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We start with a set of n players. With some probability P (n, k), we kill n − k players; the other ones stay alive, and

we repeat with them. What is the distribution of the number Xn of phases (or rounds) before getting only one player?

We present a probabilistic analysis of this algorithm under some conditions on the probability distributions P (n, k),

including stochastic monotonicity and the assumption that roughly a fixed proportion α of the players survive in each

round.

We prove a kind of convergence in distribution for Xn − log
1/α n; as in many other similar problems there are

oscillations and no true limit distribution, but suitable subsequences converge, and there is an absolutely continuous

random variable Z such that d(Xn, ⌈Z + log
1/α n⌉) → 0, where d is either the total variation distance or the

Wasserstein distance.

Applications of the general result include the leader election algorithm where players are eliminated by independent

coin tosses and a variation of the leader election algorithm proposed by W.R. Franklin 1982. We study the latter

algorithm further, including numerical results.

Keywords: Leader election algorithms, convergence in distribution, oscillations

1 A general convergence theorem

We consider a general leader election algorithm of the following type: We are given some random proce-

dure that, given any set of n ≥ 2 individuals, eliminates some (but not all) individuals. If there is more

that one survivor, we repeat the procedure with the set of survivors until only one (the winner) remains.

We are interested in the (random) number Xn of rounds required if we start with n individuals. (We set

X1 = 0, and have Xn ≥ 1 for n ≥ 2.) We let Nk be the number of individuals remaining after round

k; thus Xn := min{k : Nk = 1}, where we start with N0 = n. For convenience we may suppose that

we continue with infinitely many rounds where nothing happens; thus Nk is defined for all k ≥ 0 and

Nk = 1 for all k ≥ Xn.
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We assume that the number Yn of survivors of a set of n individuals has a distribution depending only

on n. We have 1 ≤ Yn ≤ n; we allow the possibility that Yn = n, but we assume P(Yn = n) < 1 for

every n ≥ 2, so that we will not get stuck before selecting a winner. We further assume that, given the

number of remaining individuals at the start of a new round, the number of survivors is independent of

the previous history. In other words, the sequence (Nk)∞0 is a Markov chain on {1, 2, . . .}, and Xn is the

number of steps to absorption in 1. The transition probabilities of this Markov chain are, with Y1 = 1,

P (i, j) := P(Yi = j) = P(j survives of a set of i). (1.1)

Note that P (i, j) = 0 if j > i and P (i, i) < 1, for i > 1. Conversely, any Markov chain on {1, 2, . . .}
with such P (i, j) can be regarded as a leader election algorithm in the generality just described.

We will in this paper treat leader election algorithms where, asymptotically, a fixed proportion is elim-

inated in each round. (Thus, we expect Xn to be of the order log n.) More precisely, we assume the

following for Yn, where we also repeat the key assumptions above. (Here and below, log n should be

interpreted as some fixed positive number when n = 1.)

Condition 1.1. For every n ≥ 1, Yn is a random variable such that 1 ≤ Yn ≤ n, and P(Yn = n) < 1 for

n ≥ 2. Further:

(i) Yn is stochastically increasing in n, i.e., P(Yn ≤ k) ≥ P(Yn+1 ≤ k) for all n ≥ 1 and k ≥ 1.

Equivalently, we may couple Yn and Yn+1 such that Yn ≤ Yn+1.

(ii) For some constants α ∈ (0, 1) and ε > 0 and a sequence δn = O
(
(log n)−1−ε

)
,

EYn+1 − EYn = α+ O(δn). (1.2)

(iii) For some ε and δn as in (ii),

P(|Yn − αn| > δnn) = O(n−2−ε). (1.3)

Note that

E|Yn − αn|p = O(np/2) (1.4)

for some p > 4 suffices for (iii), for a suitable choice of ε > 0 and δn (e.g., δn = n−η, η > 0 and ε small).

Remark 1.2. If (1.2) or (1.3) holds for some sequence (δn), it holds for every larger sequence (δn) too;

similarly, if δn = O
(
(log n)−1−ε

)
or (1.3) holds for some ε, it holds for every smaller ε too. Hence

we may assume that (ii) and (iii) hold with the same ε > 0 and the same δn, and we may assume

δn ≥ (log n)−1−ε. In particular, this implies that δk = O(δn) when C−1n ≤ k ≤ Cn, for each constant

C.

The behaviour of the election algorithm is given by the recursion X1 = 0 and

Xn
d
= XYn

+ 1, n ≥ 2, (1.5)

where we assume that (Xi)
n
i=1 and Yn are independent. We state a general convergence theorem for

leader election algorithms of this type.
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We recall the definitions of the total variation distance dTV and the Wasserstein distance dW (also

known as the Dudley, Fortet-Mourier or Kantorovich distance, or minimal L1 distance); these are both

metrics on spaces of probability distributions, but it is convenient to write also dTV(X,Y ) := dTV(µ, ν)
and dW(X,Y ) := dW(µ, ν) for random variables X,Y with X ∼ µ and Y ∼ ν.

The total variation distance dTV between (the distributions of) two arbitrary random variables X and

Y is defined by

dTV(X,Y ) := sup
A

|P(X ∈ A) − P(Y ∈ A)|. (1.6)

For integer-valued random variables, as is the case in our theorem, this is easily seen to be equivalent to

dTV(X,Y ) = 1
2

∑

k

|P(X = k) − P(Y = k)|. (1.7)

Further, for any distributions µ and ν,

dTV(µ, ν) := inf {P(X 6= Y ) : X ∼ µ, Y ∼ ν} ; (1.8)

the infimum is taken over all random vectors (X,Y ) on a joint probability space with the given marginal

distributions µ and ν. (In other words, over all couplings (X,Y ) of µ and ν.) For integer-valued ran-

dom variables, convergence in dTV is equivalent to convergence in distribution, or equivalently, weak

convergence of the corresponding distributions.

The Wasserstein distance dW is defined only for probability distributions with finite expectation, and

can be defined by, in analogy with (1.8),

dW(µ, ν) := inf {E|X − Y | : X ∼ µ, Y ∼ ν} . (1.9)

There are several equivalent formulas. For example, for integer-valued random variables,

dTV(X,Y ) =
∑

k

|P(X ≤ k) − P(Y ≤ k)|. (1.10)

It is immediate from (1.8) and (1.9) that for integer-valued random variablesX and Y (but not in general),

dTV(X,Y ) ≤ dW(X,Y ). (1.11)

It is well-known that dW is a complete metric on the space of probability measures on R with finite

expectation, and that convergence in dW is equivalent to weak convergence plus convergence of the first

absolute moment.

All unspecified limits in this paper are as n→ ∞.

Theorem 1.3. Consider the leader election algorithm described above, with Yn satisfying Condition 1.1.

