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Counting walks in a quadrant: a unified approach

via boundary value problems

Kilian Raschel∗

February 13, 2011

Abstract. The aim of this article is to introduce a unified method to obtain explicit integral

representations of the trivariate generating function counting the walks with small steps which are

confined to a quarter plane. For many models, this yields for the first time an explicit expression of

the counting generating function. Moreover, the nature of the integrand of the integral formulations

is shown to be directly dependent on the finiteness of a naturally attached group of birational

transformations as well as on the sign of the covariance of the walk.

Keywords. Lattice walk, counting generating function, boundary value problem, conformal

mapping, Weierstrass elliptic function, Riemann surface, uniformization

1 Introduction

The enumeration of planar lattice walks is a classical topic in combinatorics. For a given
set S of steps, it is a matter of counting the numbers of paths of a certain length, having
jumps in S, starting and ending at some arbitrary points, and possibly restricted to a
region of the plane. There are two main questions:

— How many such paths exist?

— Is the underlying generating function rational, algebraic, holonomic (i.e., a solution
of a linear differential equation with polynomial coefficients) or non-holonomic?

For instance, if the paths are not restricted to a region, or if they are constrained to a
half-plane, the counting generating function can then be made explicit and is rational
or algebraic [7], respectively. It is natural to consider then the walks confined to the
intersection of two half-planes, as the quadrant Z

2
+. The situation seems richer: some

walks admit an algebraic counting function, see [13, 14] for the walk with unit step set
S = {W,NE,S}, while others admit a counting function that is not even holonomic, see
[7] for the knight walk. Henceforth, we focus on these walks staying in Z

2
+.
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Figure 1: Three famous examples, known as Kreweras’, Gessel’s and Gouyou-Beauchamps’
walks. They have been, and are still, the object of many studies, see, e.g., [5, 12, 13],
[4, 16, 17] and [8, 23], respectively.

Bousquet-Mélou and Mishna have recently [6] initiated a systematic study of the walks
confined to Z

2
+, starting at the origin and having small steps, which means that the set of

admissible steps S is included in the set of the eight nearest neighbors, i.e.,

S ⊂ {W,NW,N,NE,E,SE,S,SW}a.

On the boundary, the jumps are the natural ones: the steps that would take the walk out
Z

2
+ are discarded. There are 28 such models. Of these, there are obvious symmetries and

Bousquet-Mélou and Mishna [6] show that there are in fact 79 types of essentially distinct
walks—we will often refer to these 79 walks tabulated in [6].

The central object for the study of these 79 walks is the following: denoting by q(i, j;n)
the number of paths confined to Z

2
+, having length n, starting at (0, 0) and ending at (i, j),

their generating function is defined as

Q(x, y; z) =
∑

i,j,n>0

q(i, j;n)xiyjzn. (1)

Proposition 1. We have

xyz



∑

(i,j)∈S

xiyj − 1/z


Q(x, y; z) = c(x; z)Q(x, 0; z)+ c̃(y; z)Q(0, y; z)− zδQ(0, 0; z)−xy,

(2)
where we have noted

c(x; z) = zx
∑

(i,−1)∈S

xi, c̃(y; z) = zy
∑

(−1,j)∈S

yj, δ =

{
1 if SW ∈ S,
0 if SW /∈ S.

(3)

This functional equation is the fundamental starting point of our study—and is also
so for almost every other works on the topic. It relates the trivariate generating function
Q(x, y; z) to the bi- and univariate generating functions Q(x, 0; z), Q(0, y; z) and Q(0, 0; z)

aFor the step set S , we shall equally denote it by using the cardinal points {W, NW, N, NE, E, SE, S, SW}
or the cartesian points {−1, 0, 1}2 \ {(0, 0)}.
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counting the walks which end on the borders. Notice that (2) simply follows from the step
by step construction of the walks; its proof may be found in [6, Section 4]. The polynomial

xyz



∑

(i,j)∈S

xiyj − 1/z


 (4)

appearing in (2) is usually called the kernel of the walk. If k is the cardinal of S, then (2)
is valid at least on {|x| 6 1, |y| 6 1, |z| < 1/k}, since clearly q(i, j;n) 6 kn.

In this way, for the purpose of answering both questions stated at the beginning of this
paper, it suffices to solve (2). A key idea then is to consider a certain group, introduced in
[20] in a probabilistic context, and called the group of the walk. This group of birational
transformations of C

2, which leaves invariant the step generating function
∑

(i,j)∈S x
iyj,

is the group W = 〈Ψ,Φ〉 generated by

Ψ(x, y) =

(
x,

∑
(i,−1)∈S x

i

∑
(i,+1)∈S x

i

1

y

)
, Φ(x, y) =

(∑
(−1,j)∈S y

j

∑
(+1,j)∈S y

j

1

x
, y

)
. (5)

Obviously Ψ◦Ψ = Φ◦Φ = id, and W is a dihedral group—of order even and at least four.
This order is calculated in [6] for each of the 79 cases: 23 walks admit a finite group (of
order four, six or eight), and the 56 others have an infinite group.

For the 23 walks with a finite group, the answers to both questions (regarding explicit
expression and nature of the function (1)) have been given recently. Indeed, the article
[6] successfully treats 22 of the 23 models associated with a finite group: the series (1) is
made explicit and is shown to be either algebraic or transcendental but holonomic. As for
the 23rd walk (namely, Gessel’s walk represented in Figure 1), Bostan and Kauers [4] have
given a computer-aided proof of the algebraicity of the function (1). Furthermore, using a
powerful computer algebra system, they have made explicit minimal polynomials. Thanks
to these polynomials, van Hoeij [4, Appendix] has then managed to express the function
(1) by radicals. At the same time, we gave in [17] an explicit integral representation of (1)
for Gessel’s walk, this without computer help. Based on ideas of [9, Chapter 4], alternative
proofs for the nature of (1) for these 23 cases are given in [10]. Moreover, in the work in
preparation [2], Bostan et al. obtain integral representations of the function (1) for the 23
walks having a finite group, by using a mathematical and algorithmic method, based on
creative telescoping and on the resolution of differential equations of order two in terms
of hypergeometric functions.

Concerning the 56 walks with an infinite group, the 5 represented in Figure 2 are
special; they are called singular. Of these, 2 cases are solved: in [21], Mishna and
Rechnitzer have considered the walks with step sets S = {NW,NE,SE} and {NW,N,SE},
have made explicit the series (1), and have shown that it is non-holonomic. What is left
is 54 walks whose status is currently unsettled, as regards an explicit expression as well as
holonomicity. However, certain asymptotic conjectures are proposed in [3].
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Figure 2: The 5 singular walks in the classification of [6]

2 Main results

The aim of this article is to introduce a unified approach giving an explicit expression of
the generating function (1) for any of the 79 walks. We start with the non-singular walks.
Please note that important notations appear below the statement.

Theorem 1. Assume that the walk is one of the 74 non-singular walks.

(i) The following integral representations relative to Q(x, 0; z) and Q(0, y; z) hold:

c(x; z)Q(x, 0; z) − c(0; z)Q(0, 0; z) =

xY0(x; z) +
1

2ıπ

∫ x2(z)

x1(z)
[Y0(t; z) − Y1(t; z)]

[
∂tw(t; z)

w(t; z) − w(x; z)
−

∂tw(t; z)

w(t; z) − w(0; z)

]
dt,

c̃(y; z)Q(0, y; z) − c̃(0; z)Q(0, 0; z) =

X0(y; z)y +
1

2ıπ

∫ y2(z)

y1(z)
[X0(t; z) −X1(t; z)]

[
∂tw̃(t; z)

w̃(t; z) − w̃(y; z)
−

∂tw̃(t; z)

w̃(t; z) − w̃(0; z)

]
dt.

(ii) The value of Q(0, 0; z) is determined as follows.

— If SW ∈ Sb, then for any (x0, y0, z0) ∈ {|x| 6 1, |y| 6 1, |z| < 1/k} at which the
kernel (4) vanishes, we have

Q(0, 0; z) = x0y0/z − [c(x0; z)Q(x0, 0; z) − c(0; z)Q(0, 0; z)]/z

−[c̃(y0; z)Q(0, y0; z) − c̃(0; z)Q(0, 0; z)]/z.

— If SW /∈ S, then

Q(0, 0; z) = lim
x→0

c(x; z)Q(x, 0; z) − c(0; z)Q(x, 0; z)

c(x; z)
.

(iii) The function Q(x, y; z) has the explicit expression

Q(x, y; z) =
c(x; z)Q(x, 0; z) + c̃(y; z)Q(0, y; z) − zδQ(0, 0; z) − xy

xyz[
∑

(i,j)∈S x
iyj − 1/z]

.

bThis condition is equivalent to δ = 1 in (2), and to c(0; z) = c̃(0; z) = z, see (3).
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In the statement of Theorem 1:

— c and c̃ are defined in (3).

