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Introduction

When gas is in thermal non-equilibrium, which are encountered frequently in hypersonic flows, vehicles at high altitudes and flows expanding into vacuum, the macroscopic constitutive laws based on the continuum hypothesis tend to breakdown. A critical parameter that characterizes the rarifiedness of the gas is the Knudsen number (ε = λ/L), where λ is the average distance traveled by the molecules between collisions, or the mean free path, and L is the characteristic length scale. When the flow gradients are large, such as in shock or boundary layers, continuum fluid dynamics equations are not adequate, and one needs to use a kinetic equation. The fundamental kinetic equation for rarefied gas is the Boltzmann equation, (1.1) ∂f ∂t

+ v • ∇ x f = 1 ε Q(f ),
which governs the evolution of the density f (t, x, v) of monoatomic particles in the phase, where (x, v) ∈ R dx × R dv . Boltzmann's collision operator has the fundamental properties of conserving mass, momentum and energy: at the formal level

R d Q(f, f ) φ(v) dv = 0, φ(v) = 1, v, |v| 2 ,
Moreover, the equilibrium is the local Maxwellian distribution

(1.2) M[f ](v) = ρ (2πT ) dv /2 exp - |u -v| 2 2T ,
where ρ, u, T are the density, macroscopic velocity and temperature of the gas, defined by

ρ = R dv f (v) dv = R dv M[f ](v), u = 1 ρ R dv v f (v) dv = 1 ρ R dv v M[f ](v) dv, (1.3) 
and

T = 1 d v ρ R dv |u -v| 2 f (v) dv = 1 d v ρ R dv |u -v| 2 M[f ](v) dv. (1.4)
The Boltzmann equation is closely related to the Navier-Stokes system which governs the evolution of macroscopic density, momentum and energy in the continuum regime:

(1.5)

                   ∂ρ ∂t + div x (ρ u) = 0, ∂ρ u ∂t + div x (ρ u ⊗ u + p I) = ε div x [µ σ(u)], ∂E ∂t + div x ((E + p) u) = ε div x (µ σ(u) u + κ ∇ x T ) .
where p is the pressure, E represents the total energy

E = 1 2 ρ u 2 + d v 2 ρ T,
and I is the identity matrix. Moreover, the tensor σ(u) denotes the strain rate tensor given by

σ(u) = ∇ x u + (∇ x u) t - 2 d v div x u I.
These equations constitute a system of 2 + d v equations in 3 + d v unknowns. The pressure is related to the internal energy by the constitutive relation for a polytropic gas

p = (γ -1) E - 1 2 ρ u 2 ,
where the polytropic constant γ = (d v + 2)/d v represents the ratio between specific heat at constant pressure and at constant volume, thus yielding p = ρ T while the viscosity µ = µ(T ) and the thermal conductivity κ = κ(T ) are defined according to the linearized Boltzmann operator with respect to the local Maxwellian [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF]. Since the quadratic collision operator Q(f ) has a rather complex form, simpler models have been introduced. The main requirement is to build models that have the right conservations, entropy condition described by the H-theorem, and have the fluid dynamics (Euler and Navier-Stokes) limits with the correct transport coefficients. The simplest model is the socalled BGK model introduced by Bhatnagar, Gross and Krook [START_REF] Bhatnagar | A model for collision processes in gases[END_REF]. It is based on relaxation towards the local Maxwellian (1.6)

Q(f ) = τ ε (M[f ] -f ) ,
where τ depends on macroscopic quantities ρ, u and T . This model conserves mass, momentum and total energy, and has the correct Euler limit when ε → 0. But in the Chapman-Enskog expansion, the transport coefficients, that is µ and κ obtained at the Navier-Stokes level are not satisfactory. In particular, the Prandtl number defined by Pr

= γ γ -1 µ κ ,
which relates the viscosity to the heat conductivity, is equal to 1, whereas for most gases, we have Pr < 1. For instance, the hard-sphere model for a monoatomic gas (γ = 5/3) in the Boltzmann equation leads to a Prandtl number very close to 2/3. One model, proposed by Holway [START_REF] Holway | Kinetic theory of shock structure using an ellipsoidal distribution function[END_REF], has the desired property of having the correct conservation laws, yields the Navier-Stokes approximation via the Chapman-Enskog expansion with a Prandtl number less than one, and yet is endowed with the entropy condition [START_REF] Andries | The Gaussian-BGK model of Boltzmann equation with small Prandtl numbers[END_REF]. See also [START_REF] Brun | Transport et Relaxation dans les Écoulements Gazeux[END_REF][START_REF] Cercignani | The Boltzmann equation and its applications[END_REF]. This model is referred to as the ellipsoidal statistical model (ES-BGK), where the Maxwellian M[f ] in the relaxation term of (1.6) is replaced by an anisotropic Gaussian G[f ]. In order to introduce the Gaussian model, we need further notations. Define the opposite of the stress tensor

(1.7) Θ(t, x) = 1 ρ R dv (v -u) ⊗ (v -u) f (t, x, v) dv.
Therefore the translational temperature is related to the T = tr(Θ)/d v . We finally introduce the corrected tensor

(1.8) T (t, x) = [(1 -ν) T I + ν Θ] (t, x),
which can be viewed as a linear combination of the initial stress tensor Θ and of the isotropic stress tensor T I developed by a Maxwellian distribution.

