance of the
Binary-Training protocol, in addition toνmax, let ωmax be
the worst overall awake time per sensor, andτ be the total
time for training. Recalling that each awake period lasts for
d time slots, one hasωmax = νmaxd. Note thatτ measures
the time required to terminate the whole training task for the
actor, whereas each sensor counts int its local training time,
that is, how many slots elapse from its first wake up until it
is trained. Hence, a sensor which is trained at local timet is
trained at timet + s for the actor, ifs is the random time slot
when the sensor wakes up the first time. Therefore,τ cannot
be larger thantmax +2k−1, wheretmax is the worst training
time among the training times of all the sensors. The analysis
of the total time required by Binary-Training depends on the
Wait procedure, which determines how long a sensor has to
sleep before receiving the beacon corresponding to theguess
corona, and hence it is different for free and periodic sensors.

A. Free Sensors

In order to bound from above the total timeτ for the training
task, the following result is useful:

Lemma IV.5. The training task for a free sensor that belongs
to coronac cannot last more thanτc = 2k(1 + ⌈log2 c⌉) time
slots. Therefore,τ ≤ 2k(1 + ⌈log2 k⌉).

Proof. By applying the binary search scheme to the corona
identity range, a sensor that belongs to coronac must exclude
the coronas0, 1, . . . , c − 1 from its corona identity range by
updating the registermin. This can be done at most⌈log2 c⌉
times. Since the sensor waits at most2k slots between two
consecutive updates ofmin, the result follows.

A consequence of the above lemma is that the inner coronas
finish the training task earlier than the outer coronas. In this
way, the wireless sensor network is formed from the center to
the periphery. Hence, the performance of the Binary-Training
protocol for free sensors can be summarized as follows:

Theorem IV.6. All the free sensors are trainable ifd ≥ 2 and
to be trained each free sensor requiresνmax ≤ 1 + ⌈log2 k⌉,
ωmax = dνmax, and τ ≤ 2kνmax.

Proof. The proof follows from Lemmas IV.1, IV.4, and IV.5.

B. Periodic Sensors

To analyze the performance of the Binary-Training protocol
for periodic sensors, some properties on which beacons are
received by the sensor, and in which order, are discussed.
Denote withGCD(a, b) the greatest common divisor between
a and b, and let L′ = L

2 , g = GCD(L′, k), d′ = d
2 ,

L̂′ = L′

GCD(L′,k) , and k̂ = k
GCD(L′,k) . In order to derive

the necessary and sufficient condition to train all the periodic
sensors, the following observation is useful.

Lemma IV.7. For fixedL, d, and k, assume that, during the
first two slots, when the sensor wakes up for the first time,
the actor has transmitted the data-broadcastKs, with 0 ≤
Ks ≤ k − 1. Then the data-broadcast transmitted in the first
two slots of thei-th sensor awake period is(Ks − iL′) mod

k =
(

Ks − GCD(L′, k)(iL̂′) mod k̂
)

mod k, assuming that

the sensor does not skip any awake period. Overall onlyk̂
different data-broadcasts can be transmitted by the actor in
the first two slots of every sensor awake period, independent
of how many awake periods the sensor performs. Suchk̂ data-
broadcasts differ from each other by a multiple ofGCD(L′, k).

Proof. Consider a sensor for which, during its first awake
period, the data-broadcastKs has been the first one transmitted
by the actor and which does not skip any awake period. The
i-th awake period,i ≥ 0, of such a sensor startsiL time
slots later while the actor is data-broadcasting, during the first
two slots of the sensor awake period,(Ks − iL′) mod k =
(Ks − (iL′) mod k) mod k. Observe thatL′ and k can be
rewritten asL′ = gL̂′ and k = gk̂. Since (iL′) mod k =
g(iL̂′) mod k̂ (see [11]), (iL′) mod k is a multiple of g
and generates only thêk multiples of g in [0, . . . , k −
1] while i varies in any interval of at least̂k consecu-
tive integer values. Therefore,(Ks − (iL′) mod k) mod k =
(

Ks − g(iL̂′) mod k̂
)

mod k. Moreover, in any two awake
periods, say thei-th and thej-th ones, such thati > j and
i− j < k̂, the two first data-broadcasts transmitted are distinct
and differ by a multiple ofg. Whereas, the same first data-
broadcasts are transmitted in any two awake periodsi and j
such thati ≡ j mod k̂.