— Y0 and Y1 (resp. X0 and X1) are the y- (resp. x-) roots of the kernel (4), which is a
second-degree polynomial. They are chosen such that |Y0| 6 |Y1| (resp. |X0| 6 |X1|),
see Lemma 1. Their expression is given in (9) (resp. (10)).

— x1(z) and x2(z) (resp. y1(z) and y2(z)) are two of the four branch points of Y0 and
Y1 (resp. X0 and X1), see Subsection 3.2 below (8) for their proper definition. These
four branch points can be characterized as the only points satisfying Y0 = Y1 (resp.
X0 = X1). An equivalent definition is that they are the roots of the discriminant of
the kernel (8) viewed as a second-degree polynomial in the variable y (resp. x), see
(7).

— w and w̃ are conformal mapping with additional gluing properties. While it is easy
to show their existence, see Subsection 3.3, finding their expression is, generally
speaking, quite a difficult task. Theorem 6 of this paper, which gives explicit
formulations for w and w̃, is one of our main contributions. Because of notations, we
prefer stating it in Section 6 rather than here: the expressions of w and w̃ we obtain
indeed strongly involve ℘-Weierstrass elliptic functions—the latter naturally appear
due to the uniformization (that we make in Section 5) of the set given by the zeros of
the kernel (4), generically isomorphic to a Riemann surface of genus 1. In Theorems
2 and 3 below, we give important and complementary precisions to Theorem 6.

For the 51 non-singular walks with an infinite group, the function Q(x, y; z) is made
explicit for the first time—to the best of our knowledge. After the work [17] on Gessel’s
walk, this paper also provides integral representations of Q(x, y; z) for the 22 other walks
admitting a finite group. As we are going to see now, it turns out that the finiteness of the
group actually acts directly on the nature (rational, algebraic, holonomic, non-holonomic)
of the functions w and w̃ present in these integral representations. Another important
quantity happens to be (the sign of) the covariance of S, namely,

∑

(i,j)∈S

ij. (6)

Theorem 2. If the group of the walk is finite (resp. infinite), then w and w̃ are algebraic
(resp. non-holonomic, and then, of course, non-algebraic). Furthermore, in the case of a
finite group, if in addition the covariance (6) of the walk is negative or zero (resp. positive),
then w and w̃ are rational (resp. algebraic non-rational).

Theorem 2 is summarized in Figure 6: in particular, in the finite group case, we
compare a posteriori the nature of w and w̃ with that of Q(x, y; z), known from [4, 6, 10].
If the group is finite, Theorem 3 below goes much further than Theorem 2: in the rational
(resp. algebraic) case, it provides the rational expressions (resp. the minimal polynomials)
of w and w̃. For its statement we need the notations:

— x3(z) and x4(z) (resp. y3(z) and y4(z)) are the remaining branch points of Y0 and
Y1 (resp. X0 and X1), see again Subsection 3.2 below (8) for their exact definition.
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Theorem 3. In the finite group case, the explicit expressions of w and w̃ are as follows.

(i) If the walk is associated with a group of order four, then w and w̃ are affine
combinations of, respectively,

[t− x1(z)][t − x4(z)]

[t− x2(z)][t − x3(z)]
,

[t− y1(z)][t − y4(z)]

[t− y2(z)][t − y3(z)]
.

(ii) For both walks {N,SE,W} and {N,E,SE,S,W,NW}, w and w̃ are affine combinations
of, respectively,

u(t)

[t− x2(z)][t− 1/x2(z)1/2]2
,

ũ(t)

[t− y2(z)][t − 1/y2(z)1/2]2
,

with u(t) = t2 and ũ(t) = t (resp. u(t) = ũ(t) = t(t + 1)) for {N,SW,E} (resp.
{N,W,SW,S,E,NE}).

(iii) For each of the three walks {NE,S,W}, {N,E,SW} and {N,NE,E,S,SW,W}, there
exist α(z), β(z), δ(z), γ(z) which are algebraic with respect to z—and made explicit
in the proof—such that w = w̃ is the only root with a pole at x2(z) of

w2 +

[
α(z) +

β(z)u(t)

[t− x2(z)][t − 1/x2(z)1/2]2

]
w+

[
δ(z) +

γ(z)u(t)

[t− x2(z)][t− 1/x2(z)1/2]2

]
,

with u(t) = t2 (resp. u(t) = t, u(t) = t(t + 1)) for {NE,S,W} (resp. {N,E,SW},
{N,NE,E,S,SW,W}).

(iv) For the walk {E,SE,W,NW}, w and w̃ are affine combinations of, respectively,

t2

[t− x2(z)][t− 1]2[t− x3(z)]
,

t(t+ 1)2

[t− x2(z)]2[t− x3(z)]2
.

We emphasize that it is not necessary to know the affine combinations appearing in (i),
(ii) and (iv) above, since in Theorem 1, w and w̃ only appear through ∂tw(t; z)/[w(t; z) −
w(x; z)] and ∂tw̃(t; z)/[w̃(t; z) − w̃(y; z)].

Together with Gessel’s walk {E,SW,W,NE}, for which the functions w and w̃ have
been found in [17], Theorem 3 gives the simplified expression of these functions in all
finite group cases, indeed see the tables in [6] or Figure 6 in this paper.

Thanks to Theorems 3 and 6, which give formulations for w and w̃, Theorem 1 settles
the problem of making explicit the numbers of walks q(i, j;n). The function Q(x, y; z)
being indeed found (at least) within the domain {|x| 6 1, |y| 6 1, z ∈]0, 1/k[}, its
coefficients

∑
n>0 q(i, j;n)zn can very easily be obtained from the Cauchy formulas, for any

z ∈]0, 1/k[. Since the radius of convergence of the series
∑

n>0 q(i, j;n)zn is at least 1/k,
the numbers of walks can then be identified, e.g., in terms of the limits of the successive
derivativesc as z > 0 goes to 0:

q(i, j;n) = lim
z→0

(z> 0)

1

n!



∑

n>0

q(i, j;n)zn




(n)

.

cThroughout, for a function v we denote by [v](n) or by ∂nv its nth derivative.
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Other conclusions and perspectives of Theorems 1, 2 and 3 are presented in Section 7. Let
us however make two remarks already.

Remark 1. Theorem 1 can be extended without difficulty to the case of the generating
function counting the numbers of paths confined to the quadrant Z

2
+, having length k,

starting at (i0, j0) and ending at (i, j), for any initial state (i0, j0).

Remark 2. A priori, the expression of Q(x, 0; z) given in Theorem 1 is valid and
holomorphic for x inside of some curve (see Subsection 3.3) containing the branch
points x1(z) and x2(z)

d. This expression actually admits an analytic continuation on
C\ [x3(z), x4(z)]: the arguments we gave for proving [17, Theorem 6] for Gessel’s walk can
indeed be applied. A similar remark holds for Q(0, y; z).

Let us now turn to the 5 singular walks. Both functions Q(x, 0; z) and Q(0, y; z)
probably also admit integral representations, see [9, Part 6.4.1], but here we prefer to give
the following more elementary series representations. Below, by f◦p we mean f ◦ · · · ◦ f ,
with p occurrences of f .

Theorem 4. Suppose that the walk is singular. The following series representation holds:

Q(x, 0; z) =
1

zx2

∑

p>0

Y0 ◦ (X0 ◦ Y0)
◦p(x; z)[(X0 ◦ Y0)

◦p(x; z) − (X0 ◦ Y0)
◦(p+1)(x; z)].

The function Q(0, y; z) is obtained from the equality above by exchanging the roles of X0

and Y0. Moreover, Q(0, 0; z) = 0, and the complete function Q(x, y; z) is obtained with
(2).

The paper [21] gives a proof of Theorem 4 for the walks {NW,NE,SE} and {NW,N,SE},
and suggests that this result should also hold for the other 3 singular walks. For the sake
of completeness, in this article we prove Theorem 4 in all the 5 cases, see Subsection 3.4.

3 Approach via boundary value problems

3.1 Structure of the remainder of the paper

The approach that we are going to use depends on whether the walks under consideration
are singular or not.

In order to prove Theorem 1—this concerns all the non-singular walks, i.e., the 23
with a finite group as well as 51 of the 56 attached to an infinite group, see the tables in
[6]—we here extend to three variables x, y, z the profound analytic approach elaborated
by Fayolle, Iasnogorodski and Malyshev in [9] for the stationary case, which correspond
to two variables x, y. This is the aim of Subsection 3.3. To summarize:

dEach term of the sum providing c(x; z)Q(x, 0; z) − c(0; z)Q(0, 0; z) in Theorem 1 is clearly not
holomorphic near [x1(z), x2(z)], but an application of the residue theorem exactly as in [18, Section 4]
would give an expression of the sum as a function clearly holomorphic near [x1(z), x2(z)].
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Step 1. From the fundamental functional equation (2), we prove that c(x; z)Q(x, 0; z)
and c̃(y; z)Q(0, y; z) satisfy certain boundary value problems of Riemann-Carleman type,
i.e., with boundary conditions on curves closed in C ∪ {∞} and admitting non-empty
interiors. These curves are studied in Lemma 2. The proof of this first step is performed
in two stages. Firstly, we have to know the class of functions within which c(x; z)Q(x, 0; z)
and c̃(y; z)Q(0, y; z) should be searched. This is the goal of Theorem 5, which states that
they admit nice holomorphic continuations in the whole interiors of the curves above.
Its proof is postponed to Section 4. Secondly, we have to obtain the precise boundary
conditions on these curves; this is done in Subsection 3.3, see (11).