The Gaussian model introduces a corrected BGK collision operator by replacing the local equilibrium Maxwellian by the Gaussian G[f ] defined by

G[f ] = ρ det(2π T ) exp - (v -u) T -1 (v -u) 2 .
Thus, the corresponding collision operator is now

(1.9) Q(f ) = τ ε (G[f ] -f ) ,
where τ depends on ρ, u and T , the parameter -1/2 ≤ ν < 1 is used to modify the value of the Prandtl number through the formula

[1] 2 3 ≤ Pr = 1 1 -ν ≤ +∞ for ν ∈ [-1/2 , 1].
It first follows from the above definitions that

                     R dv f (v) dv = R dv G[f ](v) dv = ρ, R dv v f (v) dv = R dv v G[f ](v) dv = ρ u, R dv |v| 2 2 f (v) dv = R dv |v| 2 2 G[f ](v) dv = E and          R dv (v -u) ⊗ (v -u) f (v) dv = ρ Θ, R dv (v -u) ⊗ (v -u) G[f ] dv = ρ T .
This implies that this collision operator does indeed conserve mass, momentum and energy as imposed. The collision frequency, ν, involves the Prandtl number Pr as a free parameter.

This allows the ES-BGK collision model to reproduce transport coefficients, viscosity and thermal conductivity, in the Chapman-Enslog expansion [START_REF] Bardos | Fluid dynamic limits of kinetic equations. I. Formal derivations[END_REF][START_REF] Bouchut | Kinetic equations and asymptotic theory[END_REF], recovering the Navier-Stokes equations density ρ, momentum ρ u and temperature T , with the correct Prandtl number.

In this paper we study a temporally implicit-explicit (IMEX) discretization of the ES-BGK model. The advantage of such a time discretization is that it is uniformly stable with respect to the small Knudsen number, thus removing the stiffness of the relaxation term, yet the implicit relaxation term can be solved explicitly, thanks to the special structure of the relaxation term. Although such a property was realized for the classical BGK operator [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF], the ES-BGK operator is different, and we realized that one has to compute to the higher moment in order to evaluate the implicit Gaussian distribution explicitly. Furthermore, we show that this time discretization is asymptotic-preserving [START_REF] Jin | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF], an important property for the scheme to be robust in the fluid dynamic regime, allowing it to capture the fluid dynamic behavior without resolving numerically the small Knudsen number. We further show that this discretization is consistent to the compressible Navier-Stokes equations with the correct Prandtl number, if the viscosity and heat flux terms are suitably resolved numerically. We then validate this numerical method by presenting numerical results based on this scheme, and compare them with the solutions of the Boltzmann equation and the corresponding Navier-Stokes equations, in both one and two space dimensions.

An Asymptotic Preserving scheme to the ES-BGK equation

Past progress on developing robust numerical schemes for kinetic equations that also work in the fluid regimes has been guided by the fluid dynamic limit, in the framework of asymptotic-preserving (AP) scheme. As summarized by Jin [START_REF] Jin | Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations[END_REF], a scheme for the kinetic equation is AP if

• it preserves the discrete analogy of the Chapman-Enskog expansion, namely, it is a suitable scheme for the kinetic equation, yet, when holding the mesh size and time step fixed and letting the Knudsen number go to zero, the scheme becomes a suitable scheme for the limiting Euler equations • implicit collision terms can be implemented explicitly, or at least more efficiently than using the Newton type solvers for nonlinear algebraic systems. We now introduce the time discretization for the ES-BGK equation (1.1), (1.9) (2.1)

     ∂f ∂t + v ∇ x f = τ ε (G[f ] -f ), x ∈ Ω ⊂ R dx , v ∈ R dv , f (0, x, v) = f 0 (x, v), x ∈ Ω, v ∈ R dv ,
where τ depends on ρ, u and T . The time discretization is an implicit-explicit (IMEX) scheme. Since the convection term in (2.1) is not stiff, we will treat it explicitly. The source terms on the right hand side of (2.1) will be handled using an implicit solver. We simply apply a first order implicit-explicit (IMEX) scheme, (2.2)

     f n+1 -f n ∆t + v • ∇ x f n = τ n+1 ε (G[f n+1 ] -f n+1 ), f 0 (x, v) = f 0 (x, v) .
This can be written as

f n+1 = ε ε + τ n+1 ∆t [f n -∆t v • ∇ x f n ] + τ n+1 ∆t ε + τ n+1 ∆t G[f n+1 ], (2.3)
where G(f n+1 ) is the anisotropic Maxwellian distribution computed from f n+1 . Although (2.3) appears nonlinearly implicit, since the computation of f n+1 requires the knowledge of G[f n+1 ], it can be solved explicitly. Specifically, upon multiplying (2.3) by φ(v) defined by