Then, there exists a distribution function F with bounded density function f = F ′ such that

sup
k∈Z

|P(Xn ≤ k) − F (k − log1/α n)| → 0 (1.12)

or, equivalently, if Z ∼ F ,

dTV(Xn, ⌈Z + log1/α n⌉) → 0. (1.13)
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More precisely, dW(Xn, ⌈Z + log1/α n⌉) → 0, which is equivalent to

∑

k∈Z

|P(Xn ≤ k) − F (k − log1/α n)| → 0. (1.14)

As a consequence, defining ∆F (x) := F (x) − F (x− 1),

sup
k∈Z

|P(Xn = k) − ∆F (k − log1/α n)| → 0. (1.15)

Furthermore,

EXn = log1/α n+ φ(n) + o(1), (1.16)

for a continuous function φ(t) on (0,∞) which is periodic in log1/α t, i.e. φ(t) = φ(αt), and locally

Lipschitz.

We thus do not have convergence in distribution as n→ ∞, but the usual type of oscillations with

an asymptotic periodicity in log1/α n and convergence in distribution along subsequences such that the

fractional part {log1/α n} converges. (This phenomenon is well-known for many other problems with

integer-valued random variables, see for example [16, 12]; it happens frequently when the variance stays

bounded.) This is illustrated in Figure 1.
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Fig. 1: Illustration of Theorem 1.3

Proof: We assume that δn are as in Remark 1.2.

Let q := supn≥2 P(Yn = n). Since each P(Yn = n) < 1, and P(Yn = n) → 0 by (iii), q < 1.

Hence Xn is stochastically dominated by a sum of n− 1 geometric Ge(1− q) random variables, and thus

EXn = O(n). In particular, EXn <∞ for every n.

Since the sequence (Yn) is stochastically increasing, we may couple all Yn such that Y1 ≤ Y2 ≤ . . . .
If we consider starting our algorithm with different initial values, and use this coupling of (Yn) in each
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round, we obtain a coupling of all Xn, n ≥ 1, such that Xn+1 ≥ Xn a.s. for every n ≥ 1. We use these

couplings of (Yn) and (Xn) throughout the proof.

Let

xn := EXn,

dn := EXn+1 − EXn = xn+1 − xn,

bn := max
1≤k≤n

kdk.

We extend bn to real arguments by the same formula; thus, bt = b⌊t⌋ for real t ≥ 1.

By (1.5),

xn = EXn = 1 + ExYn
, n ≥ 2.

Thus, for n ≥ 2,

dn = E(xYn+1
− xYn

) = E

Yn+1−1∑

Yn

dj = E

n∑

j=1

dj [[Yn ≤ j < Yn+1]]

=

n∑

j=1

djP(Yn ≤ j < Yn+1).

(1.17)

By (ii), EYn+1 − EYn → α, and thus there exists n0 such that if n ≥ n0 then

n∑

j=1

P(Yn ≤ j < Yn+1) = EYn+1 − EYn < 1.

Hence (1.17) implies, with d∗n = maxk≤n dk, for n ≥ n0,

dn(1 − P(Yn ≤ n < Yn+1)) ≤
n−1∑

j=1

P(Yn ≤ j < Yn+1)d
∗
n−1 ≤ d∗n−1(1 − P(Yn ≤ n < Yn+1)),

and thus dn ≤ d∗n−1 so d∗n = dn ∨ d∗n−1 = d∗n−1. Consequently, d∗n = d∗n0
<∞, for all n ≥ n0. In other

words, d∗ := supn dn <∞.

Let β := (1 + α)/2; thus α < β < 1. If n is large enough, so that (α + δn+1)(n + 1) < βn, then

(1.17) yields, using (1.3) and (1.2),

dn ≤ d∗
∑

j<(α−δn)n

P(Yn ≤ j) +
1

n(α− δn)
bβn

∑

j

P(Yn ≤ j < Yn+1) + d∗
∑

j>βn

P(Yn+1 > j)

≤ d∗O(nn−2−ε) +
1

n(α− δn)
bβn(EYn+1 − EYn)

= O(n−1−ε) +
1

n

α+ O(δn)

α− δn
bβn.

Thus

ndn ≤ (1 + O(δn))bβn + O(n−ε). (1.18)
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Replace n by k and take the supremum over all k such that βn < k ≤ n. Since bk is increasing, and by

our simplifying assumptions in Remark 1.2, this yields

bn ≤ (1 + O(δn))bβn + O(n−ε) =
(
1 + O(δn)

)
bβn.

It follows by induction over m that if (1/β)m ≤ n < (1/β)m+1, then

bn ≤ C1

m∏

j=1

(
1 +

C2

j1+ε

)

and thus bn = O(1). In other words, we have shown

dn = O(1/n). (1.19)

We now use the Wasserstein distance dW. Since Xn+1 ≥ Xn a.s., it is easily seen by (1.9) that

dW(Xn, Xn+1) = E(Xn+1 −Xn) = dn. Thus, if m ≤ n, by (1.19),

dW(Xn, Xm) ≤
n−1∑

k=m

dW(Xk, Xk+1) =

n−1∑

k=m

dk = O
(
n−m

m

)
,

and thus, for all n and m,

dW(Xn, Xm) = O
( |n−m|
n ∧m

)
. (1.20)

Note also that (iii) implies

E|Yn − αn| ≤ δnn+ O(n−1−ε) = O(nδn). (1.21)

Define

X̃t := X⌊t⌋ − log1/α t, t ≥ 1. (1.22)

Then, for t ≥ 2/α, using (1.5), (1.20), (1.21), (1.3), and 1 ≤ Y⌊t⌋ ≤ t,

dW(X̃t, X̃αt) = dW

(
X⌊t⌋ − log1/α(t), X⌊αt⌋ − log1/α(αt)

)

= dW

(
X⌊t⌋ − 1, X⌊αt⌋

)
≤ EdW

(
XY⌊t⌋

, X⌊αt⌋

)

≤ C3E

( |Y⌊t⌋ − ⌊αt⌋|
Y⌊t⌋ ∧ ⌊αt⌋

)

≤ C3E

( |Y⌊t⌋ − ⌊αt⌋|
αt/2

+ t[[Y⌊t⌋ < αt/2]]

)

= O
(
t−1

E|Y⌊t⌋ − ⌊αt⌋|
)

+ O
(
tP

(
Y⌊t⌋ < αt/2

))

= O(δ⌊t⌋) + O(t · t−2−ε) = O
(
log−1−ε t

)
.