Step 2. Next we transform these problems into boundary value problems of Riemann-
Hilbert type, i.e., with conditions on segments. This conversion is motivated by the fact
that the latter problems are more usual and by far more treated in the literature, see [9, 19]
and references therein. It is done in Subsection 3.3, by using conformal gluing functions
in the sense of Definition 1.

Step 3. Finally we solve these new problems and we deduce an explicit integral
representation of (1). This will conclude Subsection 3.3.

Subsection 3.3 gives the complete proof of Theorem 1. As a consequence regarding
the functions c(x; z)Q(x, 0; z) − c(0; z)Q(0, 0; z) and c̃(y; z)Q(0, y; z) − c̃(0; z)Q(0, 0; z), it
remains to find explicitly suitable conformal gluing functions w and w̃. This is the topic of
Sections 5 and 6. In Section 6 we study these conformal gluing functions in-depth, as their
analysis is just sketched out in [9]. There we state and prove Theorem 6, which gives their
explicit expression for all non-singular walks. In Section 6 we also prove Theorem 2 on the
nature of w and w̃, as well as Theorem 3 giving simplified expressions of w and w̃ in the
finite group case. The analysis of these functions relies on a uniformization of the Riemann
surface given by the zeros of the kernel, namely, {(x, y) ∈ C

2 :
∑

(i,j)∈S x
iyj − 1/z = 0}.

This work is carried out in the introductory—and crucial—Section 5.

For the 5 singular walks, the curves associated with the boundary value problems
above degenerate into a point and the previous arguments no longer work. However,
starting from (2), it is easy to make explicit a series representation of the function (1), see
Subsection 3.4.

3.2 The kernel and its roots

This part is introductory to Subsections 3.3 and 3.4. It aims at examining the kernel (4)
that appears in (2), and in particular at studying its roots. First of all, we notice that the
kernel can alternatively be written as

xyz



∑

(i,j)∈S

xiyj − 1/z


 = ã(y; z)x2 + b̃(y; z)x+ c̃(y; z) = a(x; z)y2 +b(x; z)y+c(x; z), (7)
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where c̃(y; z) and c(x; z) are defined in (3), and where

ã(y; z) = zy
∑

(+1,j)∈S y
j , b̃(y; z) = −1+zy

∑
(0,j)∈S y

j,

a(x; z) = zx
∑

(i,+1)∈S x
i, b(x; z) = −1+zx

∑
(i,0)∈S x

i.

We also define

d̃(y; z) = b̃(y; z)2 − 4ã(y; z)c̃(y; z), d(x; z) = b(x; z)2 − 4a(x; z)c(x; z). (8)

— If the walk is non-singular, then for any z ∈]0, 1/k[, the polynomial d̃ (resp. d) has
three or four roots, that we call yk(z) (resp. xk(z)). As shown in [9, Part 2.3], they
are such that |y1(z)| < y2(z) < 1 < y3(z) < |y4(z)| (resp. |x1(z)| < x2(z) < 1 <
x3(z) < |x4(z)|), with y4(z) = ∞ (resp. x4(z) = ∞) if d̃ (resp. d) has order three.

— If the walk is singular, the roots above then become y1(z) = y2(z) = 0 < 1 < y3(z) <
|y4(z)| (resp. x1(z) = x2(z) = 0 < 1 < x3(z) < |x4(z)|), see [9, Part 6.1].

The behavior of the branch points yk(z) and xk(z) is not so simple for z /∈]0, 1/k[, and for
this reason we suppose in the sequel that z is fixed in ]0, 1/k[.

Now we notice that the kernel (4) vanishes if and only if [̃b(y; z)+ 2ã(y; z)x]2 = d̃(y; z)
or [b(x; z) + 2a(x; z)y]2 = d(x; z). Consequently [15], the algebraic functions X(y; z) and
Y (x; z) defined by

∑
(i,j)∈S X(y; z)iyj − 1/z = 0 and

∑
(i,j)∈S x

iY (x; z)j − 1/z = 0 have
two branches, meromorphic on C \ ([y1(z), y2(z)] ∪ [y3(z), y4(z)]) and C \ ([x1(z), x2(z)] ∪
[x3(z), x4(z)]) (resp. C \ [y3(z), y4(z)] and C \ [x3(z), x4(z)]) in the non-degenerate (resp.
degenerate) case.

We fix the notations of the two branches of the algebraic functions X(y; z) and Y (x; z)
by setting

X0(y; z) =
−b̃(y; z) + d̃(y; z)1/2

2ã(y; z)
, X1(y; z) =

−b̃(y; z) − d̃(y; z)1/2

2ã(y; z)
, (9)

as well as

Y0(x; z) =
−b(x; z) + d(x; z)1/2

2a(x; z)
, Y1(x; z) =

−b(x; z) − d(x; z)1/2

2a(x; z)
. (10)

The following straightforward result holds, see [9, Part 5.3].

Lemma 1. For all y ∈ C, we have |X0(y; z)| 6 |X1(y; z)|. Likewise, for all x ∈ C, we
have |Y0(x; z)| 6 |Y1(x; z)|.

3.3 Non-singular walks: proof of Theorem 1

In this subsection we show Theorem 1, dealing with all 74 non-singular walks. According
to Subsection 3.1, we split the proof into three main steps.

Step 1. We prove that both functions c(x; z)Q(x, 0; z) and c̃(y; z)Q(0, y; z) satisfy a
certain boundary value problem of Riemann-Carleman type, with boundary conditions on
the curves

X([y1(z), y2(z)]; z), Y ([x1(z), x2(z)]; z),

9



X([y1(z), y2(z)]; z) Y ([x1(z), x2(z)]; z)

x1(z) x2(z) x3(z)x4(z) y1(z) y2(z)x3(z) y3(z)

Figure 3: The curves X([y1(z), y2(z)]; z) and Y ([x1(z), x2(z)]; z) for Gessel’s walk

respectively. Examples of the latter are represented in Figure 3. In the general case, they
satisfy the following properties, see [9, Part 5.3].

Lemma 2. Let X([y1(z), y2(z)]; z) and Y ([x1(z), x2(z)]; z).

— These two curves are symmetrical with respect to the real axis.

— They are connected and closed in C ∪ {∞}.

— They split the plane into two connected components; we note GX([y1(z), y2(z)]; z)
and GY ([x1(z), x2(z)]; z) the ones of x1(z) and y1(z), respectively. They are
such that GX([y1(z), y2(z)]; z) ⊂ C \ [x3(z), x4(z)] and GY ([x1(z), x2(z)]; z) ⊂
C \ [y3(z), y4(z)].

As illustrated by the example of Gessel’s walk, see again Figure 3, these curves are not
always included in the unit disc, so that the functions c(x; z)Q(x, 0; z) and c̃(y; z)Q(0, y; z)
a priori need not be defined on them. For this reason, we first have to continue the
generating functions up to these curves: this is exactly the object of the following result,
the proof of which is the subject of Section 4.

Theorem 5. The functions c(x; z)Q(x, 0; z) and c̃(y; z)Q(0, y; z) can be holomorphically
continued from the open unit disc D to GX([y1(z), y2(z)]; z)∪D and GY ([x1(z), x2(z)]; z)∪
D , respectively.

Now, exactly as in [17, Section 1], we obtain:

∀t ∈ X([y1(z), y2(z)]; z), c(t; z)Q(t, 0; z)−c(t; z)Q(t, 0; z) = tY0(t; z)−tY0(t; z),
∀t ∈ Y ([x1(z), x2(z)]; z), c̃(t; z)Q(0, t; z)− c̃(t; z)Q(0, t; z) = X0(t; z)t−X0(t; z)t.

(11)

Together with Theorem 5, we thus conclude that c(x; z)Q(x, 0; z) and c̃(y; z)Q(0, y; z) are
found among the functions holomorphic in GX([y1(z), y2(z)]; z) and GY ([x1(z), x2(z)]; z)
and satisfying the conditions (11) on the boundary of these sets.
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Step 2. A standard [9, 19] way to solve these boundary value problems consists
in converting them into problems with boundary conditions on segments. This
transformation is performed by the use of conformal gluing functions, defined below.

Definition 1. Let C ⊂ C ∪ {∞} be an open and simply connected set, symmetrical with
respect to the real axis, and not equal to ∅, C and C ∪ {∞}. A function w is said to be a
conformal gluing function (CGF) for the set C if

— w is meromorphic in C ;

— w establishes a conformal mapping of C onto the complex plane cut along a segment;

— For all t in the boundary of C , w(t) = w(t).