φ(v) := 1, v, |v| 2 2
and use the conservation properties of Q and the definition of G[f ] in (1.3), (1.4), we define the macroscopic quantity U by U := (ρ, ρ u, E) computed from f and get [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF][START_REF] Puppo | Implicit-explicit schemes for BGK kinetic equations[END_REF]]

U n+1 = ε ε + τ n+1 ∆t R dv φ(v) (f n -∆t v • ∇ x f n ) dv + τ n+1 ∆t ε + τ n+1 ∆t R dv φ(v)G[f n+1 ](v) dv, or simply (2.4) U n+1 = R dv φ(v) (f n -∆tv • ∇ x f n ) dv .
Thus U n+1 can be obtained explicitly. This gives ρ n+1 , u n+1 and T n+1 . Unfortunately, it is not enough to define G[f n+1 ] for which we need ρ n+1 Θ n+1 . Therefore, we define the tensor Σ by

(2.5) Σ n+1 := R dv v ⊗ v f n+1 dv = ρ n+1 Θ n+1 + u n+1 ⊗ u n+1
and multiply the scheme (2.3) by v ⊗ v. Using the fact that

R dv v ⊗ v G[f ](v) dv = ρ (T + u ⊗ u) ,
and (2.5), we get that

Σ n+1 = ε ε + (1 -ν) τ n+1 ∆t Σ n -∆t R dv v ⊗ v v • ∇ x f n dv (2.6) + (1 -ν) τ n+1 ∆t ε + (1 -ν) τ n+1 ∆t ρ n+1 T n+1 Id + u n+1 ⊗ u n+1
Now G[f n+1 ] can be obtained explicitly from U n+1 and Σ n+1 and then f n+1 from (2.3). Finally the scheme reads (2.7)

                                 U n+1 = R dv φ(v) (f n -∆tv • ∇ x f n ) dv, Σ n+1 = ε ε + (1 -ν) τ n+1 ∆t Σ n -∆t R dv v ⊗ v v • ∇ x f n dv + (1 -ν) τ n+1 ∆t ε + (1 -ν) τ n+1 ∆t ρ n+1 T n+1 Id + u n+1 ⊗ u n+1 . f n+1 = ε ε + τ n+1 ∆t [f n -∆t v • ∇ x f n ] + τ n+1 ∆t ε + τ n+1 ∆t G[f n+1 ],
In summary, although (2.2) is nonlinearly implicit, it can be solved explicitly, thus satisfies the second condition of an AP scheme. Now let us prove that the scheme (2.7) preserves the correct asymptotic.

Remark 2.1. When the IMEX scheme (2.2) is applied to the classical BGK equation (1.6), U n+1 in (2.4) will completely defines M[f n+1 ] given by (1.2) [START_REF] Coron | Numerical passage from kinetic to fluid equations[END_REF][START_REF] Filbet | A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources[END_REF]). The steps after equation (2.4) are new ideas introduced in this paper for the ES-BGK model.

Proposition 2.2. Consider the numerical solution given by (2.7). Then, (i) For all ε → 0 and ∆t > 0, the distribution function

f n+1 satisfies 0 ≤ f n+1 (x, v) ≤ max f n ∞ , G[f n+1 ] ∞ (ii) For all ∆t > 0 and f 0 , the distribution function f n converges to M[f n ], that is, lim ε→0 f n = M[f n ]
and the scheme gives a first order approximation in time of the compressible Euler system. (iii) Moreover, if we asssume that f n -M n = O(ε), for n ≥ 2 and

(2.8) U n+1 -U n ∆t ≤ C, the scheme (2.
3) asymptotically becomes a first order in time approximation of the compressible Navier-Stokes (1.5) given by

                     ρ n+1 -ρ n ∆t + div x (ρ n u n ) = 0, ρ n+1 u n+1 -ρ n u n ∆t + div x (ρ n u n ⊗ u n + ρ T I) = ε div x µσ(u n-1 ) , E n+1 -E n ∆t + div x ([E n + ρ n T n ] u n ) = ε div x µσ(u n-1 ) u n-1 + κ∇ x T n-1 .
where

τ n µ = p n-1 /(1 -ν) and τ n κ = (d v + 2)p n-1 /2.
Proof. (i) Let us first observe that f n+1 is a linear combination of f n (defined along characteristics) and G[f n+1 ], thus we get the first assertion.