Hence, for any t ≥ 2/α,

∞∑

j=0

dW(X̃α−jt, X̃α−j−1t) = O
(
log−ε t

)
<∞. (1.23)
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Since dW is a complete metric, thus there exists for every t > 0 a limiting distribution µ(t), such that if

Z(t) ∼ µ(t), then

dW

(
X̃α−jt, Z(t)

)
→ 0 as j → ∞. (1.24)

In particular,

X̃α−jt
d→ Z(t) as j → ∞. (1.25)

(We find it more convenient to use the random variable Z(t) than its distribution µ(t).) Clearly, Z(αt)
d
=

Z(t), so the distribution µ(t) is a periodic function of log1/α t. Hence, (1.24) can also be written, adding

the explicit estimate obtained from (1.23),

dW

(
X̃t, Z(t)

)
= O

(
log−ε t

)
→ 0 as t→ ∞. (1.26)

Note further that, for γ ≥ 1, by (1.22) and (1.20),

dW(X̃t, X̃γt) ≤ dW(X⌊t⌋, X⌊γt⌋) + | log1/α t− log1/α(γt)| = O
(⌊γt⌋ − ⌊t⌋

t

)
+ log1/α γ

= O(γ − 1 + 1/t).

Replacing t by α−jt and letting j → ∞, it follows from (1.24) that, for all t > 0 and γ ≥ 1,

dW(Z(t), Z(γt)) = O(γ − 1). (1.27)

Consequently, t→ µ(t) = L(Z(t)) is continuous and Lipschitz in the Wasserstein metric.

Define, for every real x,

F (x) = P(Z(t) ≤ x) (1.28)

for any t > 0 such that x+ log1/α t is an integer; since Z(t) is periodic in log1/α t, this does not depend

on the choice of t.
Since X̃α−jt + log1/α t = Xα−jt − j ∈ Z, the random variable Z(t) + log1/α t is integer-valued for

every t. It is easily seen that for integer-valued random variables Z1 and Z2, the total variation distance

dTV(Z1, Z2) ≤ dW(Z1, Z2). Hence, for any x ∈ R and u ≥ 0, choosing t such that x + log1/α t is an

integer and letting γ = α−u, which implies that x−u+log1/α(γt) = x+log1/α(t) ∈ Z, we obtain from

the definition (1.28) and (1.27),

F (x) − F (x− u) = P
(
Z(t) ≤ x

)
− P

(
Z(γt) ≤ x− u

)

= P
(
Z(t) + log1/α t ≤ x+ log1/α t

)
− P

(
Z(γt) + log1/α(γt) ≤ x+ log1/α t

)

≤ dTV

(
Z(t) + log1/α t, Z(γt) + log1/α(γt)

)

≤ dW

(
Z(t) + log1/α t, Z(γt) + log1/α(γt)

)

≤ dW

(
Z(t), Z(γt)

)
+ | log1/α t− log1/α(γt)|

= O(γ − 1) + log1/α γ = O(u). (1.29)

Hence, F (x) is a continuous function of x.

We have shown that t → L(Z(t)) is continuous in the Wasserstein metric, and thus in the usual topol-

ogy of weak convergence in the space P(R) of probability measures on R. Since further L(Z(t)) is
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periodic in t, the set {L(Z(t)) : t > 0} = {L(Z(t)) : 1 ≤ t ≤ α−1} is compact in P(R), which by

Prohorov’s theorem means that the family {Z(t)} of random variables is tight, see e.g. Billingsley [1].

Hence, P(Z(t) ≤ x) → 0 as x→ −∞ and P(Z(t) ≤ x) → 1 as x→ +∞, uniformly in t, and it follows

from (1.28) that limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Furthermore, (1.26) and (1.28) show that, for any sequence kn of integers, as n→ ∞,

P(Xn ≤ kn) = P
(
X̃n ≤ kn − log1/α n

)
= P

(
Z(n) ≤ kn − log1/α n

)
+ o(1)

= F (kn − log1/α n) + o(1).
(1.30)

Since further the sequence Xn is increasing, it now follows from Janson [12, Lemma 4.6] that F is

monotone, and thus a distribution function. By (1.29), the distribution is absolutely continuous and has a

bounded density function F ′(x).
It is easy to see that (1.30), (1.12) and (1.13) are equivalent, see [12, Lemma 4.1]. The corresponding

result in the Wasserstein distance follows from (1.26) because dW(Xn, ⌈Z+log1/α n⌉) = dW(X̃n, Z(n)),
e.g. by Remark 1.4 below; (1.14) then follows by (1.10). Finally, (1.26) implies that

EX̃t = EX⌊t⌋ − log1/α t = EZ(t) + O
(
log−ε t

)
,

which proves (1.16) with φ(t) := EZ(t), which is periodic in log1/α t. Since |φ(t)− φ(u)| = |E(Z(t)−
Z(u))| ≤ dW(Z(t), Z(u)), (1.27) implies that φ is continuous, and Lipschitz on compact intervals.

Remark 1.4. As remarked above, Z(t) + log1/α t is integer-valued. Moreover, for every integer k,

P
(
Z(t) + log1/α t ≤ k

)
= P

(
Z(t) ≤ k − log1/α t

)
= F (k − log1/α t)

= P
(
Z ≤ k − log1/α t

)
= P

(
Z + log1/α t ≤ k

)

= P
(
⌈Z + log1/α t⌉ ≤ k

)
.

Hence, for every t > 0, Z(t)
d
= ⌈Z + log1/α t⌉ − log1/α t. General families of random variables of this

type are studied in [12]. In particular, [12, Theorem 2.3] shows how φ(t) := EZ(t) in Theorem 1.3 can

be obtained from the characteristic function of the distribution F of Z.

Remark 1.5. The very slow convergence rate O
(
log−ε t

)
in (1.26) is because we allow δn to tend to

0 slowly. In typical applications, δn = n−a for some a > 0, and then better convergence rates can be

obtained. We have, however, not pursued this.

Remark 1.6. Note that F and φ are influenced by the distribution of Yn for small n > 2, for example

Y3 and Y4; hence there is no hope for a nice explicit formula for F or φ depending only on asymptotic

properties of Yn.

Remark 1.7. The general problem of studying the number of steps until absorption at 1 of a decreasing

Markov chain on {1, 2, . . . } appears in many other situations too, usually with quite different behaviour

of Yn and Xn. As examples we mention the recent papers studying random trees and coalescents by

Drmota, Iksanov, Moehle and Roesler [3], Iksanov and Möhle [10], Gnedin and Yakubovich [8], and

Delmas, Dhersin and Siri-Jegousse [11]; in these papers the number killed in each round is much smaller

than here and thus Xn is larger, of the order n or n/ log n; moreover, after normalization Xn has a stable

limit law.
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2 Extensions

In Section 1, we have assumed that we repeat the elimination step until only one player remains. As a

generalization we may suppose, in the present Section 2, that we stop when there are at most a players

left, for some given number a.

Theorem 2.1. Consider the leader election algorithm described in Section 1, but stopping as soon as the

number of remaining players is at most a, for some fixed a ≥ 1. Suppose that Condition 1.1 is satisfied.

Then, the conclusions of Theorem 1.3 hold, for some F and φ that depend on the threshold a.