Remark 3. It is worth noting that the existence (but without any explicit expression) of
a CGF for a generic set C is ensured by general results on conformal gluing [19, Chapter
2].

Let w(t; z) be a CGF for the set GX([y1(z), y2(z)]; z) and let Uz denote the real segment
w(X([y1(z), y2(z)]; z); z). We also define v(u; z) as the reciprocal function of w(t; z). It
is meromorphic on C \ Uz, see Definition 1. Finally, for real values of u we set v+(u; z)
(resp. v−(u; z)) for the limit of v(s; z) as s → u from the upper (resp. lower) half-plane.
We notice that for u ∈ Uz, v

+(u; z) and v−(u; z) are different and complex conjugate of
one another.

With the notations above, the boundary value problem of the first step becomes that
of finding a function c(v(u; z); z)Q(v(u; z), 0; z) holomorphic in C \ Uz, bounded near the
ends of Uz, and such that, for u ∈ Uz,

c(v+(u; z); z)Q(v+(u; z), 0; z) − c(v−(u; z); z)Q(v−(u; z), 0; z) =

v+(u; z)Y0(v
+(u; z); z) − v−(u; z)Y0(v

−(u; z); z).

Step 3. This problem is standard [9, 19] and can be immediately resolved. It yields,
up to an additive function of z,

c(v(u; z); z)Q(v(u; z), 0; z) =
1

2πı

∫

Uz

v+(s; z)Y0(v
+(s; z); z) − v−(s; z)Y0(v

−(s; z); z)

s− u
ds.

The change of variable s = w(t; z) then gives, up to an additive function of z,

c(x; z)Q(x, 0; z) =
1

2πı

∫

X([y1(z),y2(z)];z)
tY0(t)

∂tw(t; z)

w(t; z) − w(x; z)
dt. (12)

We note that for the difference c(x; z)Q(x, 0; z) − c(0; z)Q(0, 0; z) considered in Theorem
1, it is not worth knowing the additive function of z appearing in (12). The residue
theorem applied exactly as in [17, Section 4] then transforms the integral on a curve
(12) into the integral on a segment written in Theorem 1, the proof of the formula for
c(x; z)Q(x, 0; z) − c(0; z)Q(0, 0; z) is completed.
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The expression of c̃(y; z)Q(0, y; z) − c̃(0; z)Q(0, 0; z) is derived similarly. Suppose now
that SW /∈ S, or equivalently that c̃(0; z) = 0. The last formula then yields an expression of
c̃(y; z)Q(0, y; z), whence of Q(0, y; z) by division, and finally of Q(0, 0; z) by substitution.
If now SW ∈ S, evaluating the functional equation (2) at any (x0, y0, z0) ∈ {|x| 6 1, |y| 6

1, |z| < 1/k} at which the kernel (4) vanishes immediately provides the expression of
Q(0, 0; z) stated in Theorem 1. As for Q(x, y; z), it is then sufficient to use the functional
equation.

3.4 Singular walks: proof of Theorem 4

Theorem 4 is shown in [21] for both step sets S = {NW,NE,SE} and {NW,N,SE}. In this
subsection we explain how to obtain it for all 5 singular walks. Along the same lines as in
[9, Part 6.4], we obtain from (2) the identity

c(X0 ◦ Y0(t; z); z)Q(X0 ◦ Y0(t; z), 0; z) − c(t; z)Q(t, 0; z) = X0 ◦ Y0(t; z)Y0(t; z) − tY0(t; z).
(13)

Applying (13) for t = (X0◦Y0)
◦p(x; z) and summing with respect to p ∈ {0, . . . , q} formally

gives, with the same notations as in the statement of Theorem 4,

c((X0 ◦ Y0)
◦(q+1)(x; z); z)Q((X0 ◦ Y0)

◦(q+1)(x; z), 0; z) − c(x; z)Q(x, 0; z) =
q∑

p=0

Y0 ◦ (X0 ◦ Y0)
◦p(x; z)[(X0 ◦ Y0)

◦p(x; z) − (X0 ◦ Y0)
◦(p+1)(x; z)].

Using [9, Part 6.4.2], i.e., that (at least) for |x| < 1 and |z| < 1/k, |X0 ◦ Y0(x; z)| < x,
gives that the series above is convergent as q → ∞. This also implies that the left-hand
side member goes to c(0; z)Q(0, 0; z) − c(x; z)Q(x, 0; z) = −zx2Q(x, 0; z) as q → ∞, since
for all 5 singular walks c(x; z) = zx2, see (3). Theorem 4 follows.

4 Holomorphic continuation of the generating functions

This part aims at proving Theorem 5. In other words, we must show that the generating
functions c(x)Q(x, 0)e and c̃(y)Q(0, y), already known to be holomorphic in their open unit
disc D , can be holomorphically continued up to GX([y1, y2]) ∪ D and GY ([x1, x2]) ∪ D ,
respectively. First of all, note that the location of the sets GX([y1, y2]) and GY ([x1, x2])
depends strongly on the step set S. In particular, it may happen that they are included
in the unit disc—e.g., it is the case for the walks {N,SE,W} and {N,E,SE,S,W,NW},
as it will be further illustrated in Figure 4—and in that case Theorem 5 is obvious. On
the other hand, there actually exist walks for which these sets do not lie inside the unit
disc—this is true for Gessel’s walk, see Figure 3. The proof of Theorem 5 requires us the
following results.

Lemma 3. Assume that the walk is non-singular. The following properties hold:

eFor the sake of conciseness we will, from now on, drop the dependence of the different quantities on
z ∈]0, 1/k[. Moreover, it is implied that any statement in the sequel begins with “for any z ∈]0, 1/k[”.
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(i) Y0({|x| = 1}) ⊂ {|y| < 1};

(ii) X0 : GY ([x1, x2]) \ [y1, y2] → GX([y1, y2]) \ [x1, x2] and Y0 : GX([y1, y2]) \ [x1, x2] →
GY ([x1, x2]) \ [y1, y2] are conformal and reciprocal of one another;

(iii) {x ∈ C : |Y0(x)| < 1} ∩ D is non-empty;

(iv) GX([y1, y2]) ∪ D is connected;

(v) GX([y1, y2]) ∪ D is included in {x ∈ C : |Y0(x)| < 1} ∪ D .

Proof. Let us recall that Y0 is one of the two y-roots of the kernel (4), and that with Y1

denoting the other one, we have |Y0| 6 |Y1|, see Lemma 1. We are going to prove (i) first
for z = 1/k, and we shall deduce from this the remaining cases z ∈]0, 1/k[.

— Assume that z = 1/k. If the kernel (4) vanishes at (x, y) then
∑

(i,j)∈S(1/k)xiyj = 1.
Since

∑
(i,j)∈S(1/k) = 1, we can apply [9, Lemma 2.3.4], and in this way we obtain

that Y0({|x| = 1}) ⊂ {|y| 6 1}.

— Suppose that z ∈]0, 1/k[. In that case, the kernel cannot vanish at (x, y) with |x| =
|y| = 1: indeed, for |x| = |y| = 1 we clearly have that |

∑
(i,j)∈S x

iyj | 6
∑

(i,j)∈S 1 =
k < 1/z. As a consequence, Y0({|x| = 1}) ∩ {|y| = 1} is empty. By connectedness,
this implies that either Y0({|x| = 1}) ⊂ {|y| < 1} or Y0({|x| = 1}) ⊂ {|y| > 1}. But
once again with [9, Lemma 2.3.4], for z = 1/k we obtain Y0({|x| = 1})∩{|y| < 1} 6= ∅,
so that by continuity we get that Y0({|x| = 1}) ⊂ {|y| < 1} for all z ∈]0, 1/k[.

Item (ii) is proved in [9, Part 5.3] for z = 1/k; the proof for other values of z is similar and
we therefore choose to omit it. Note now that (iii) is a straightforward consequence of (i).
Item (iv) is also clear: both sets GX([y1, y2]) and D are connected and the intersection
GX([y1, y2])∩D is non-empty, since x1 belongs to both sets. For (v), it is enough to prove
that (GX([y1, y2]) ∪ D) \ D is included in {x ∈ C : |Y0(x)| < 1}. This will follow from
an application of the maximum modulus principle (see, e.g., [15]) to the function Y0 on
(GX([y1, y2]) ∪ D) \ D . First of all let us note that Y0 is analytic on the latter domain,
since thanks to Subsections 3.2 and 3.3 it is included in C \ ([x1, x2] ∪ [x3, x4]). Next, we
prove that |Y0| < 1 on the boundary of the set (GX([y1, y2]) ∪ D) \ D , and for this it is
sufficient to show that |Y0| < 1 on {|x| = 1} ∪X([y1, y2]). But by (i) it is immediate that
|Y0| < 1 on {|x| = 1}, and by (ii) we get that Y0(X([y1, y2])) = [y1, y2], a segment which
is known to belong to the unit disc, thanks to Subsection 3.2. In this way, the maximum
modulus principle directly entails that |Y0| < 1 on the domain (GX([y1, y2])∪D) \D .