For example, assumeL = 28, k = 8, and d = 14, and
consider a sensor that wakes up for the first time while the
actor broadcastsKs = 0. In Figure 10, a tableA is depicted
which shows in rowi the corona identities heard at thei-th
awake period. According to Lemma IV.7,A has k̂ = 8

2 = 4

rows andd′ = 7 columns. For instance, column0 shows thêk
different data-broadcasts{0, 2, 4, 6} which can be transmitted
in the first two slots of every sensor awake period and which
differ by g = GCD(14, 8) = 2, while row1 shows the7 corona
identities broadcast during its second awake period, assuming
that the sensor does not skip it. Observe that the first beacon
transmitted in this second awake period is(Ks−iL′) mod k =
(0− 1 · 14) mod 8 = 2. If the sensor does not skip any awake
period, it wakes up in the next two awake periods while the
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0 1 2 3 4 5 6
0 0 7 6 5 4 3 2
1 2 1 0 7 6 5 4
2 4 3 2 1 0 7 6
3 6 5 4 3 2 1 0

Fig. 10. TableA showing the corona identities broadcast by the actor during
the awake periods of a sensor, assuming it does not skip any awake period and
that it woke up for the first time while the actor was transmitting Ks = 0.

actor transmits4 and6, respectively, as depicted in column0.
This behavior is periodic and in any subsequent awake period
the sensor will wake up while the actor broadcasts one corona
identity among{0, 2, 4, 6}.

As a consequence of Lemma IV.7, a sensor can hear,
regardless of how long the training task lasts,k̂ distinct
sequences each ofd′ consecutive decreasing corona identities.
If d′ < GCD(L′, k), the sensor receiveŝk non-overlapping
sequences of corona identities, and hence onlyk̂d′ < k corona
identities. If d′ ≥ GCD(L′, k), the sensor hears at least once
each of thek corona identities.

Lemma IV.8. The training condition is satisfied for all the
periodic sensors if and only ifd′ ≥ GCD(L′, k).

Proof. By Lemma IV.7, regardless of how long the training
task lasts, a sensor can learn its relative position only respect
to min{k, d′k̂} different coronas even if it does not skip
any awake period. Therefore, ifd′ ≥ GCD(L′, k), since
min{k, d′k̂} = k, for anyguesscorona of the Binary-Training
protocol there is at least one of the subsequentk̂ consecutive
awake periods in which the sensor can hearguess. Whereas,
if d′ < GCD(L′, k), since min{k, d′k̂} = d′k̂ < k. there
are corona identities which can never be heard by the sensor
irrespective of the training task duration. If one of those corona
identities is aguesscorona for a sensor, the protocol cannot
terminate for such a sensor, which thus remains untrained.

Therefore, the performance of the Binary-Training protocol
for periodic sensors is given by the following result.

Theorem IV.9. For fixed L, d, and k, if d′ < GCD(L′, k)
then there are sensors which cannot be trained by the Binary-
Training protocol; otherwise to be trained all the periodic
sensors requireνmax ≤ 1 + ⌈log2 k⌉, ωmax = dνmax, and
τ ≤ k̂Lνmax.

Proof. The results for νmax and ωmax follow from
Lemma IV.4. With regard toτ , since the cycles of the actor
and of the sensors last2k and L slots, respectively, then the
actor and the sensors are simultaneously at the beginning of
their cycle everyLCM(2k, L) = 2kL

GCD(L,2k) = k̂L slots. In
other words, the cycle of the actor-sensor system, i.e., the
minimum time after which both the actor and a sensor are
again in the initial condition, is of lengtĥkL slots. Since to
hear eachguessbeacon a sensor has to wait at most a cycle of
the actor-sensor system, and since at mostνmax guesses are
performed, the protocol takesτ ≤ k̂Lνmax time slots.

However, taking into account the particular values thatd
can assume, better bounds on the performance parameters can
be derived.