To prove (ii), for any initial distribution function, we considet f n for n ≥ 1 and compute the asymptotic limit of Σ n when ε goes to zero in (2.7), it yields

Σ n = ρ n (T n I + u n ⊗ u n )
and using (2.5), we also get

Θ n = T n I, thus T n = T n I .
Hence in the asymptotic limit ε → 0, the distribution function

G[f n ] becomes isotropic, which means that G[f n ] converges to the classical Maxwellian M[f n ].
Therefore, the solution at zeroth order is obtained by taking

f n = M[f n ] in the conserva- tion laws (2.4), namely, U n+1 = R dv φ(v) (M[f n ] -∆tv • ∇ x M[f n ]) dv,
and the scheme for the macroscopic quantities reduces to the well-known approximation to the Euler equation (2.9)

                     ρ n+1 -ρ n ∆t + div x (ρ n u n ) = 0, ρ n+1 u n+1 -ρ n u n ∆t + div x (ρ n u n ⊗ u n + ρ n T n I) = 0, E n+1 -E n ∆t + div x ([E n + ρ n T n ] u n ) = 0.
Moreover, the temperature T n+1 satisfies the following

d v 2 T n+1 -T n ∆t + d v 2 u n • ∇ x T n + ρ n T n div x u n = O(∆t).
Now let us prove (iii). The preservation of the asymptotic, that is the compressible Navier-Stokes equation, is based on the Chapman-Enskog method. It simply consists of expanding the distribution function f n into

f n = M[f n ] + ε f n 1 , which implies that (2.10) R dv f n 1 (x, v) dv = 0, R dv f n 1 (x, v) v dv = 0, R dv f n 1 (x, v) |v| 2 dv = 0.
These conditions are known as the compatibility conditions. Moreover, we also expand the stress tensor

(2.11) Θ n = T n I + ε Θ n 1
and the heat flux (2.12)

Q n (x) := R dv |v -u n | 2 2 (v -u n ) f n (x, v)dv = 0 + ε Q n 1 (x),
where

Θ n 1 = 1 ρ n R dv f n 1 (x, v)(v -u n ) ⊗ (v -u n ) dv, Q n 1 = R dv f n 1 (x, v) |v -u n | 2 2 (v -u n ) dv
and tr (Θ n 1 ) = 0. Inserting this latter expansion into the discrete conservation laws (2.4), it gives

                     ρ n+1 -ρ n ∆t + div x (ρ n u n ) = 0, ρ n+1 u n+1 -ρ n u n ∆t + div x (ρ n u n ⊗ u n + ρ n T n I) = -ε div x (ρ n Θ n 1 ) , E n+1 -E n ∆t + div x ([E n + ρ n T n ] u n ) = -ε div x ( Q n 1 + ρ n Θ n 1 u ) .
For the application of the Chapman-Enskog method, the anisotropic Gaussian G(f ) must be expanded with respect to ε as well,

G[f n ] = M[f n ] + ε g n 1
The next step is to insert these expansions into the scheme (2.3) for the ES-BGK eqution and use the compatibility conditions, and it yields for n ≥ 1

M[f n ] -M[f n-1 ] ∆t + v • ∇ x M[f n-1 ] = τ n (g n 1 -f n 1 ) (2.13) -ε f n 1 -f n-1 1 ∆t + v • ∇ x f n-1 1 .
One the one hand, the term g n 1 is computed from G[f n ] as follows. First, the distribution function G[f n ] contains the inverse matrix T n for which insertion of (2.11) yields

T n = T n I + ν ε Θ n 1 .
Therefore, a Taylor expansion within terms of second order and using the fact that tr(Θ n 1 ) = 0, gives on the one hand det

(T n ) = (T n ) dv + O(ε 2 )
and on the other hand

[T n ] -1 = 1 T n I - ν ε T n Θ n 1 + O(ε 2
) and therefore

g n 1 = G[f n ] -M[f n ] ε = ν M[f n ] 2 (T n ) 2 (v -u n ) t Θ n 1 (v -u n ).
On the other hand, to obtain the first order expression for the distribution function f n 1 , we need to consider the terms of order zero in (2.13), which we write for convenience as

f n 1 = g n 1 - M[f n ] -M[f n-1 ] τ n ∆t + v τ n • ∇ x M[f n-1 ] + O(ε). The differential dM[f ] of the Maxwellian is given by dM[f ] = M[f ] d log(M[f ]) = M[f ] dρ ρ + |v -u| 2 2T - d v 2 dT T - u -v T du
and with the assumption (2.8), we obtain

M[f n ] -M[f n-1 ] ∆t = M[f n-1 ] 1 ρ n-1 ρ n -ρ n-1 ∆t + 1 T n-1 |v -u n-1 | 2 2T n-1 - d v 2 T n -T n-1 ∆t - u n-1 -v T n-1 • u n -u n-1 ∆t + O(∆t) and v • ∇ x M[f n-1 ] = M[f n-1 ] v • ∇ x ρ n-1 ρ n-1 + |v -u n-1 | 2 2T n-1 - d v 2 v • ∇ x T n-1 T n-1 - u n-1 -v T n-1 v • ∇ x u n-1 .
Gathering the two latter equalities, it yields up to the order ∆t