Proof of Theorem 5. We are going to explain here the continuation procedure only for
c(x)Q(x, 0), since the case of c̃(y)Q(0, y) is similar.

Evaluating (2) at any (x, y) ∈ {|x| 6 1, |y| 6 1} such that
∑

(i,j)∈S x
iyj −1/z = 0 leads

to c(x)Q(x, 0)+c̃(y)Q(0, y)−zδQ(0, 0)−xy = 0. Therefore, if x ∈ {x ∈ C : |Y0(x)| < 1}∩D ,
we obtain

c(x)Q(x, 0) + c̃(Y0(x))Q(0, Y0(x)) − zδQ(0, 0) − xY0(x) = 0. (14)
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Since {x ∈ C : |Y0(x)| < 1}∩D is non-empty, see Lemma 3 (iii), both functions c(x)Q(x, 0)
and c̃(Y0(x))Q(0, Y0(x)) as well as the identity (14) can be extended up to the connected
component of {x ∈ C : |Y0(x)| < 1} ∪ D containing {x ∈ C : |Y0(x)| < 1} ∩D , by analytic
continuation.

As a consequence, we now need to show that GX([y1, y2])∪D is connected and included
in {x ∈ C : |Y0(x)| < 1} ∪ D , since GX([y1, y2]) ∪ D has clearly a non-empty intersection
with {x ∈ C : |Y0(x)| < 1} ∩ D . These facts are exactly the objects of Lemma 3 (iv) and
(v).

It thus remains for us only to prove that this continuation of c(x)Q(x, 0) is holomorphic
on GX([y1, y2]) ∪ D .

— On D this is immediate, c(x)Q(x, 0) being therein defined by its power series.

— On (GX([y1, y2]) ∪ D) \ D , it follows from (14) that the function c(x)Q(x, 0) may
possibly have the same singularities as Y0—namely, the branch cuts [x1, x2], [x3, x4]—
and is holomorphic elsewhere. But these segments do not belong to (GX([y1, y2]) ∪
D) \ D : with Subsection 3.2 we have that [x1, x2] is included in D , and by Lemma
2 we obtain that [x3, x4] is exterior to GX([y1, y2]).

The continuation of c(x)Q(x, 0) is thus holomorphic on GX([y1, y2]) ∪ D and Theorem 5
is proved.

Let us note that in [17], we also introduced a procedure of continuation of c(x)Q(x, 0)
and c̃(y)Q(0, y). We have chosen to present here another way: it is weaker since Theorem 5
yields a continuation of the generating functions up to GX([y1, y2])∪D and GY ([x1, x2])∪D

and not up to C \ [x3, x4] and C \ [y3, y4] as in [17]; it is, however, more elementary,
because this continuation is performed directly on the complex plane, rather than on a
uniformization of the set given by the zeros of the kernel (4) as in [17].

5 Uniformization

This part serves to introduce notions that are crucial to Section 6. It amounts to studying
closely the set of zeros of the kernel (4), namely,

K = {(x, y) ∈ C
2 :
∑

(i,j)∈S x
iyj − 1/z = 0}.

Proposition 2. For any non-singular walk, K is a Riemann surface of genus one.

Proof. Subsection 3.2 yields that
∑

(i,j)∈S x
iyj − 1/z = 0 if and only if [b(x) + 2a(x)y]2 =

d(x). But the Riemann surface of the square root of a third or fourth-degree polynomial
with distinct roots has genus one, see, e.g., [15]. Therefore the genus of K is also one.

Remark 4. Note that Proposition 2 cannot be extended to the singular walks. Indeed, it
follows from Subsection 3.2 that for these walks, the polynomial d has a double root at 0
and two simple roots at x3 and x4, and it is well known, see [15], that the Riemann surface
of the square root of such a polynomial has genus zero. We also notice that Proposition
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2, implicitly stated for z ∈]0, 1/k[, cannot be extended to z = 0 or z = 1/k in the general
case. Indeed, for z = 0 we have d(x) = x2 and the Riemann surface of the square root of
this polynomial is a disjoint union of two spheres, see [15]. For z = 1/k, it may happen that
the genus of K is still one, but it may also happen that it becomes zero. In fact, [9, Part
2.3 and Part 6.1] entails that it equals zero if and only if the two equalities

∑
(i,j)∈S i = 0

and
∑

(i,j)∈S j = 0 hold.

With Proposition 2, it is immediate that K is isomorphic to a certain torus C/Ω. A
suitable lattice Ω—in fact the only possible lattice, up to a homothetic transformation—is
made explicit in [9, Part 3.1 and Part 3.3], namely, Ω = ω1Z + ω2Z, with

ω1 = ı

∫ x2

x1

dx

[−d(x)]1/2
, ω2 =

∫ x3

x2

dx

[d(x)]1/2
. (15)

Using the same arguments as in [9, Part 3.3], we immediately obtain in addition the
uniformization

K = {(x(ω), y(ω)), ω ∈ C/Ω},

with
x(ω) = F (℘(ω), ℘′(ω)), y(ω) = G(℘(ω), ℘′(ω)), (16)

where F (p, p′) = x4 + d′(x4)/[p − d′′(x4)/6] and G(p, p′) = [−b(F (p, p′)) + d′(x4)p
′/(2[p −

d′′(x4)/6]
2)]/[2a(F (p, p′))] if x4 6= ∞, while F (p, p′) = [6p − d′′(0)]/d′′′(0) and G(p, p′) =

[−b(F (p, p′)) − 3p′/d′′′(0)]/[2a(F (p, p′))] if x4 = ∞, and where ℘ denotes the Weierstrass
elliptic function with periods ω1, ω2. By definition, see [15, 24], ℘ is equal to

℘(ω) =
1

ω2
+

∑

(p1,p2)∈Z2\(0,0)

[
1

(ω − p1ω1 − p2ω2)2
−

1

(p1ω1 + p2ω2)2

]
,

and it is well known that it satisfies the differential equation

℘′(ω)2 = 4[℘(ω) − ℘(ω1/2)][℘(ω) − ℘([ω1 + ω2]/2)][℘(ω) − ℘(ω2/2)]. (17)

The main motivation for introducing a uniformization of K is to render the roles of
x and y more symmetric. This is why we now go one step further, and we look for the
location on C, or equivalently on the fundamental parallelogram [0, ω2[× [0, ω1/ı[, of the
reciprocal images through the uniformization (16) of the important cycles that are the
branch cuts [x1, x2], [x3, x4], [y1, y2] and [y3, y4]. For the first two, we introduce

f(t) =

{
d′′(x4)/6 + d′(x4)/[t− x4] if x4 6= ∞,

d′′(0)/6 + d′′′(0)t/6 if x4 = ∞.
(18)

It is such that x(ω) = f−1(℘(ω)), see (16). Further, it follows from the construction that
℘(ω1/2) = f(x3), ℘([ω1 + ω2]/2) = f(x2) and ℘(ω1/2) = f(x1); for a proof, see [9, Part
3.3]. As for [y1, y2] and [y3, y4], we need to introduce a new period, namely,

ω3 =

∫ x1

X(y1)

dx

[d(x)]1/2
. (19)

In [9, Part 3.3], the following is shown.
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Lemma 4. The period ω3 lies in ]0, ω2[.

By using the same analysis of [9, Part 5.5], we obtain the following pleasing result.

Proposition 3. We have

x−1([x1, x2]) = [0, ω1[+ω2/2, x−1([x3, x4]) = [0, ω1[,

y−1([y1, y2]) = [0, ω1[+(ω2 + ω3)/2, y−1([y3, y4]) = [0, ω1[+ω3/2.

In our opinion, the latter result justifies the introduction of the uniformization: indeed,
on the fundamental parallelogram, the quartic curves X([y1, y2]) and Y ([x1, x2]) just
become segments! Proposition 3 in particular asserts that ω3 naturally appears when
locating the branch cuts on the uniformization space. In fact, this period also plays
a crucial role with respect to the group W = 〈Ψ,Φ〉 defined in (5). Indeed, the two
birational transformations Ψ and Φ of C

2 can a fortiori be understood as automorphisms
of K , and we recall [9, Part 3.1] that thanks to (16), these automorphisms of K become
on C/Ω the automorphisms ψ and φ with the following expressions:

ψ(ω) = −ω, φ(ω) = −ω + ω3. (20)

They satisfy ψ ◦ ψ = φ ◦ φ = id, x ◦ ψ = x, y ◦ ψ = [c(x)/a(x)]/y, x ◦ φ = [c̃(y)/ã(y)]/x
and y ◦ φ = y.