Proof: This generalization can be obtained from the version in Section 1 by replacing Yn by

Y ′
n :=

{
Yn, Yn > a;

1, Yn ≤ a.

Suppose that Condition 1.1 holds for (Yn). It is easily seen that then Condition 1.1 holds for (Y ′
n) too,

with the same α; for (ii), note that Condition 1.1(iii) implies that

E|Yn − Y ′
n| ≤ aP(Yn ≤ a) = O(n−2−ε)

and thus EY ′
n+1 − EY ′

n = EYn+1 − EYn + o(n−2). Consequently, Theorem 1.3 applies to (Y ′
n), and the

result follows.

In this situation, it is also interesting to study the probability πi(n) that the procedure ends with exactly

i players, starting with n players; here i = 1, . . . , a and
∑a

i=1 πi(n) = 1. We have a corresponding limit

theorem for πi(n).

Theorem 2.2. Suppose that Condition 1.1 holds and that a ≥ 1 is given as in Theorem 2.1. Then,

πi(n) = ψi(n) + o(1), i = 1, . . . , a, (2.1)

for some continuous functions ψi(t) on (0,∞) which are periodic in log1/α t, i.e. ψi(t) = ψi(αt), and

locally Lipschitz.

Proof: A modification of the proof of Theorem 1.3, now taking xn := πi(n) and dn := |xn+1 − xn|
and replacing the random X̃t by x⌊t⌋ = πi(⌊t⌋), yields πi(n + 1) − πi(n) = O(1/n) and πi(α

−jt) −
πi(α

−(j+1)t) = O(j−1−ε); hence, for any t > 0, πi(α
−jt) → ψi(t) for some ψi(t), which easily is seen

to satisfy the stated conditions. We omit the details.

More generally, there is a similar result on the probability that the process passes through a certain

state; this is interesting also for the process in Section 1 with a = 1.

Theorem 2.3. Suppose that Condition 1.1 holds and that a ≥ 1 is given as above. Let πi(n), i ≥ 1, be

the probability that, starting with n players, there exists some round with exactly i survivors. Then

πi(n) = ψi(n) + o(1), i = 1, 2, . . . , (2.2)

for some continuous functions ψi(t) on (0,∞) which are periodic in log1/α t, i.e. ψi(t) = ψi(αt), and

locally Lipschitz.
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Proof: For i ≤ a, this πi(n) is the same as in Theorem 2.2, and for each i > a, this πi(n) is the same as

in Theorem 2.2 if we replace a by i.

Remark 2.4. Another variation, which is natural in some problems, is to study a non-increasing Markov

chain on {0, 1, . . . } and ask for the number of steps to reach 0; in other words, the time until all players

are killed. In this case, we thus assume that 0 ≤ Yn ≤ n. This can obviously be transformed to our

set-up on {1, 2, . . . } by increasing each integer by 1; in other words, we replace Yn by Y ′
n := Yn−1 + 1,

n ≥ 2; we can interpret this as adding a dummy player that never is eliminated, and continuing until only

the dummy remains. If Condition 1.1 holds for Yn, except that Yn = 0 is allowed and P(Y1 = 0) > 0,

then Condition 1.1 holds for Y ′
n too, and thus our results hold also in this case, with Xn now defined as

the number of steps until absorption in 0. (To be precise, Xn = X ′
n+1, with (X ′

n) corresponding to (Yn),
since we add a dummy, but there is no difference between the asymptotics of X ′

n+1 and X ′
n.)

3 Examples

Example 3.1 (a toy example). For a simple example to illustrate the theorems above, let, for n ≥ 2,

Yn = ⌊(n+ I)/2⌋, where I ∼ Be(1/2) is 0 or 1 with P(I = 1) = 1/2. In other words, we toss a coin and

let Yn be either ⌊n/2⌋ or ⌈n/2⌉ depending on the outcome. (If n is even, thus always Yn = n/2.) Note

that EYn = n/2, n ≥ 2, and that Condition 1.1 holds trivially, with α = 1/2. If we start with N0 = n
players and m2j ≤ n ≤ (m + 1)2j , m ≥ 1, then the number Nj of survivors after j rounds satisfies

m ≤ Nj ≤ m+ 1 and ENj = 2−jn (by induction on j). Consequently, if m2j ≤ n ≤ (m+ 1)2j ,

P(Nj = m) = m+ 1 − 2−jn, P(Nj = m+ 1) = 2−jn−m. (3.1)

Taking m = 1, this shows that if 2j ≤ n ≤ 2j+1, then

P(Xn = j) = P(Nj = 1) = 2 − 2−jn, P(Xn = j + 1) = 1 − P(Xn = j) = 2−jn− 1. (3.2)

Hence, (1.12) holds exactly, P(Xn ≤ k) = F (k − log2 n), for all k ∈ Z and n ≥ 1, with

F (x) =





0, x ≤ −1,

2 − 2−x, −1 ≤ x ≤ 0,

1, x ≥ 0,

and (1.16) holds exactly, EXn = log2 n+ φ(n), with

φ(2x) = 2x−⌊x⌋ −
(
x− ⌊x⌋

)
− 1.

Suppose now, as in Section 2, that we stop when there are at most a = 3 players left. (Similar results

are easily obtained for other values of a.) If 2i ≤ n ≤ 2i+1 with i ≥ 1, we take j = i − 1 and note that

Nj ∈ {2, 3, 4}. If Nj = 4, the procedure ends after one further round with 2 players left; otherwise it

ends immediately with Nj = 2 or 3 survivors. Taking m = 2 or m = 3 in (3.1), we thus find

π2(n) = P(Ni−1 = 2) + P(Ni−1 = 4) = |21−in− 3|, 2i ≤ n ≤ 2i+1.

Consequently, π2(n) = ψ2(n) exactly, for all n ≥ 2, with

ψ2(2
x) = |21+x−⌊x⌋ − 3|.

Further, ψ3(t) = 1 − ψ2(t) and ψ1(t) = 0.
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Example 3.2 (a counter example). The procedure in Example 3.1 is almost deterministic. In contrast, the

very similar but completely deterministic Yn = ⌊n/2⌋, n ≥ 2, does not satisfy Condition 1.1(ii). In this

case, Xn = ⌊log2 n⌋ and P(Xn ≤ k) = F (k− log2 n), for all k ∈ Z and n ≥ 1, where F (x) = [[x ≥ 0]],
the distribution of Z := 0; this limit F is not continuous so the conclusions of Theorem 1.3 do not all

hold.

Example 3.3. A leader election algorithm studied by Prodinger [20], Fill, Mahmoud and Szpankowski [5],

Knessl [14], and Louchard and Prodinger [18], see also Szpankowski [21, Section 10.5.1], is the follow-

ing: Each player tosses a fair coin. If at least one player throws heads, then all players throwing tails are

eliminated; if all players throw tails, then all survive until the next round.