M[f n ] -M[f n-1 ] ∆t + v • ∇ x M[f n-1 ] = M[f n-1 ] T n-1 (u n-1 -v) ∇ x u n-1 (u n-1 -v) + (u n-1 -v) |v -u n-1 | 2 2T n-1 - d v + 2 2 ∇ x T n-1 + M[f n-1 ] ρ n-1 ρ n -ρ n-1 ∆t + div x (ρ n-1 u n-1 ) + M[f n-1 ] (v -u n-1 ) T n-1 u n -u n-1 ∆t + u n-1 • ∇ x u n-1 + 1 ρ n-1 ∇ x (ρ n-1 T n-1 ) + M[f n-1 ] |v -u n-1 | 2 2T n-1 - d v 2 1 T n-1 T n -T n-1 ∆t + u n-1 • ∇ x T n-1 + 2 d v div x u n-1 .
The last three lines may vanish due to the conservation laws (2.9) up to the order of ε and ∆t. Thus, the result for the first order contribution to the distribution function is

f n 1 = - M[f n-1 ] τ n T n-1 (u n-1 -v) ∇ x u n-1 (u n-1 -v) + (u n-1 -v) |v -u n-1 | 2 2T n-1 - d v + 2 2 ∇ x T n-1 + ν M[f n ] 2 |T n | 2 (v -u n ) Θ n 1 (v -u n ) + O(∆t) + O(ε).
It is straightforward to show that f 1 satisifes the compatibility relations (2.10). Hence, we get for the stress tensor Θ n

1 ρ n Θ n 1 = R dv f n 1 (v -u n ) ⊗ (v -u n )dv = - ρ n-1 T n-1 τ n σ(u n-1 ) + ν ρ n Θ n 1 + O(∆t) + O(ε),
that is,

ρ n Θ n 1 = - p n-1 (1 -ν)τ n σ(u n-1 ) + O(∆t) + O(ε).
Then the heat flux Q n 1 is given by

Q n 1 = R dv |v -u n | 2 2 (v -u n ) f n 1 dv = - d v + 2 2 p n-1 τ n ∇ x T n-1 + O(∆t) + O(ε).
The constitutive relations are laws of Navier-Stokes and Fourier where

µ = 1 1 -ν p n-1 τ n and κ = d v + 2 2 p n-1 τ n
are viscosity and thermal conductivity, respectively. Thus, a first order approximation with respect to ∆t and ε is given by

ρ n Θ n 1 = -µ σ(u n-1 ) and Q n 1 = -κ∇ x T n-1
The Prandtl number is related to the coefficient ν of the ES-BGK model by

Pr = d v + 2 2 µ κ = 1 1 -ν .

Numerical simulations

In this section, we give three numerical examples for the ES-BGK equation in different asymptotic regimes in order to check the performance (in stability and accuracy) of our methods. We have implemented the first order scheme (2.7) for the approximation of the ES-BGK equation. A classical second order finite volume scheme with slope limiters is applied for the transport operator. We present two numerical tests for a 1d x × 2d v model and finally a non stationary 2d x × 2d v model. We will compare the numerical solution to the ES-BGK equations with the one obtained for the full Boltzmann equation with Maxwellian molecules using a spectral approximation [START_REF] Filbet | Solving the Boltzmann equation in N log 2 N[END_REF][START_REF] Filbet | A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources[END_REF] and the one obtained for the compressible Navier-Stokes system using a second order finite volume scheme.

To this aim, we need to choose the right value for τ such that the viscosity and heat conductivity computed from the asymptotic limit of the ES-BGK model is the same as the ones corresponding to the full Boltzmann equation. According to [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF], the viscosity computed for the full Boltzmann equation is given by

µ B (T ) = √ 2 3π T A 2 (5)
,

where A 2 (5) ≃ 0.436. On the other hand, the viscosity computed from the ES-BGK model is

µ = 1 1 -ν p τ ,
where ν = -1. Thus, we choose τ such that both viscosity are equal, which leads to

τ = 1 2 p µ B (T ) = 3π 2 √ 2 A 2 (5)ρ ≃ 0.925 π 2 ρ.
3.1. Approximation of smooth solutions. For this numerical test, we consider the ES-BGK equation in dimension 1d x × 2d v on the torus

     ∂f ∂t + v • ∇ x f = 1 ε Q(f, f ), x ∈ [-1, 1], v ∈ R 2 f (t = 0) = f 0 ,
with periodic boundary conditions in x. The operator Q(f ) is given by

Q(f ) = τ [G[f ] -f ]
where the parameter τ is chosen in order that the viscosity µ matches perfectly with one obtained to the full Boltzmann operator for Maxwellian molecules, that is τ = 0.9 π ρ/2. Define ρ g and T g with respect to the initial data f 0 by