Our goal now is to find a characterization of the finiteness of the group in terms of
ω3. We shall obtain it in Proposition 5. The latter requires us the preliminary result
hereunder.

Lemma 5. We have ω3 < ω2/2 (resp. ω3 = ω2/2, ω3 > ω2/2) if and only if the covariance
(6) of the walk is negative (resp. zero, positive).

Proof. We just give here the sketch of the proof; for the details, we refer to [18, Section 4].
The first step consists in noticing that ω3 = ω2/2 if and only if the covariance equals zero,
which follows from showing that both assertions are equivalent to having a group of order
4. This essentially implies that it suffices to find one walk for which we simultaneously have
ω3 < ω2/2 (resp. ω3 < ω2/2) and a negative (resp. positive) covariance. This verification
is performed in [18] for the walk {E,S,NW} (resp. {NE,S,W}).

It could appear surprising to introduce the covariance here. As we will see throughout,
its sign actually strongly influences the behavior of many quantities, see Theorem 2, itself
summarized in Figure 6. If the group W = 〈Ψ,Φ〉 is finite, we can give the following
important precisions to Lemma 5.

Proposition 4. For any k > 2, the group W = 〈Ψ,Φ〉 has order 2k if and only if there
exists an integer q ∈ {1, . . . , k− 1}, independent of z and having no common divisors with
k, such that for all z ∈]0, 1/k[, ω3 = (q/k)ω2.

Proof. We first prove the converse sense and for this purpose, we reintroduce the variable
z in the notations.
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Assume first that for some value z ∈]0, 1/k[, one has ω3/ω2 = q/k, where the integers
q and k have no common divisors. This means that 〈ψ, φ〉 is a finite group of order 2k,
see (20), which is equivalent to the fact that 〈Ψ,Φ〉 has order 2k on K —but a priori not
on C

2. This implies that for any x ∈ C, the equalities (Φ ◦Ψ)◦k(x, Y0(x; z)) = (x, Y0(x; z))
and (Φ ◦ Ψ)◦k(x, Y1(x; z)) = (x, Y1(x; z)) hold.

Suppose now that for any value z ∈]0, 1/k[, the quantity ω3/ω2 is this same rational
number q/k. In particular for any fixed x ∈ C and all z ∈]0, 1/k[, (Φ ◦Ψ)◦k(x, Y0(x; z)) =
(x, Y0(x; z)). In other words, for any fixed x ∈ C and any y ∈ {Y0(x; z) : z ∈]0, 1/k[},
(Φ ◦ Ψ)◦k(x, y) = (x, y). Since the set {Y0(x; z) : z ∈]0, 1/k[} is not isolated, by analytic
continuation we obtain that for any x ∈ C and any y ∈ C, (Φ ◦ Ψ)◦k(x, y) = (x, y), in
such a way that 〈Ψ,Φ〉 is finite as a group of birational transformations of C

2, of order
less than or equal to 2k.

The group 〈Ψ,Φ〉 is of order exactly 2k because 〈ψ, φ〉 has order 2k and thus we can
find some elements (x, y) of order exactly 2k. This entails the converse sense of Proposition
4.

Suppose now that W = 〈Ψ,Φ〉 has order 2k. The group 〈ψ, φ〉 generated by ψ and φ is
a fortiori finite, of order 2r(z) 6 2k, which means that inf{p > 0 : (φ ◦ψ)◦p = id} = r(z).
With (20) this immediately implies that r(z)ω3 is some point of the lattice ω1Z + ω2Z,
contrary to pω3 for p ∈ {1, . . . , r(z) − 1}. But with Lemma 4 we have ω3 ∈]0, ω2[, so that
we get r(z)ω3 = q(z)ω2, where q(z) ∈ {1, . . . , r(z)− 1} has no common divisors with r(z).

Moreover, thanks to (15) and (19) we know that ω3/ω2 = q(z)/r(z) is a holomorphic
function of z; taking rational values it has to be constant, say ω3/ω2 = q/r. Finally, if
r was strictly smaller than k, then with the first part of the proof we would obtain that
W = 〈Ψ,Φ〉 has also order 2r, and not 2k as assumed, so that r = k and Proposition 4 is
proved.

In particular, since it is proved in [6] that the group W can only have the orders 4, 6,
8 and ∞, Lemma 5 and Proposition 4 immediately lead to the following result.

Proposition 5. The walk is associated with a group W = 〈Ψ,Φ〉 of order 4 if and only
if for all z ∈]0, 1/k[, ω3 = ω2/2. For k ∈ {3, 4}, the walk has a group of order 2k and a
negative (resp. positive) covariance (6) if and only if for all z ∈]0, 1/k[, ω3 = ω2/k (resp.
ω3 = ω2 − ω2/k)).

The location of the reciprocal images of [x1, x2], [x3, x4], [y1, y2] and [y3, y4] through
(16) being known, see Proposition 3, we give in Figure 4 two examples of the parallelogram
[0, ω2[× [0, ω1/ı[ with its important cycles—in addition to the one corresponding to Gessel’s
walk, that can be found in [17, Figure 5].

For the walk {N,E,S,W}, the group has indeed an order equal to 4, and Proposition 5
entails ω3 = ω2/2. Moreover, it is easy to show that in this case X([y1, y2]) = X([y3, y4]) =
Y ([x1, x2]) = Y ([x3, x4]) coincides with the unit circle. In particular, we have x−1({|x| =
1}) = ([0, ω1[+ω2/4)∪ ([0, ω1[+3ω2/4) and y−1({|y| = 1}) = ([0, ω1[)∪ ([0, ω1[+ω2/2). See
on the left in Figure 4.

Further, for the walk {N,E,SE,S,W,NW}, the group has order 6 and the covariance
is negative, hence by Proposition 5 we obtain ω3 = ω2/3. Then by the same arguments
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Figure 4: Examples of the parallelogram [0, ω2[×[0, ω1/ı[ with its important cycles, on the
left for {N,E,S,W} and on the right for {N,E,SE,S,W,NW}

as in the proof of [17, Proposition 26], we obtain the location of the cycles x−1({|x| = 1})
and y−1({|y| = 1} for this walk, namely, x−1({|x| = 1}) = ([0, ω1[+ω2/4)∪([0, ω1[+3ω2/4)
and y−1({|y| = 1} = ([0, ω1[+5ω2/12) ∪ ([0, ω1[+11ω2/12). See on the right in Figure 4.

6 Conformal gluing functions

The main subject of Section 6 is to introduce and to study suitable CGFs (see Definition 1)
w and w̃ for the sets GX([y1, y2]) and G Y ([x1, x2]) in all the 74 non-degenerate cases. For
this purpose, we first find explicitly, in Subsection 6.1, all appropriate CGFs for both sets
above (essentially thanks to the uniformization studied in Section 5), and in particular we
prove Theorem 6. Then we observe that the behavior of these CGFs is strongly influenced
by the finiteness of the group W defined in (5). Accordingly, we study separately, in
Subsections 6.2 and 6.3, the walks having an infinite and then a finite group, and we show
Theorems 2 and 3.

6.1 Finding all suitable conformal gluing functions

The book [9] provides explicitly one CGF, and it does so only for z = 1/k. We begin
here by generalizing this result and by finding the expressions of all possible CGFs for
the sets X([y1, y2]) and Y ([x1, x2]) for any value of z. Start by quoting [9, page 126]: if
we note ŵ = w ◦ x or ŵ = w ◦ y with x, y defined in (16), then the problem of finding
a CGF w is equivalent to finding a function ŵ meromorphic in [ω2/2, (ω2 + ω3)/2] × R,
ω1-periodic, with only one simple pole in the domain [ω2/2, (ω2 + ω3)/2] × [0, ω1/ı] (this
domain is hatched on the left in Figure 5), and satisfying to the next two conditions:

(i) For all ω ∈ [−ω1/2, ω1/2], ŵ([ω1 + ω2]/2 + ω) = ŵ([ω1 + ω2]/2 − ω);

(ii) For all ω ∈ [−ω1/2, ω1/2], ŵ([ω1 + ω2 + ω3]/2 + ω) = ŵ([ω1 + ω2 + ω3]/2 − ω).

Setting w(ω) = ŵ([ω1 + ω2]/2 + ω), the problem mentioned above becomes that of
finding a function w meromorphic in [0, ω3/2]×R, ω1-periodic, with only one simple pole
in the domain [0, ω3/2] × [−ω1/(2ı), ω1/(2ı)], and such that:

(i’) For all ω ∈ [−ω1/2, ω1/2], w(ω) = w(−ω);
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Figure 5: Domains of definition of ŵ (on the left) and w (on the right)

(ii’) For all ω ∈ [−ω1/2, ω1/2], w(ω3/2 + ω) = w(ω3/2 − ω).