Except for the special rule when all throw tails, which guarantees that at least one player survives each

round, the number Yn of survivors in a round thus has a binomial distribution Bi(n, 1
2 ). More precisely, if

Wn is the number of heads thrown,

Yn = Wn + n[[Wn = 0]] with Wn ∼ Bi(n, 1
2 ). (3.3)

Note that

E|Yn − n/2|6 = E|Wn − n/2|6 = O(n3),

so (1.4) holds for p = 6 (and, indeed, for any p > 0), and thus (1.3) holds. Similarly,

EYn = EWn + 2−nn = 1
2n+ n2−n.

Thus, conditions (ii) and (iii) in Theorem 1.3 are satisfied. Also the monotonicity condition (i) is satisfied,

because if 1 ≤ k ≤ n− 1 (other cases are trivial), then

P(Yn+1 ≤ k) = P(1 ≤Wn+1 ≤ k) = 1
2P(1 ≤Wn ≤ k) + 1

2P(0 ≤Wn ≤ k − 1)

= P(Yn ≤ k) + 1
2

(
P(Wn = 0) − P(Wn = k)

)

< P(Yn ≤ k).

(3.4)

Hence Condition 1.1 is satisfied with α = 1/2 and Theorem 1.3 applies.

In this case, Prodinger [20], see also Fill, Mahmoud and Szpankowski [5], found an exact formula for

the expectation EXn and asymptotics of the form (1.16) with the explicit function

φ(t) = 1
2 − (log 2)−1

∑

k 6=0

ζ(1 − χk)Γ(1 − χk)e2kπi log2 t, χk :=
2kπ

log 2
i. (3.5)

Fill, Mahmoud and Szpankowski [5] further found asymptotics of the distribution that can be written

as (1.12) with

F (x) =
2−x

exp(2−x) − 1
, (3.6)

which thus is the distribution function of Z in this case. Second and higher moments are considered by

Louchard and Prodinger [18].

Prodinger [20] considered also the possibility of stopping at a = 2 players, and showed (1.16) above in

this case too, with an explicit formula for the function φ(t) (of the same type as (3.5) for a = 1).
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Remark 3.4. Grabner [9] studied a variation of the above Example 3.3, where a given number b of players

is to be selected. (The process runs as in Section 1 as long as there are more than b survivors; if exactly

b remain, they are selected and the algorithm terminates; if j < b survivors remain, they are selected and

we proceed to select b − j further players among the ones eliminated in the last step.) It seems likely

that this algorithm (and similar ones) can be treated by an extension of the arguments in this paper, using

induction on b, but we have not studied the details.

Example 3.5. A variation of Example 3.3 studied by Janson and Szpankowski [13], Knessl [14] and

Louchard and Prodinger [18] is to let the coin be biased, with probability p ∈ (0, 1) for heads (=survival).

Then (3.3) still holds, but with Wn ∼ Bi(n, p). Conditions 1.1(ii)(iii) hold as above, with α = p, but

arguing as in (3.4) we see that Condition 1.1(i) holds if p ≥ 1/2, but not for smaller p. Hence, Theorem 1.3

applies when p ≥ 1/2.

In fact, the results of [13] show that the conclusions (1.12) and (1.16) hold for all p ∈ (0, 1), for some

functions F and φ explicitly given in [13]. (See also [18], where further higher moments are treated.)

This suggests that Theorem 1.3 should hold more generally. Note that although Condition 1.1(i) does not

hold for p < 1/2, the difference P(Yn+1 ≤ k) − P(Yn ≤ k) is at most P(Yn = 0) = (1 − p)n, and

thus negative or exponentially small for large n. It seems likely that Theorem 1.3 can be extended to such

cases, by allowing a small error in Condition 1.1(i); this then would include this leader election algorithm

with a biased coin for any p ∈ (0, 1). However, we have not pursued this.

It was left as an open question in [13] whether for each p ∈ (0, 1) the limit function F is monotone,

and thus a distribution function, which means that there exists a random variable Z such that (1.13) holds.

By the discussion above, Theorem 1.3 shows that this holds for p ≥ 1/2, but the case p < 1/2 is as far as

we know still open. Cf. Remark 4.3 and Figure 6 below, which show that monotonicity fails in a related

situation. Numerical experiments, based on [18, Prop. 3.1], indicate that F is monotone, at least for some

choices of p < 1/2.

A further variation of Example 3.3 is to let the probability p depend on n. The case p = 1/n is

studied by Lavault and Louchard [15]; in this case EYn is bounded and Condition 1.1 does not hold, so

Theorem 1.3 does not apply.

Example 3.6. The special rule in Examples 3.3 and 3.5 for the exceptional case when all throw tails is of

course necessary to prevent us from killing all players, but as we have seen, it complicates the analysis,

especially for p < 1/2 when it destroys stochastic monotonicity of Yn. Note that this rule typically is

invoked only towards the end of the algorithm, when only a few players are left. We regard the rule as an

emergency exit, and it could be replaced by other special rules for this case. For example, an alternative

would be to switch to some other algorithm that is fail-safe although in principle (for large n) slower; for

our purpose this means that the present algorithm terminates, so we may describe this by letting Yn = 1
in this case, i.e., (3.3) is replaced by Yn = Wn + [[Wn = 0]] = max(Wn, 1). Note that for this version,

Condition 1.1 holds for every p ∈ (0, 1), with α = p, so our theorems apply.

An equivalent way to treat this version is to add (as in Remark 2.4) a dummy, which is exempt from

elimination, and to eliminate everyone else that throws a tail; we then stop when there are at most 2

players left (the dummy and, possibly, one real player). This is thus the version in Section 2, with a = 2
and Yn = 1 + Wn−1, Wm ∼ Bi(m, p) (and starting with n + 1 players). Again, Condition 1.1 holds,

with α = p, and the results in Section 2 apply. In particular, since invoking the special rule corresponds

to eliminating everyone except the dummy, the probability that we have to invoke the special rule is the

same as the probability that the dummy version ends with only the dummy, i.e. π1(n+ 1) in the notation
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of Theorem 2.2; the asymptotics of this probability is thus given by (2.1).

Example 3.7. Prodinger [19] (for p = 1/2) and Louchard and Prodinger [17] studied a version of Exam-

ples 3.3 and 3.5 where, as in Remark 2.4, we allow all players to be killed and let Xn be the time until

that happens. Thus, in each round, each player tosses a coin and is killed with probability 1 − p (and we

do not have any special rule). Additionally, there is a demon, who in each round kills one of the survivors

(if any) with probability ν ∈ [0, 1]. We thus have the modification discussed in Remark 2.4, with

Yn = max(Wn − I, 0), Wn ∼ Bi(n, p), Iν ∼ Be(ν),

where Wn and Iν are independent; thus also Y ′
n = Yn−1 + 1 = max(Wn−1 + 1 − Iν , 1). Condi-

tion 1.1 holds, in the modification for absorption in 0, and thus our results apply. In fact, Louchard and

Prodinger [17] show (1.12) and (1.16) for this problem with explicitly given F and φ; they further give an

extension of (1.16) to higher moments.