Theorem IV.10. For fixedL, d, andk, one has:

1) if GCD(L′, k) ≤ d′ < L′ mod k, then νmax ≤ 1 +
⌈log k

d′
⌉, ωmax = dνmax, and τ ≤ k

d′
Lνmax;

2) if L′ mod k ≤ d′ < k, then νmax ≤ 1 + ⌈log k
d′
⌉,

ωmax = dνmax, and τ ≤ ⌈ k
d′
⌉Lνmax;

3) if d′ = k, thenνmax = 1 and ωmax = τ = d.

Proof. The result trivially follows whend′ = GCD(L′, K)
because, by Lemma IV.7, thek coronas are partitioned into
k
d′

non-overlapping intervals over which a binary search is
performed to locate whereguessis transmitted. Hence, the
binary search takesνmax = 1 + ⌈log k

d′
⌉ guesses. Since each

interval lastsd = 2d′ slots and since a sensor waits at most
k
d′

L slots to hear eachguessbeacon, the results forωmax and
τ follow.

When d′ = L′ mod k, if the sensor is awake for two
consecutive awake periods, that is, for two awake periods
starting at time slott andt+L, it would hearc−d′+1 as the
last beacon of the first period andc− d′ as the first beacon of
the second period, ifc is the beacon heard at timet. Thus, the
k corona identities are covered by⌈ k

d′
⌉ intervals (out of which

⌊ k
d′
⌋ are non-overlapping) and a binary search is performed on

such intervals to find whereguessis transmitted. Since each
interval lastsd = 2d′ slots and since a sensor waits at most
⌈ k

d′
⌉L slots to hear theguesscorona identity, the bounds for

ωmax andτ hold.
Whend′ = k, thek corona identities are covered in a single

interval, and each sensor is trained in the first awake period.
Thus, the bounds are trivially derived.

Observe that whenGCD(L′, k) < d′ < L′ mod k or
L′ mod k < d′ < k, the number of intervals which cover
the k corona identities cannot be greater than that in the case
of d′ = GCD(L′, k) andd′ = L′ mod k, respectively. Hence,
the proof follows.

With regard to the time complexity of theWait procedure
(Fig. 9), one can use a tableTKs

, whereKs is defined in
Lemma IV.7, to faster computeγ. TKs

consists ofk rows
and ⌈d′

g
⌉ columns. Givenh and j, with 0 ≤ h ≤ k − 1 and

0 ≤ j ≤ ⌈d′

g
⌉ − 1, TKs

(h, j) contains the awake period in
which the sensor will hear the corona identityh between the
start timesjg and(j +1)g of two consecutive awake periods.
The valueTKs

(h, j) verifies0 ≤ TKs
(h, j) ≤ k̂ − 1 and it is

intended as a relative position within the system actor-sensor
cycle. In practice, rowh of TKs

contains all the awake periods
in which the sensor can hear corona identityh during the
system actor-sensor cycle if the sensor does not skip any awake
period. It is worth noting that the same beacon can be heard
by a sensor in more than one awake period (unlessd′ = g, in
which case there is only a single column inTKs

). Indeed, since
each awake period includesd′ consecutive corona identities
and since distinct awake periods start with beacons which are
multiples ofg, beaconh is heard by a sensor in at most⌈d′

g
⌉

awake periods, namely, for all those overlapping periods which
includeh.

Referring to the example in Figure 10, Figure 11 shows the
content ofT0 for the same parameters, namely,L = 28, k = 8,
andd = 14. For instance, row5 of T0 containsT0(5, 0) = 3,
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0 1 2 3
0 0 1 2 3
1 1 2 3 ∞
2 1 2 3 0
3 2 3 0 ∞
4 2 3 0 1
5 3 0 1 ∞
6 3 0 1 2
7 0 1 2 ∞

Fig. 11. The tableT0 indicating the awake periods in which each corona
identity is heard by a periodic sensor whenL = 28, k = 8, andd = 14.

T0(5, 1) = 0, T0(5, 2) = 1, andT0(5, 3) = ∞, because beacon
5 is transmitted during the3-rd awake period in one of the slots
0 and1, during the0-th awake period in one slot between2
and3, in the 1-st awake period in one slot between4 and5,
while it is never transmitted in slot6, as one can check in
Figure 10.