Now we notice that by analytic continuation, (i’) allows us to continue the function w
from [0, ω3/2] × R up to [−ω3/2, ω3/2] × R, and next, also by analytic continuation, (ii’)
enables us to continue w as a ω3-periodic function—since evaluating (ii’) at ω3/2 + ω and
using (i’) lead to w(ω3 +ω) = w(ω). In particular, the problem of finding the CGF finally
becomes the following: find w an even elliptic function with periods ω1, ω3 with only two
simple poles at ±p (or one double pole at p if p and −p are congruent modulo the lattice)
in the parallelogram [−ω3/2, ω3/2] × [−ω1/(2ı), ω1/(2ı)], see on the right in Figure 5.

Let ℘1,3 denote the Weierstrass elliptic function with periods ω1, ω3. A crucial fact for
us is the following.

Lemma 6. Let p ∈ [−ω3/2, ω3/2] × [−ω1/(2ı), ω1/(2ı)].

— If p = 0, the solutions of the problem above are {α+ β℘1,3(ω) : α, β ∈ C}.

— If p 6= 0, the solutions are {α+ β/[℘1,3(ω) − ℘1,3(p)] : α, β ∈ C}.

Proof. It is a well-known fact, see, e.g., [15, Theorem 3.11.1 and Theorem 3.13.1], that
an even elliptic function with periods ω1, ω3 having 2q poles in a period parallelogram is
necessarily a rational function of order q of ℘1,3. In our case, w, which has exactly two
poles of order one or one pole of order two in [−ω3/2, ω3/2] × [−ω1/(2ı), ω1/(2ı)], is thus
a fractional linear transformation of ℘1,3.

— In particular, it is immediate that p = 0 yields w(ω) = α+ β℘1,3(ω).

— If p 6= 0 then ℘1,3(p) 6= ∞, and we get w(ω) = [α℘1,3(ω) + γ]/[℘1,3(ω) − ℘1,3(p)]. �

Since by (16) we have x(ω) = f−1(℘(ω)) with f defined in (18), applying Lemma 6 for
p = 0 implies the following theorem.

Theorem 6. The functions

w(t) = ℘1,3(℘
−1(f(t)) − [ω1 + ω2]/2), w̃(t) = w(X0(t)), (21)

are suitable CGFs for the sets X([y1, y2]) and Y ([x1, x2]), respectively.
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Remark 5. By (16) we have x(ω) = X0(y(ω)) so that, of course, w̃(t) = ℘1,3(y
−1(t) −

[ω1 + ω2]/2).

The CGF w is therefore equal to the Weierstrass elliptic function with periods ω1, ω3

evaluated at a translation of the reciprocal of the Weierstrass elliptic function with periods
ω1, ω2. It turns out that the theory of transformation of elliptic functions—the basic result
of which being here recalled in (22) below—entails that this expression admits a wonderful
simplification if ω3/ω2 is rational.

But Proposition 4 shows that the latter condition is related to the group W = 〈Ψ,Φ〉
defined in (5), since it states that ω3/ω2 is rational for all z ∈]0, 1/k[ if and only if the
group W is finite. Consequently, we consider separately, in Subsections 6.2 and 6.3 below,
the study of w according to the finiteness of this group. It is worth noting that, to the
best of our knowledge, these upcoming results on an in-depth study of the CGFs are new,
even for z = 1/k.

Remark 6. Given a CGF u for a generic set C , any of its fractional linear transformations
[αu+β]/[γu+δ] with α, β, γ, δ ∈ C such that α, γ 6= 0 is also a CGF for C , see Definition 1f.
They are actually the only ones, see [19, Chapter 2] for a proof using Fredholm operators.
Applying Lemma 6 to any value of p enables us to recover this in an elementary way. This
has also two interesting consequences. First, this means that Theorem 6 gives the explicit
expression of all possible CGFs. Also, this implies that Theorem 2 can be extended to
any CGFs; in other words, the nature of the CGFs is intrinsic, in the sense that it only
depends on the kernel.

Remark 7. We recall from [18, Section 4] the following global properties of the CGFs.
The function w (resp. w̃) defined by (21) is meromorphic on C \ [x3, x4] (resp. C \ [y3, y4]).
It has therein one simple pole, at x2 (resp. Y (x2)), and ⌊ω2/(2ω3)⌋

g double poles at some
points lying on the segment ]x2, x3[∩(C \ GX([y1, y2])) (resp. ]y2, y3[∩(C \ GY ([x1, x2]))).

Before concluding this part, we state the following properties of the ℘-Weierstrass
function, which will be of the highest significance for the proof of Theorem 3.

Lemma 7. The following results on the ℘-Weierstrass elliptic function hold:

— Let ℘ be a Weierstrass elliptic function with certain periods ω, ω̂, and let p be some
positive integer. The Weierstrass elliptic function with periods ω, ω̂/p can be written
in terms of ℘ as

℘(ω) +

p−1∑

k=1

[℘(ω + kω̂/p) − ℘(kω̂/p)]. (22)

— Let ℘ be a Weierstrass elliptic function. We have the addition theorem:

∀ω, ω̃, ℘(ω + ω̃) = −℘(ω) − ℘(ω̃) +
1

4

[
℘′(ω) − ℘′(ω̃)

℘(ω) − ℘(ω̃)

]2

. (23)

fIncidentally, we note that the quantity ∂tu(t)/[u(t)−u(x)] appearing in Theorem 1 is invariant through
the transformation u 7→ [αu + β]/[γu + δ], as soon as α, γ 6= 0.

gFor r ∈ R, ⌊r⌋ denotes the lower integer part of r, i.e., the unique p ∈ Z such that p 6 r < p + 1.
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— For any integer r > 0, there exists a polynomial pr(x), with dominant term equal to
(2r + 1)!xr+1, such that

℘(2r) = pr(℘). (24)

Proof. Equality (22) is shown, e.g., in [24, page 456]. Identity (23) is most classical, and
can be found in [15, 24]. As for Equation (24), differentiating (17) gives ℘′′ = 6℘2 − g2/2
(with obvious notations), and higher derivatives of even order are clearly expressible as in
(24).

6.2 Case of an infinite group

In this subsection we concentrate on the case of an infinite group of the walk, and we
show the part of Theorem 2 concerning the infinite group case. Precisely, we prove that
for any z ∈]0, 1/k[ such that ω3/ω2 is irrational, then the CGFs w and w̃ defined in (21)
are non-holonomic. Before starting the proof, we notice that for a walk admitting an
infinite group, it may happen that ω3/ω2 is rational for certain values of z, but ω3/ω2 also
has to take irrational values. Indeed, if ω3/ω2 was rational for all z ∈]0, 1/k[, then ω3/ω2

would be a rational constant, since with (15) and (19), the quantity ω3/ω2 is holomorphic
of z, and Proposition 4 would then entail that the group is finite.

Proof. Let
v(t) = w(f−1(t)) = ℘1,3(℘

−1(t) − [ω1 + ω2]/2).

The class of holonomic functions being closed under algebraic substitutions, see, e.g., [11],
it is enough to prove that v is non-holonomic. Indeed, on the one hand f is rational, and
on the other hand w̃ = w(X0), where X0 is algebraic. We are going to show first that v
is non-algebraic, and then we will prove that if v is holonomic then it has to be algebraic,
in such a way that v will be non-holonomic.

Suppose thus that v is algebraic. In other words, we assume that there exist
polynomials a0, . . . , aq with aq 6= 0, such that

∑q
k=0 ak(t)v(t)

k = 0. By definition of
v and since the Weierstrass elliptic function is non-algebraic, at least one of a0, . . . , aq

is non-constant. Evaluating the last equality at t = ℘(ω + [ω1 + ω2]/2) and using the
definition of v, we get

∑q
k=0 ak(℘(ω+ [ω1 + ω2]/2))℘1,3(ω)k = 0. Since ℘(ω+ [ω1 +ω2]/2)

is a rational transformation of ℘(ω), see the addition theorem (23), the previous equality
yields the identity P (℘(ω), ℘1,3(ω)) = 0, where P is a certain polynomial, which is non-
constant with respect to the two variables.

Now we recall [15, 24] that ℘ (resp. ℘1,3) has poles at every point of the lattice ω1Z+ω2Z

(resp. ω1Z + ω3Z). Moreover, it is well known that ω2Z + ω3Z is dense in R if ω3/ω2 is
irrational. In particular, if ω3/ω2 is irrational then the poles of P (℘(ω), ℘1,3(ω)) are not
isolated, which contradicts the principle of analytic continuation.

Suppose now that v is holonomic, i.e., that there exist polynomials a0, . . . , aq with
aq 6= 0 such that

∑q
k=0 ak(t)v

(k)(t) = 0. We show that, in this case,

q∑

k=0

ak(t)v
(k)(t) = U(t, v(t)) + V (t, v(t))v′(t), (25)
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where the dependence of U, V with respect to the first (resp. second) variable is rational
(resp. polynomial), and where at least one of U, V is non-zero. These facts will entail the
algebraicity of v. Indeed:

— If V is identically zero, then U has to be non-zero. Moreover, since U is rational
with respect to the first variable and since with (25) we have U(t, v(t)) = 0, U has
to be non-constant with respect to the second variable, and (25) immediately yields
that v is then algebraic.