As remarked in [19, 17], the special case ν = 1 is equivalent to approximate counting and ν = 0 is

equivalent to the cost of an unsuccessful search in a trie; in the latter case, Xn is simply the maximum of

n i.i.d geometric random variables which can be treated by elementary methods.

4 An application: Variations of Franklin’s leader election algo-

rithm

4.1 The algorithms

Franklin’s original algorithm. W.R. Franklin [7] proposed a leader election algorithm where the n
players are arranged in a ring. Each player gets a random number; these are i.i.d. and, say, uniform on

[0, 1]. (Since only the order of these numbers will matter, any continuous distribution will do; moreover,

it is equivalent to let ξ1, . . . , ξn be a random permutation of 1, . . . , n.) A player survives the first round

if her random number is a peak; in other words, if ξ1, . . . , ξn are i.i.d. random numbers, then player i
survives if ξi ≥ ξi−1 and ξ ≥ ξi+1 (with indices taken modulo n). We may ignore the possibility that two

numbers ξi and ξj are equal; hence we may as well require ξi > ξi−1 and ξ > ξi+1.

In Franklin’s algorithm, the survivors continue by comparing their original numbers in the same way

with the nearest surviving players; this is repeated until a single winner remains. We have so far not

been able to analyse this algorithm. It is easy to verify that even if we condition on the number m of

survivors after the first round, the m! possible different orderings of the survivors do not appear with

equal probabilities, which means that the algorithm is not of the recursive type studied in this paper. (For

example, starting with a ring of 8 players and conditioning on having 4 survivors (peaks) in the first round;

the probability of getting 2 survivors in the second round is 10/34, and not 1/3 as in the uniform case.)

A variation. However, we can study a variation of Franklin’s algorithm, where the survivors draw new

random numbers in each round. This is an algorithm of the type studied in Section 1, with Yn given by

the number of peaks in a random permutation, regarded as a circular list. Note that there is always at least

one peak (the maximum will always do), so Yn ≥ 1 as required. It is easily seen that inserting a new

player will never decrease the number of peaks; hence Yn is stochastically increasing in n. Further, we

have Yn =
∑n

i=1 Ii, where Ii := [[ξi > max(ξi−1, ξi+1)]] is the indicator that player i survives (again,

indices are taken modulo n). If n ≥ 3, then EIi = 1/3 by symmetry, and thus EYn = n/3. In particular,

(ii) holds with α = 1/3. Furthermore, Ii and Ij are independent unless |i − j| ≤ 2 (mod n), and
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similarly for sets of the indicators Ii, and it follows easily that E(Yn − EYn)6 = O(n3), and thus (1.4)

holds for p = 6. (Indeed, (1.4) holds for all even p by this argument.) Consequently, Condition 1.1 holds

and Theorem 1.3 applies, with 1/α = 3.

Remark 4.1. It might be shown that for the true Franklin algorithm, the expected number of survivors

after 2 rounds is c2n+ o(n), where

c2 =
3e4 − 48e2 + 233

384
≈ 0.1096868681. (4.1)

(Details might appear elsewhere.) In comparison, for the variation with new random numbers each round,

it is easily seen that the expected number after k rounds is (1/3)kn+ o(1), for any fixed k; in particular,

after two rounds it is n/9+o(n). Note that c2 in (4.1) is slightly smaller than 1/9, and thus better in terms

of performance. It might have been hoped that the original Franklin algorithm is asymptotically equivalent

to the variation studied here, but the fact that c2 6= 1/9 suggests that this is not the case. Nevertheless, we

conjecture that Theorem 1.3 still holds for the true Franklin algorithm, for some unknown α < 1/3.

The linear case. In both versions above of Franklin’s algorithm, the players are arranged in a circle.

Alternatively, the players may be arranged in a line. We use the same rules as above, but we have to

specify when a player at the end (with only one neighbour) is a peak. There are two obvious possibilities:

(i) Never regard the first and last players as peaks. (Define ξ0 = ξn+1 = +∞.)

(ii) Regard them as peaks if ξ1 > ξ2 and ξn > ξn−1, respectively. (Define ξ0 = ξn+1 = −∞.)

In the first case, it is possible that there are no peaks, and thus we have to add an emergency exit as in

Example 3.6.

As in the circular case, there are two versions (for each of (i) and (ii)): we may use the same random

numbers in all rounds, or we may draw new ones each round.

In the latter case, we are again in the situation of Section 1. In both cases (i) and (ii), the distribution of

Yn is related to the distribution in the circular case discussed above. Indeed, if we start with a circular list

of n + 1 numbers and eliminate the player with the largest number, then the remaining n numbers form

a linear list, and the peaks in this list using version (i) equal the peaks except the maximum one in the

original circular list. Similarly, if we instead eliminate the player with the smallest number, then the peaks

in the remaining list using version (ii) equal the peaks in the original list. Hence, if Zn is the number of

peaks in a random circular list of length n, then (i) yields Yn
d
= Zn+1 − 1 and (ii) yields Yn

d
= Zn+1. In

both cases, this implies that Condition 1.1 holds (provided we add a suitable emergency exit in case (i))

because it holds for Zn. Consequently, Theorem 1.3 applies to both these linear versions of (the variation

of) Franklin’s algorithm, again with 1/α = 3.

In the following subsections we analyze further two of these variations of Franklin’s algorithm (both

with new random numbers drawn in each round), using numerical calculations.

4.2 First variation of Franklin’s algorithm: the linear case

We assume that the survivors draw new random numbers in each round and that they are arranged in line.

We use possibility (i) in Section 4.1. We start with a set of n players. We assign a classical permutation

of {1, . . . , n} to the set, all players corresponding to a peak stay alive, the other ones are killed. If there
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are no peaks, we choose the following emergency exit: a player is chosen at random (this is assumed to

have 0 cost), indeed in the original game, one deals with circular permutations, so there always exists at

least one peak, here we approach the problem with a classical inline permutation.

What is the distribution of the number Xn of phases (or rounds) before getting only one player?

4.2.1 The analysis

Let

Yn := number of peaks, starting with n players,

P (n, k) := P[Yn = k] = P[k peaks, starting with n players],

Π(n, j) := P(Xn = j) = P[j phases are necessary to end the game, starting with n players],

Λ(n, j) :=

j∑

k=0

Π(n, k) = P[at most j phases are necessary, starting with n players].

We will sometimes use the subscript ℓ to distinguish these from the circular case discussed in Section 4.3.