To better understand how to build tableTKs
, imagine first

constructing a tableAKs
by settingAKs

(u, v) = (Ks−uL′−
v) mod k. SinceAKs

contains the corona identities heard in
each awake period by a sensor that wakes up for the first
time while the actor broadcasts beaconKs, one can derive
the entries ofTKs

performing a kind of inverse computation.
Precisely, ifAKs

(u, v) = h, with 0 ≤ u ≤ k̂ − 1 and 0 ≤
v ≤ d′ − 1, thenTKs

(h, ⌊ v
g
⌋) is set tou. The unfilled entries

in the last column ofTKs
, if any, are set to∞. Clearly, this

requiresO(kd′

g
) time andO(kd′

g
log k) space for each sensor.

The above computation can be performed by each sensor at
the beginning of the protocol, as soon as it knows its ownKs.
Otherwise, such a computation can be done in a preprocessing
phase, that is, before the sensor deployment, for a fixed value
of Ks, like Ks = 0. WhenKs 6= 0, each entry ofTKs

can
be derived by the sensor from the precomputed tableT0 as:
TKs

(h, j) = T0((h − Ks) mod k, j). In other words,TKs

corresponds to a row cyclic shift ofT0.
Finally, the numberγ required in theWait procedure of

Figure 9 is obtained inO(d′

g
) time by computing

γ = min
0≤j≤⌈ d′

g
⌉−1

{γj : γj > 0}

where

γj = (TKs
(guess, j) − TKs

(firstcorona, 0)) mod k̂.

In fact, one computes the minimum numberγj of the
awake periods between each occurrence of theguesscorona,
TKs

(guess, j), in the system actor-sensor cycle and the current
awake period, given byTKs

(firstcorona, 0).
For example, consider a sensor withKs = 0, which has

guess = 5 andfirstcorona = 2. SinceT0(2, 0) = 1, one has
γ0 = (T0(5, 0)−1) mod 4 = 2, γ1 = (T0(5, 1)−1) mod 4 =
3, γ2 = (T0(5, 2)−1) mod 4 = 0, andγ3 = (∞−1) mod 4 =
∞. Hence,γ = min{2, 3,∞} = 2, and the sensor has to wait
2L − d + 1 = 56 − 14 + 1 = 43 slots.

C. Energy Consumption

In this subsection, the energy required for the Binary-
Training protocol is evaluated under a realistic estimate of the

power consumed by the sensors in their different operative
modes.

During the training task, when a sensor is awake, its CPU is
active and its radio is listening or receiving. In contrast,when
a sensor is sleeping, its CPU is not active, its timer is on, and
its radio is off. Letea andes be the energy consumed during a
time slot by a sensor when it is listening/receiving or sleeping,
respectively. Since the radio startup and shutdown requirea
non negligible overhead, letet denote the energy consumed for
a sleep/awake transition followed by an awake/sleep transition.
Thus, denoted withν and ω, respectively, the number of
wake/sleep transitions and the overall awake time, the total
energyE depleted by a sensor is:

E = νet + ωea + (τ − ω)es (1)

An upper bound on the energy drained by the training
protocol for a free sensor is obtained from Equation 1 by
substituting the worst case bounds forν, ω, and τ given in
Theorem IV.6, thus having:

E < (1 + ⌈log k⌉) (et + dea + 2kes)

Similarly, the energy spent by the protocol for periodic
sensors is derived from Equation 1 by using the upper bounds
provided in Theorem IV.10, observing thatd′ ≥ GCD(L′, k):

E <

(

1 + log

⌈

k

GCD
(

L
2 , k

)

⌉)(

et + dea +
kL

GCD(L
2 , k)

es

)

In order to evaluate the energy drained in a realistic setting,
Table I reports the power consumed by a sensor in different
operational modes. The data refer to the TinyNode 584,
produced by Shockfish S.A., and are the customary values for
the smallest sensors one can buy [8]. The sensors have as a
power source two customary 1.2 Volt batteries, with a capacity
of 1900 mAh each, and hence they have an energy supply of
4.56 Joule. As one can check in Table I, listening is nearly as
expensive as receiving. The radio startup and shutdown require
a power consumption, which cannot be higher than that in
the active mode, and they take a non negligible amount of
time (about 1 ms each). The above constraint influences the
behavior of the protocol because it gives a lower bound on the
the length of the sensor sleep period, which must be sufficient
to allow both radio startup and shutdown, and thus cannot be
shorter than2 ms. Hence, a time slot of2 ms is utilized. Note
that such a slot duration is enough to accommodate within it
the O(d′

g
) computation time required in the worst case by a

periodic sensor. In summary, from the data of Table I, one has
that et = 30 · 1 + 30 · 1 = 60 µJ, es = 0.015 · 2 = 0.030 µJ,
andea = 32 · 2 = 64 µJ .