ρ g = 1 2 1 -1 R 2 f 0 (x, v)dvdx, and T g = 1 2ρ g 1 -1 R 2 f 0 (x, v) |v| 2 dvdx
and assume for simplicity that

1 2 1 -1 R 2 f 0 (x, v) v dvdx = 0.
Whenever f (t, x, v) is a smooth solution to the Boltzmann or ES-BGK equation with periodic boundary conditions, one has the global conservation laws for mass, momentum and energy. These conservation laws are then enough to uniquely determine the stationary state of the model : the normalized global Maxwellian distribution

(3.14) M g (v) = ρ g 2π T g exp - |v| 2 2T g , v ∈ R 2 .
Our goal here is to investigate numerically the long-time behavior of the solution f and to compare the solution with the asymptotic behavior of the solution to the compressible Navier-Stokes equations (CNS). If f is any reasonable solution of the ES-BGK equation, satisfying certain a priori bounds of compactness (in particular, ensuring that no kinetic energy is allowed to leak at large velocities), then it is expected that f does indeed converge to the global Maxwellian distribution M g as t goes to +∞.

Recently, Desvillettes and Villani [START_REF] Desvillettes | On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation[END_REF], Guo and Strain [START_REF] Guo | Almost exponential decay near Maxwellian[END_REF] were interested in the study of rates of convergence for the full Boltzmann equation. Roughly speaking in [START_REF] Desvillettes | On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation[END_REF], the authors proved that if the solution to the Boltzmann equation is smooth enough then (with constructive bounds)

f (t) -M g = O(t -∞
), which means that the solution converges almost exponentially fast to the global equilibrium (namely with polynomial rate O(t -r ) with r as large as wanted). Moreover in [START_REF] Desvillettes | On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation[END_REF], Desvillettes and Villani conjectured that time oscillations should occur on the evolution of the relative local entropy

H l (t) = f log f M l dx dv,
where M l is the local Maxwellian distribution in the sense that the constants ρ, u and T appearing there depend on time t and position x

(3.15) M l (t, x, v) = ρ(t, x) 2πT (t, x) exp - |v -u(t, x)| 2 2T (t, x)
In fact their proof does not rule out the possibility that the entropy production undergoes important oscillations in time, and actually most of the technical work is caused by this possibility.

To estimate the speed of convergence to the global equilibrium and the possibility that oscillations also occur on the difference between global and local equilibria (since the global relatve entropy is nonincreasing), we prefer to investigate the behavior of the following quantity

E(t) := ρ(t) -ρ g L 1 ,
which makes sense both for the solution to the Boltzmann or ES-BGK equation but also for the compressible Navier-Stokes equation.

Here, we performed simulations to the full Boltzmann equation with a fast spectral method [START_REF] Filbet | Solving the Boltzmann equation in N log 2 N[END_REF], to the ES-BGK equation with the scheme (2.3) and to the compressible Navier-Stokes system with a WENO solver in a simplified geometry (one dimension in space, two dimension in velocity, periodic boundary conditions) to check numerically if such oscillations occur. Clearly this test is challenging for a numerical method due to the high accuracy required to capture such oscillating behavior at the kinetic regime.

Then, we consider an initial datum as a perturbation of the global equilibrium M g

f 0 (x, v) = 1 + A 0 sin(π x) 2πT 0 exp - |v -u 0 | 2 2T 0 + exp - |v + u 0 | 2 2T 0 , x ∈ [-1, 1], v ∈ R 2 ,
with A 0 = 0.5, T 0 = 0.125 and u 0 = (1/2, 1/2). We have chosen ν = -1 such that the Prandtl number of the ES-BGK model corresponds to the Prandtl number of the 2d v Boltzmann operator, that is Pr = 0.5. In Figure 1, one can indeed observe oscillations on the quantitiy E(t) for the full Boltzmann equation, the ES-BGK model and also for the compressible Navier-Stokes system obtained from the asymptotic of the ES-BGK equation (1.9). The strength of the oscillations does not depend on the Knudsen number ε. The superimposed curves yield the time evolution of the E(t) for t ∈ [0, 20]; the first plot corresponds to ε = 0.5, the second one to ε = 0.1, the third one ε = 0.05 and the last one ε = 0.01.

On the one hand, for ε = 0.5, which corresponds to a rarefied regime, the behavior of E(t) strongly differs between the kinetic and hydrodynamic models. The results for ES-BGK and the full Boltzmann equations agree very well in this rarefied regime, which illustrates perfectly the efficiency and accuracy of the ES-BGK model.

On the other hand, for smaller values of ε, the different numerical approximations give roughly the same results and the ES-BGK model and the compressible Navier-Stokes system become very close. Finally for ε ≃ 0.01, the different kinetic (Boltzmann and ES-BGK) and hydrodynamic (Euler or Navier-Stokes) models agree very well.