First of all, we know (Carlitz [2]; see also [6, Chapter 3]), that the pentavariate generating function

(GF) of valleys (u0), double rise (u1), double fall (u′1) and peaks (u2) is given by

I(z,u) =
δ

u2

v1 + δ tan(zδ)

δ − v1 tan(zδ)
− v1
u2
,

with

v1 = (u1 + u′1)/2, δ =
√
u0u2 − v2

1 .

This gives the GF of the number of peaks:

tan[z(u− 1)1/2]

(u− 1)1/2 − tan[z(u− 1)1/2]
, (4.2)

hence the mean M and variance V of the number of peaks, for n ≥ 2 and n ≥ 4, respectively:

M(n) = (n− 2)/3, V(n) = 2(n+ 1)/45. (4.3)

This GF is also given in Carlitz [2]. Moreover, from [6, Chapter 9], we know that the distribution P is

asymptotically Gaussian. This is also proved in Esseen [4] by probabilistic methods.

Let x(n) be the mean number of phases, E(Xn), starting with n players. As we shall see, the initial

values are

x(0) = x(1) = 0, x(2) = x(3) = x(4) = 1.

Since (4.3) yields M(n)+1 = (n+1)/3 for n ≥ 2, we have (approximating by using this for n ≤ 1 too)

that the mean number of players c(j) still alive after j phases is

c(j) ≈ 3−j(n+ 1) − 1.

(An induction easily yields the exact formula |c(j)− 3−jn| < 1 for all j.) If we want c(j) = 1, this leads

to the approximation

x(n) ≈ j ≈ log3 n− log3 2.
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kn
❩

❩
❩ 0 1 2 3 4

1 1 0 0 0 0
2 1 0 0 0 0
3 2/3 1/3 0 0 0
4 1/3 2/3 0 0 0
5 2/15 11/15 2/15 0 0
6 2/45 26/45 17/45 0 0
7 4/315 38/105 4/7 17/315 0

Tab. 1: Pℓ(n, k)

jn
❩

❩
❩ 0 1 2 3

0 1 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 1 0 0
5 0 13/15 2/15 0
6 0 28/45 17/45 0
7 0 118/315 197/315 0
...

20 0 < 10−7 • •

Tab. 2: Πℓ(n, j)

We see from Theorem 1.3 (which applies by Section 4.1) that this is roughly correct, but the constant

− log3 2 has to be replaced by a periodic function φ(n). Let us now construct Π. We have, for n ≥ 2 and

j ≥ 1,

Π(n, j) =

⌊(n−1)/2⌋∑

k=0

P (n, k)Π(k, j − 1). (4.4)

We have the initial values

Π(0, 0) = 1, Π(0, j) = 0, j > 0, Π(1, 0) = 1, Π(1, j) = 0, j > 0, Π(n, 0) = 0, n ≥ 2.

Also

Π(2, 1) = Π(3, 1) = Π(4, 1) = 1.

Some values of P and Π are given in Tables 1 and 2. (We use in the tables and figures the subscript ℓ to

emphasise that we deal with the linear case.)

Denoting the jth column of Π by π(j), we have

π(j) = P j−1π(1).
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Fig. 2: xℓ(n) − log
3
n versus log

3
n, n = 50, . . . , 500

For j ≥ 2, it suffices to consider k ≥ 2 in (4.4), so we need only the matrix (P (n, k))n,k≥2. Since

P (n, k) = 0 if k > (n− 1)/2, this matrix is triangular, and so is P j−1.

But π(1)(n) < 10−7, n > 20, so numerically, the significant columns of P j−1 are the first 20 columns.

Also, we see the importance of the initial first column of Π. Moreover, for n > 75, P (n, k) is indistin-

guishable from the Gaussian limit. So we have used the expansion of the GF (4.2) for n ≤ 75 and the

Gaussian limit afterwards in our numerical calculations. Of course we have

x(n) =

∞∑

j=0

Π(n, j)j,

and

x(n) = 1 +

∞∑

k=2

P (n, k)x(k), n ≥ 2.

Remark 4.2. Another approach could be the following: Let

I(k) := [[one of the phases has k players]],

I(j, k) := [[phase j has k players]],

Q(k) := P[I(k) = 1],

R(j, k) := P[I(j, k) = 1],

Q(k) = P

[∨

j

I(j, k) = 1
]

=

n−k∑

j=1

R(j, k), as P[I(j, k) ∧ I(i, k)] = 0, if i 6= j,

R(j, k) =
∑

l

R(j − 1, l)P (l, k), j ≥ 1, and R(0, k) = [[k = n]],

x(n) = E

[ n∑

k=1

I(k)
]

=

n∑

k=1

Q(k).
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— : Gumbel distribution

Fig. 3: Λℓ(n, j) = P(Xn ≤ j) versus j − log
3
n, approximating Fℓ(x), n = 20, . . . , 500

A plot of x(n)−log3 n versus log3 n is given in Figure 2 for n = 50, . . . , 500. The oscillations expected

from (1.16) are clear.

Recall that according to Theorem 1.3, there exists a limiting distribution function F (x) = Fℓ(x) (in a

certain sense) for Xn. In Figure 3, we approximate this distribution function F (x) by plotting Λ(n, j) =
P(Xn ≤ j) against j − log3 n for n = 20, . . . , 500, cf. (1.12). We have also plotted a scaled Gumbel

distribution; the fit is bad.

Similarly, in Figure 4 we show the probability Π(n, j), n = 150, . . . , 500, plotted against j − log3 n.

The fit with a Gaussian distribution is equally bad.

The few scattered points of both figures are actually due to small n and the propagation of the more

erratic behaviour for n = 1, . . . , 40 shown in Figure 5.

So we observe the following facts:

jn
❩

❩
❩ 0 1 2 3

0 0 1 0 0
1 1 0 0 0
2 0 0 1 0
3 0 1/3 2/3 0
4 0 2/3 1/3 0
5 0 11/15 2/15 2/15
...

Tab. 3: Π(n, j), other initialization
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— : Gaussian distribution

Fig. 4: Πℓ(n, j) = P(Xn = j) versus j − log
3
n, approximating ∆Fℓ(x), n = 150, . . . , 500

(i) A first regime (n = 1, . . . , 40) creates some scattered points which almost look like two distribu-

tions.

(ii) Between n = 40 and n ∼ 75, a limiting distribution is attained; Π(n, j) is concentrated on j =
log3 n+ O(1).

(iii) For n > 75, the limiting Gaussian for P with its narrow (
√
n) dispersion, intuitively induces, with

(4.4), a propagation, with some smoothing, of the previous distribution. We attain the limiting

distribution F (x) given by Theorem 1.3.

(iv) At most two values carry the main part of the probability mass Π(n, j). This is clear from the

observed range of F (x) in Figures 3 and 4.