It is easy to see that since the actual value ofes is negligible
with respect toet and ea, which in turn are comparable,
the periodic sensors, which require a smallerνmax, consume
slightly less energy than the free ones, which in turn are trained
faster.

V. EXPERIMENTAL TESTS

In this section, the worst case and average case performance
of the Binary-Training protocol are experimentally testedand
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TABLE I

ESTIMATE OF SENSOR POWER CONSUMPTION IN DIFFERENT

OPERATIONAL MODES AT2.5 VOLT.

Sensor Mode Current Draw Power Consume
CPU inactive, timer on, radio off 6 µA 0.015mW

CPU switch on, radio startup 3 mA < 30 mW

CPU switch off, radio shutdown 3 mA < 30 mW

CPU active, radio listening or RX 12 mA 32 mW

compared with the asynchronous corona training protocols
previously presented in [5]. The algorithms were written in
C++ and the experiments were run on an AMD Athlon X2
4800+ with 2 GB RAM. Since in the heterogeneous networks
the free sensors do not influence the performance of the
periodic ones, and vice versa, the Binary-Training protocol has
been tested training either only free or only periodic sensors.
In this way, the comparison with the previous protocols, which
deal only with homogeneous networks, is more evident. In this
section, the protocol for free or for periodic sensors is called
BinFree and BinPeriodic, respectively.

In the simulation, there areN = 10000 sensors uniformly
and randomly distributed within a circle of radiusρ, centered
at the actor and inscribed in a square. Precisely, the Carte-
sian coordinates of each sensor are randomly generated by
choosing two real numbers uniformly distributed in the range
[−ρ, ρ]. The generation proceeds untilN sensors are placed
inside the circle, thus discarding those laying outside. Then,
for each sensor, its first wake up time is randomly generated
by choosing an integer number uniformly distributed in the
range[0, k − 1].

Consider first some experiments comparing the performance
of the BinFree protocol versus the BinPeriodic one. In the
simulations reported in Figures 12-16, the numberk of coronas
is 64 and the lengthL of the sensor sleep-awake cycle is
216. The choice ofk depends on the ratio between the full
transmission rangeρ of the actor isotropic antenna and the
width of a corona, which in turn is assumed to be equal
to the sensor transmission ranger. Since practical orders of
magnitude forρ andr are hundreds and tens meters [8], our
simulation assumesρ = 640 andr = 10 meters, respectively.
With regards toL, L is selected larger thank in order to allow
d to span all possible values still maintaining a reasonably long
sleep periodL − d. Since the BinPeriodic protocol trains all
the sensors only ifd2 ≥ GCD(L

2 , k) = GCD(108, 64) = 4, the
sensor awake periodd varies between2GCD(L

2 , k) = 8 and
2k = 128 with a step of8. The results are averaged over3
independent experiments, which only differ in the deployment
distribution of the sensors and in the sensor first wakeup times.
If the network is dense enough to guarantee that in each corona
there is at least one sensor for each first wakeup time, then
νmax does not depend on the network density. Thus,νmax is
always the same in different experiments, while the average
number of transitions, denoted byνavg, may slightly change
depending on the sensor first wakeup time distribution.

Figure 12 shows the number of transitions for the different
values of d. According to Theorems IV.4 and IV.9, when
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Fig. 12. Number of transitions whenk = 64, L = 216, and 8 ≤ d ≤ 128.
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Fig. 13. Overall sensor awake time slots whenk = 64, L = 216, and
8 ≤ d ≤ 128.

d = 2GCD(L′, k) = 8, BinFree and BinPeriodic haveνmax =
1 + ⌈log(k − d

2 )⌉ = 7 and νmax = 1 + ⌈log( k
d
2

)⌉ = 5,

respectively. Similarly, whend = 2L′ mod k = 88, BinFree
and BinPeriodic requireνmax = 6 andνmax = 2, respectively.
Clearly, increasingd, the gain of BinPeriodic over BinFree
increases. With regard to average performance, although one
notes thatνavg considerably improves overνmax for both
protocols, the improvement is higher for BinFree.