Further note that the equilibration is much more rapid when the Knudsen number ε is large, and that the convergence seems to be exponential.

The Riemann problem. This test deals with the numerical solution to the 1d

x × 2d v ES-BGK equation. The operator Q(f ) is given by Q(f ) = τ [G[f ] -f ]
where τ = 0.9 πρ/2. We present several numerical simulations for one dimensional Riemann problem, with different Knudsen numbers, from rarefied regime to the fluid regime.

Here, the initial data corresponding to the ES-BGK equations are given by the isotropic Maxwellian distributions computed from the following macroscopic quantities

   (ρ l , u l , T l ) = (1, M √ 2, 1) , if x ≤ 0 , (ρ r , u r , T r ) = (1., 0, 1.05) , if x > 0
with the Mach number M = 2.5. We perform several computations for ε = 5×10 -1 , 10 -1 ,..., 10 -3 . We present a comparison between the numerical solution to the Boltzmann equation obtained using a spectral scheme [START_REF] Filbet | Solving the Boltzmann equation in N log 2 N[END_REF], the approximation to the compressible Navier-Stokes system obtained using a fifth order WENO and our first order implicit method (2.3) for the ES-BGK model with ν = 1/2, for which the Prandtl number of the ES-BGK model is the same as the one for the 2d v Boltzmann operator. Let us note that the viscosity and conductivity used for the numerical simumation of the compressible Navier-Stokes system are the ones obtained from the Chapman-Enskog expansion.

In Figuer 2, we take ε = 5 × 10 -1 and choose a time step ∆t = 0.001 satisfying the CFL condition for the transport part (with n x = 200). For such a value of ε, the problem is not stiff and this test is only performed to compare the accuracy of our scheme (2.3) with the different models. We present several snapshots of the density, mean velocity, temperature and heat flux

Q 1 (t, x) := 1 ε R dv |v -u| 2 2 (v -u) f (t, x, v)dv
at different time t = 0.1, 0.25 and 0.4. We observe that, for a short time t = 0.1, the numerical approximation of macroscopic quantities and heat flux given by (2.3) for the ES-BGK model are relatively close to the numerical solution to the Boltzmann equation. The front speed and the shape of the temperature with two bumps are very well approximated by the ES-BGK model, and the heat flux given by the Boltzmann equation and the ES-BGK model are different from the ones given by the compressible Navier-Stokes system. Clearly, the compressible Navier-Stokes system is not adequate in this rarefied regime whereas the ES-BGK model gives very satisfying results. For a larger time t ≥ 0.25, the distribution in velocity f to the ES-BGK model and to the Boltzmann equation agree very well and the macroscopic quantities are already well approximated by the solution to the compressible Navier-Stokes system. In Figure 3, we represent the xv x projection of f -M[f ] at time t = 0.25 obtained for the Boltzmann equation and the ES-BGK model. The distribution function becomes particularly far from the equilibrium at the front of the shock in velocity and then propagates in the computational domain. As can be observed on the macroscopic quantities, the solution to the Boltmzann equation is very close to the one obtained from the ES-BGK model.

Finally, at the kinetic regime our method (2.3) gives the same accuracy as a standard first order fully explicit scheme for the ES-BGK model or full Boltzmann equation without any additional computational effort. Of course, the computational effort needed for the ES-BGK models is much smaller than the one for an accurate discretization of the full Boltzmann equation. 

-1 -0.5 0 0.5

-1 -0.5 0 0.5

-1 -0.5 0 0.5

-1 -0.5 0 0.5

-1 -0.5 0 0.5

-1 -0.5 0 0.5

-1 -0.5 0 0.5

-1 -0.5 0 0.5 Now, we investigate the cases of small values of ε for which an explicit scheme requires the time step to be of order O(ε). In order to evaluate the accuracy of our method (2.3) in the Navier-Stokes regime (for small ε ≪ 1 but not negligible), we compared the numerical solution for ε = 10 -1 with one obtained by the approximation of the compressible Navier-Stokes system derived from the ES-BGK model since the viscosity and heat conductivity are in that case explicitly known [START_REF] Bennoune | Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible NavierStokes asymptotics[END_REF].

Therefore, in Figure 4, we report the numerical results for ε = 10 -1 and make comparison between the numerical solution obtained with the scheme (2.3) and the one obtained with a high order explicit method for the compressible Navier-Stokes. In this case, the behavior of macroscopic quantities (density, mean velocity, temperature and heat flux) agree very well even if the time step is at least ten times larger with our method (2.3). Finally in Figure 5, we choose ε = 1. 10 -3 . In this problem, the density, mean velocity and temperature are relatively close to the one obtained with the approximation of the Navier-Stokes system. Even the qualitative behavior of the heat flux agrees well with the heat flux corresponding to the compressible Navier-Stokes system κ ∇ x T , with κ = ρ T (see Figure 5), yet some differences can be observed, which means that the use of ES-BGK models to derive macroscopic models has a strong influence on the heat flux.