(v) P is triangular, and so is P j . Also, P j(n, k) = Θ(1), with k = O(1), only if j = log3 n+ O(1).

(vi) As F (x) is absolutely continuous, we can derive, as in [16], modulo some uniform integrability

conditions, all (periodic) moments of Xn, in particular x(n).

(vii) The effect of initial values is now clear. To illustrate this, we have changed to Π(0, 1) = Π(1, 0) =
1, which means that we add a cost 1 for the extra selection required when the algorithm terminates

with no element left. This leads to Table 3. The equivalent of Figures 3, 4 and 5 is given in

Figures 6, 7 and 8. Note that Xn no longer is stochastically monotone in n; we have by definition

X0 = 1 > 0 = X1, and Table 3 shows other examples of non-monotonicity for small n. Moreover,

Figure 6 shows that the non-monotonicity persists for large n; we clearly have convergence to a

limit function, G(x) say, but the limit is not monotone and thus not a distribution function as in

Figure 4 and, more generally, in Theorem 1.3.
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Fig. 5: Πℓ(n, j) versus j − log
3
n, n = 1, . . . , 40
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Fig. 6: Λ(n, j) versus j − log
3
n, other initialization, n = 5, . . . , 500
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Remark 4.3. Note that the example in (vii) and Figure 6 does not contradict Theorem 1.3 becauseXn now

is defined with other initial values than in Theorem 1.3. Nevertheless, it is a warning that monotonicity

of the limit should not be taken for granted in cases such as Example 3.5 with p < 1/2 where the

monotonicity assumption of Theorem 1.3 is not satisfied.

4.2.2 Periodicities

Let ψ(α) :=
∫
eαxf(x) dx be the Laplace transform of the limiting distribution F . (We do not know

whether ψ(α) exists in general, although we conjecture so, but we really only need it for imaginary α,
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–1.5 –1 –0.5 0.5 1 1.5 2

Fig. 7: Π(n, j) versus j − log
3
n, other initialization, n = 5, . . . , 500
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–1.5 –1 –0.5 0.5 1 1.5 2

Fig. 8: Π(n, j) versus j − log
3
n, n = 1, . . . , 100, other initialization
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Fig. 9: observed xℓ(n) − log
3
n (◦) and computed with (4.5) (line) periodicities versus log

3
n (linear case), n =

50, . . . , 500

i.e., the characteristic function of F .) Similarly, let ψ̃(α) :=
∫
eαx∆F (x) dx be the Laplace transform of

∆F . Since ∆F (x) := F (x)−F (x− 1) =
∫ 1

0
f(x− t) dt, ∆F = f ∗ 1[0,1], and thus, since the indicator

function 1[0,1] has Laplace transform (eα − 1)/α,

ψ̃(α) =
eα − 1

α
ψ(α).

With the usual machinery (see [16] or [12, Theorem 2.3]), we obtain from Theorem 1.3 and Remark 1.4,

assuming some technical conditions that are very likely to hold but not rigorously verified,

x(n) := EXn = log3 n+ m̃1 + w1(log3 n) + o(1), (4.5)

where

m̃1 := ψ̃′(0) = ψ′(0) + 1
2 , (4.6)

w1(x) :=
∑

l 6=0

ψ̃′(2πli)e2πlix =
∑

l 6=0

ψ(2πli)

2πli
e2πlix. (4.7)

With the observed values of Π(n, j) (see Figure 4), we have computed the Laplace transform numeri-

cally (with a modified Euler–MacLaurin, see below) as follows. Assume that we haveN computed values

{Π(ni, ji) : i = 1, . . . , N}. Setting x = j − log n, this gives {Π(ni, xi) : i = 1, . . . , N}. Sorting w.r.t.

xi, we write this as {Π(nk, yk) : yk ≤ yk+1, k = 1, . . . , N}. Construct a numerical Laplace transform

ψ̃(α) =
∑

k

eαykΠ(nk, yk)(yk+1 − yk−1)/2.

Using this numerically computed ψ in (4.5)–(4.7), we compute m̃1 + w1(x), which fits quite well with

the observed periodicities of x(n) − log3 n in Figure 2; the comparison is given in Figure 9.
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kn
❩

❩
❩ 0 1 2 3 4

1 0 1 0 0 0
2 0 1 0 0 0
3 0 1 0 0 0
4 0 2/3 1/3 0 0
5 0 1/3 2/3 0 0
6 0 2/15 11/15 2/15 0
7 0 2/45 26/45 17/45 0

Tab. 4: Pc(n, k)

jn
❩

❩
❩ 0 1 2 3

0 1 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 1 0 0
4 0 2/3 1/3 0
5 0 1/3 2/3 0
6 0 2/15 13/15 0
7 0 2/45 43/45 0
...

20 0 < 10−7 • •

Tab. 5: Πc(n, j)

4.3 Second variation of the Franklin’s algorithm: the circular case

If we denote by Pc(n, k) the distribution of the number of peaks in the circular case and by Pℓ(n, k) the

distribution in the linear case, we know, by Section 4.1, that Pc(n, k) = Pℓ(n − 1, k − 1). It is easy to

check that this leads to, for n ≥ 3 and n ≥ 5, respectively,

M(n) = n/3, V(n) = 2n/45,

which also is easy to see probabilistically, by writing Yn as the sum of the n indicators [[player i is a peak]],
and noting that indicators with distance at least 3 are independent.)

The initial values are now given by

P (1, 1) = 1, P (2, 1) = 1, P (3, 1) = 1, Π(0, 0) = 1, Π(1, 0) = 1, Π(2, 1) = 1, Π(3, 1) = 1.

The corresponding pictures are given in Tables 4 and 5. (We use a subscript c for the circular case.)

A plot of Λc(n, j) versus j − log3 n for n = 20, . . . , 500 is given in Figure 10. We see that there are

fewer scattered points than in the linear case. Let us mention that the fits with Gumbel or Gaussian are

equally bad. A comparison of Λc(n, j) with Λℓ(n, j) is given in Figure 11. No numerical relation exists

between the two distributions.
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Fig. 10: Λc(n, j) versus j − log
3
n, approximating Fc(x), n = 5, . . . , 500
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Fig. 11: A comparison of Λc(n, j) (right curve) with Λℓ(n, j) (left curve)

Πc(n, j) versus j− log3 n, n = 1, . . . , 40, is plotted in Figure 12. These initial points are now scattered

less than in the linear case.

The observed versus computed periodicities are given in Figure 13.

In conclusion, apart from numerical differences, the behaviour of our two variations are quite similar.

Note that the mean number of needed messages is asymptotically 2n log3(n), as we use 2n messages

per round. Franklin [7] gives an upper bound 2n log2(n).
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Fig. 12: Πc(n, j) versus j − log
3
n, n = 1, . . . , 40
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n (circular case),

n = 50, . . . , 500
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