Figure 13 presentsωmax = νmaxd andωavg = νavgd, which
measure, respectively, the worst and average overall awake
time spent by each sensor to be trained. Clearly, BinFree
exhibits awake times longer than those of BinPeriodic sinceit
requires a larger number of transitions. Although the number
of transitions decreases asd increases, Figure 13 illustrates that
the average overall awake time is slightly increasing for both
protocols, except whend approaches2k, when all protocols
take ω = 2k. It is worthy to note that BinFree can train all
the sensors even whend = 2, and in that case it achieves the
absolute minimum forωmax = 2νmax = 14.

Figure 14 exhibits the total timeτ required to accomplish
the BinFree protocol for all the sensors in coronac = 2i,
with 0 ≤ i ≤ 6, when k = 64, and eitherd = 32 or
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d = 40. The graphic confirms the results for the total time
τc given in Lemma IV.5, that isτ ≤ 2k(1 + ⌈log2 c⌉).
Figure 15 shows the total timeτ required by the two protocols
to train all the sensors in the network. BinPeriodic requires
a total time extremely larger than that of BinFree when
d = 2GCD(L

2 , k) = 8. In fact, for such a value ofd, to
receive the beacon corresponding to the guessed corona, a
free sensor has to wait at most2k slots for each transition,
whereas a periodic sensor has to wait at mostkL

GCD(L′,k) slots,
that is a cycle of the actor-sensor system. The total time of the
BinPeriodic protocol neatly decreases whend increases until it
becomes comparable with that of BinFree ford ≥ k

2 . Indeed,
when d is sufficiently large the corona identities transmitted
in different awake periods overlap. Hence, the same corona
identity can be received by the periodic sensor during several
awake periods of the same actor-sensor cycle, and in general,
the sensor waits much less than kL

GCD(L′,k) slots to receive
the beacon corresponding to the guessed corona. Note that
the total time also decreases because, whend increases, the
number of transitions required to train a sensor decreases.

Figure 16 shows the energy consumed by a sensor in
the worst and average cases, denoted byEmax and Eavg,
respectively, for both the BinPeriodic and BinFree protocols,
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Fig. 17. Number of transitions whenk = 575, L = 54, and 1 ≤ d ≤ 54.

where the time slot length is set to2 ms. It is worth noting
that the graphic of the energy has the same profile as that
of the overall awake time. In fact, since the actual value
of es is negligible with respect toet and ea, which in turn
are comparable, the energy grows proportionally toν(d + 1).
Therefore, although BinPeriodic has a higherτ than BinFree
when 8 ≤ d ≤ 48, the former always consumes less energy
than the latter. In the worst case, the energy depleted by the
Binary-Training protocol is 38 mJ. Since the energy supplied
by a sensor is about4.56 J, the whole training task consumes
at most8/1000 of the entire energy budget.

In conclusion, a heterogeneous wireless sensor network
should use smaller values ofd for the free sensors and
larger values ofd for the periodic sensors. In this way, the
BinFree protocol optimizes the overall awake time and the
energy consumed, without substantially penalizing the number
of transitions, whereas the BinPeriodic protocol optimizes
the number of sleep/awake transitions slightly increasingthe
overall awake time and the energy consumption.

Consider now some experiments where the new Binary-
Training protocol is compared with the Flat, Flat+, and
TwoLevel protocols, proposed in [5], for homogeneous net-
works of periodic sensors.
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In the simulations reported in Figures 17-21, the number
k of coronas is fixed to575, the lengthL of the sensor
sleep-awake cycle is54 and the sensor awake periodd varies
between1 and 54 with a step of4. The numbers of macro-
coronas and micro-coronas for TwoLevel are, respectively,
k1 = 25 andk2 = 23, which indeed givek = k1 ∗ k2 = 575.
Note thatd is bounded by the lengthL of the sensor cycle,
while for d = 1, only the previously known algorithms are
defined. In fact, according to Lemma IV.1, Binary-Training
requires at least2 consecutive slots to learn something.