3.3.

Flow around a cylinder. This example has been considered in for instance [START_REF] Yang | Rarefied flow computations using nonlinear model Boltzmann equations[END_REF]. The computational domain is set to be [-20, 20]× [-20, 20]. The cylinder is centered at the origin, with a diameter of 2.

We consider an incoming flow at the boundary x = 8 with the following conditions: Concerning boundary condition, the wall of cylinder is considered as a pure diffusive boundary conditions

ρ i = 1, u i = (M √ 2T i , 0) T , T i =
f (t, x, v) = ρ(t, x) (2π T w ) dv/2 exp - |v| 2 2 T w , v • n x < 0, and x = 1,
where ρ is computed such that the global flux is zero at the boundary (and mass is preserved) and T w = 1.05.

To start the calculation take a uniform initial solution equal to the values defined by the boundary conditions:

f 0 (x, v) = ρ i (2π T i ) dv /2 exp - |v -u i | 2 2 T i , v ∈ R 2 , 1 ≤ x ≤ 8.
Then, we solve the kinetic equations for the different grid densities considered, until a steady state is reached. We define the Mach number from the macroscopic quantities, computing the moments of the distribution function with respect to v ∈ R 2 , by

M 2 = u 2 γ T ,
where c := √ γ T is the sound speed. We apply our numerical scheme (2.3) to the ES-BGK equation and plot the numerical results in the following figures (Fig. 6,7,8) and the solution can be compared to the numerical solution of the Euler equations [START_REF] Yang | Rarefied flow computations using nonlinear model Boltzmann equations[END_REF].

Figure 6 shows the density contours at different times for a free streaming Mach number M = 0.1 whereas the Knudsen number is ε = 0.01. The reflecting shock, and the Mach shock can all be identified. However, the reflecting shock is not identified as kinetic, since both density and temperature are large on the shock, which makes its distribution much closer to the Maxwellian than the other two shocks. Also, the two seperation points, where the gas is the most rarefied, are well captured and correctly identified as kinetic. In Figure 7, the contour plot of the local Mach number, the density and the temperature is shown when the steady state is reached.

Conclusion

In this paper we present an accurate deterministic method for the numerical approximation of the space inhomogeneous, time dependent ES-BGK equation. The method is a temporally implicit-explicit scheme to deal with the stiffness of the collision operator. The computational cost of the implicit part is close to an explicit one, without using any nonlinear algebraic system solver, by utilizing the particular structure of the ES-BGK operator. This 
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Figure 1 .

 1 Figure 1. Influence of the Knudsen number ε: distance between the local density ρ(t) and the global density at equilibrium ρ g using 100 × 32 × 32 for (a) ε=0.5; (b) ε = 0.1; (c) ε = 0.05 and (d) ε = 0.01.

Figure 2 .

 2 Figure 2. Riemann problem (ε = 5 × 10 -1 ): crosses (+) represent the numerical solution to the Boltzmann equation obtained with our method (2.3), stars (x) represent the solution to the ES-BGK model and lines is the solution corresponding to the compressible Navier-Stokes system. Evolution of (1) the density ρ, (2) mean velocity u, (3) temperature T and (4) heat flux Q at time t = 0.1, 0.25 and 0.4.

Figure 3 .

 3 Figure 3. Riemann problem (ε = 5 × 10 -1 ): xv x projection of f -M[f ] at time 0.25 for the (1) Boltzmann equation and (2) ES-BGK model.

  1 with M = 0.1 and M = 0.5. The freestream Knudsen number ranges from ε = 0.1 to ε = 10 -3 .

Figure 4 .

 4 Figure 4. Riemann problem (ε = 10 -1 ): crosses (+) represent the numerical solution to the Boltzmann equation obtained with our method (2.3), stars (x) represent the solution to the ES-BGK model and lines is the solution corresponding to the compressible Navier-Stokes system. Evolution of (1) the density ρ, (2) mean velocity u, (3) temperature T and (4) heat flux Q at time t = 0.1, 0.25 and 0.4.

Figure 5 .Figure 6 .

 56 Figure 5. Riemann problem (ε = 10 -3 ): crosses (+) represent the numerical solution to the Boltzmann equation obtained with our method (2.3), stars (x) represent the solution to the ES-BGK model and lines is the solution corresponding to the compressible Navier-Stokes system. Evolution of (1) the density ρ, (2) mean velocity u, (3) temperature T and (4) heat flux Q at time t = 0.1, 0.2 and 0.3.

Figure 9 .

 9 Figure 9. Flow around a cylinder (M = 0.5), the numerical solution of the ES-BGK model obtained with our method (2.3) : steady state of the local Mach number for different values of Knudsen number (1) ε = 0.5 (2) ε = 0.1, (3) ε = 0.01, (4) ε = 0.001.