The experiments show how both BinFree and BinPeriodic
outperform Flat and Flat+ with respect toνmax and νavg

(Figure 17), and toωmax andωavg (Figure 18). In particular,
for νavg, although the corona identity range is guaranteed to
decrease at each awakening applying either Flat+ or Binary-
Training, its range decreases faster using Binary-Training.
Indeed, this last protocol halves the corona identity rangeat
each awakening of the sensor. With regard to TwoLevel, its
number of transitions is smaller than that of Binary-Training
only when d is approximately the same as the number of
macro- and micro-coronas. Indeed, whend = 23, TwoLevel
can train the sensors in just 3 transitions, whereas Binary-
Training still uses a logarithmic number of transitions. Clearly,
a similar observation holds for the overall sensor awake time.
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Concerningτ , Figure 19 shows that the new protocol for
periodic sensors is worse than the previous ones whend is
very small, confirming that periodic sensors benefit from a
moderately long awake period. One can note that, according
to Theorems IV.6 and IV.10, BinFree and BinPeriodic have a
total time bounded by their number of transitions multiplied
by twice the number of coronas and by the Flat total time, re-
spectively. As shown in Figure 20, BinFree has about a double
total time with respect to all the protocols (but BinPeriodic)
becauseBinFree uses both data- and control-broadcasts, and
hence ind time slots it hearsd2 corona identities, while the
others heard corona identities. However, the larger time of
BinFree is widely counterbalanced by its much lower number
of transitions which lead to a moderate energy consumption
(see Figure 21). Indeed, BinPeriodic depletes the minimum
amount of energy, in both the worst and average cases, with
respect to all protocols but TwoLevel. Although TwoLevel
has the minimum energy consumption in the average case, it
requires a specific actor behavior [5] different from that used
by all the other protocols.

The comparison between Flat and Binary-Training for pe-
riodic sensors reveals the bicriteria optimization behinda
training task: one can either minimize the energy consumption
or speed up the training task. Moreover, it is worth noting
that in both Flat and Flat+, when the actor transmission is not
received, the sensors update the corona identity range deriving
from their local time the beacon transmitted by the actor. This
makes the Flat and Flat+ protocols very sensitive to clock
drift.

Finally, the above experiments show that Binary-Training
for free sensors offers, especially for small values ofd, the
best compromise for both optimization criteria. Hence, the
heterogeneous network takes advantage of the free sensors
to become quickly operative, and of the periodic sensors to
increase its longevity.

VI. CONCLUDING REMARKS AND OPEN QUESTIONS

In this paper we have proposed an energy-efficient loca-
tion training protocol for heterogeneous actor-centric sensor
networks where the sensors acquire coarse-grain location
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awareness with respect to the actor in their vicinity. The
sensors differ in their ability to dynamically alter their sleep
times: theperiodicsensors feature sleep periods of predefined
lengths, established at fabrication time; thefree sensors can
dynamically change their sleep times, under program control.

Our analytical analysis, confirmed by experimental evalu-
ation, has shown that the proposed protocol outperforms the
best previously-known training protocols in terms of number
of sleep/awake transitions, overall awake time, and energy
consumption.

Our experimental studies have suggested practical choices
for the lengthd of the awake periods: smaller values ofd for
the free sensors and larger values ofd for the periodic ones.

An interesting open question is whether the energy con-
sumption of the protocol is optimal or not. To derive a lower
bound, one needs a computational model, which is difficult to
be formally defined because it depends on the actor transmis-
sion behavior, on how much information is transmitted each
time, and on whether sensors are awake or not. Nonetheless, a
lower bound can be derived whend = 2 because in this case
the awake period has the minimal length required to perform
one comparison. Since the actor transmits beacons in sorted
order and a sensor has to search its corona amongk beacons,
at leastνmax ≥ log k transitions are needed. Thus the energy
consumption of our protocol is optimal. In general, whend is
an arbitrary function ofk, such an argument does not apply and
deriving a lower bound on the energy consumption remains an
open question. as a future work, we also intend to compare
the Binary-Training protocol with variants of the synchronous
training algorithms, proposed in [6], properly modified so as
to tolerate clock drift. Finally, the proposed protocol assumes
that each sensor receives beacons from only one actor. When
multiple actors are in close proximity, the protocol can still
be used provided that the actors communicate among them in
order to properly set their positions so as to avoid conflicts.
Nonetheless, optimal actor placement is an interesting problem
that deserves further investigation.
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