— Suppose now that V is not identically zero. From (25) and the supposed holonomicity
of v it follows that U(t, v(t))2 − V (t, v(t))2v′(t)2 = 0. Also, noting g the derivative
of ℘−1 (if g2 and g3 are the invariantsh of ℘, we have g(t) = 1/[4t3 − g2t− g3]

1/2), we
obtain v′(t)2 = g(t)2℘′

1,3(℘
−1(t)− [ω1 +ω2]/2)

2. But ℘′2
1,3 = 4℘3

1,3 − g2,1,3℘1,3− g3,1,3,
where g2,1,3 and g3,1,3 are the invariants of ℘1,3. Finally, we have that U(t, v(t))2 −
V (t, v(t))2g(t)2[4v(t)3−g2,1,3v(t)−g3,1,3] = 0. This last quantity is a rational function
of the first variable, since g(t)2 is rational, and an odd-degree polynomial in the
second one, in such a way that v is algebraic.

So, it is definitely enough to prove (25). For this we are going to show that for any k > 0,

v(k)(t) = Uk(t, v(t)) + Vk(t, v(t))v
′(t), (26)

where the dependence of Uk (resp. Vk) is rational with respect to the first variable and
polynomial of degree exactly ⌊k/2 + 1⌋ (resp. ⌊(k− 1)/2⌋) with respect to the second one.
Equality (25) will then be an immediate consequence of (26). Indeed, if q is even then by
using (26) in (25) we obtain that the degree of U in v is exactly ⌊q/2 + 1⌋ and U is thus
obviously non-zero. Likewise, if q is odd we get that the degree of V is exactly ⌊(q− 1)/2⌋
and is thus clearly non-zero if q > 3. If q = 1 then we easily make explicit V0 (= 0) and
V1, and we immediately deduce that V is also non-zero.

We now show (26). For k = 0, this is obvious. For k > 1, a straightforward calculation
leads to

v(k)(t) =
k∑

p=1

bp(t)℘
(p)
1,3(℘

−1(t) − [ω1 + ω2]/2),

with bk = g(t)k, bk−1(t) = [k(k − 1)/2]g′(t)g(t)k−2, and for p ∈ {2, . . . , k − 1}, bk−p is a
polynomial in the variables g(t), g′(t), . . . , g(p)(t). Moreover, if p is even then bp clearly is
rational, whereas if p is odd then bp/g is rational. Next, by a repeated use of (24) and by
using that ℘′

1,3(℘
−1(t) − [ω1 + ω2]/2) = v′(t)/g(t), we obtain

v(k)(t) =

k∑

p=1
p even

bp(t)pp/2(v(t)) + v′(t)

k∑

p=1
p odd

[bp(t)/g(t)]p
′
(p−1)/2(v(t)).

With the values of bk and bk−1 given above this immediately yields (26), and therefore
also (25), and finally the fact that v, w and w̃ are non-holonomic.

hThey are defined by g2 = −4[℘(ω1/2)℘([ω1 + ω2]/2) + ℘(ω1/2)℘(ω2/2) + ℘([ω1 + ω2]/2)℘(ω2/2)] and
g3 = 4℘(ω1/2)℘([ω1 + ω2]/2)℘(ω2/2).
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6.3 Case of a finite group

In this subsection, we consider the case of a finite group. We show that w and w̃ are then
algebraic, and we complete the proof of Theorem 2. Moreover, we considerably simplify
the explicit expressions of w and w̃ given in (21) for 22 of the 23 walks having a finite
groupi: see Theorem 3 (i) (resp. (ii) and (iii), (iv)) for the walks admitting a group of
order 4 (resp. 6, 8). Thanks to Proposition 4, we obtain that for the 23 walks having
a finite group, the quantity ω2/ω3 is rational. Moreover, with [6] and Proposition 5, it
is sufficient to consider the cases where ω2/ω3 are equal to 2, 3, 3/2, 4, 4/3. According
to the classification of [6]—recalled here in Figure 6—there are 16, 2, 3, 1, 1 such walks,
respectively.

Finite group of the walk and negative or zero covariance. We first consider the
case of a covariance equal to zero—or equivalently the case ω2/ω3 = 2.

Proof of Theorem 3 (i). Actually, it suffices to show the following identity (specific to the
case ω2/ω3 = 2):

℘1,3(ω − [ω1 + ω2]/2) = −2f(x1) + [f(x2) − f(x3)]
2 ℘(ω) − f(x1)

[℘(ω) − f(x2)][℘(ω) − f(x3)]
. (27)

Indeed, if Equation (27) holds, let us evaluate it at ω = ℘−1(f(t)): with (21) we obtain
that there exist two constants K1 and K2 such that w(t) = K1 +K2[f(t)−f(x1)]/[(f(t)−
f(x2))(f(t)− f(x3))]. But by using the explicit expression (18) of f , it is immediate that
if x4 6= ∞ then w(t) = K1 + K3[(t − x1)(t − x4)]/[(t − x2)(t − x3)], and if x4 = ∞ then
w(t) = K1 +K4[t− x1]/[(t − x2)(t− x3)], K3 and K4 being some non-zero constants.

To prove (27), start by applying (22) for p = 2: we obtain ℘1,3(ω − [ω1 + ω2]/2) =
℘(ω− [ω1+ω2]/2)+℘(ω−ω1/2)−℘(ω2/2). Now, taking the usual notations e1 = ℘(ω1/2),
e1+2 = ℘([ω1 +ω2]/2) and e2 = ℘(ω2/2), we can state the two following particular cases of
the addition formula (23): ℘(ω− [ω1+ω2]/2) = e1+2+[(e1+2−e1)(e1+2−e2)]/[℘(ω)−e1+2]
and ℘(ω−ω1/2) = e1+[(e1−e2)(e1−e1+2)]/[℘(ω)−e1]. In this way and after simplification
we obtain ℘1,3(ω−[ω1+ω2]/2) = e1−e2+e1+2+(e1−e1+2)

2[℘(ω)−e2]/[(℘(ω)−e1)(℘(ω)−
e1+2)]. Finally, by using the equalities e1 = f(x3), e1+2 = f(x2) and e2 = f(x1), see below
(18), as well as e1 + e1+2 + e2 = 0, we immediately obtain (27).

Let us now consider the case of a negative covariance—or equivalently ω2/ω3 equal to
3 or 4. We start with the situation where ω2/ω3 = 3.

Proof of Theorem 3 (ii). First of all, let us give a sketch of the proof. We shall first
show the existence and find the expression of two third-degree polynomials A and B such
that ℘1,3(ω − [ω1 + ω2]/2) = A(℘(ω))/B(℘(ω)). In particular, with (21), we shall then
obtain that w(t) = A(f(t))/B(f(t)). Next we shall consider the two walks {N,SE,W} and
{N,E,SE,S,W,NW} separately.

iThe 23rd model—namely, Gessel’s walk—has already been treated in [17].
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— For the walk {N,SE,W}, we have x4 = ∞ and then A(f(t)) and B(f(t)) are also
third-degree polynomials, see the expression (18) of f . We will show that B(f(t)) =
(t− x2)(t− 1/x2

1/2)2. In addition, if r(t) denotes the rest of the euclidean division
of A(f(t)) by B(f(t)), we will prove that r(t) = (r′′(0)/2)t2 with r′′(0) 6= 0, in such
a way that w(t) = B(f(∞))/A(f(∞)) + (r′′(0)/2)t2/[(t− x2)(t− 1/x2

1/2)2].

— For the walk {N,E,SE,S,W,NW}, we have x4 6= ∞ and then (t − x4)
3A(f(t)) and

(t−x4)
3B(f(t)) are third-degree polynomials. We will show that (t−x4)

3B(f(t)) =
(t − x2)(t − 1/x2

1/2)2. If we denote by r(t) the rest of the euclidean division of
(t−x4)

3A(f(t)) by (t−x4)
3B(f(t)), then we will prove that r(t) = (r′′(0)/2)t(t+1)

with r′′(0) 6= 0 so that w(t) = B(f(∞))/A(f(∞)) + (r′′(0)/2)t(t + 1)/[(t − x2)(t −
1/x2

1/2)2].

Finally, with the explicit formulation of w and the fact that w̃ = w(X0), an elementary
calculation will lead, for each walk, to the expression of w̃ stated in Theorem 3 (ii); this
will conclude the proof.

So we begin by finding explicitly, for both {N,SE,W} and {N,E,SE,S,W,NW}, two
polynomials A and B of degree three such that ℘1,3(ω− [ω1 +ω2]/2) = A(℘(ω))/B(℘(ω)).

Applying (22) with p = 3, we get ℘1,3(ω − [ω1 + ω2]/2) = ℘(ω − [ω1 + ω2]/2) +
℘(ω − ω1/2 − ω2/6) − ℘(ω2/3) + ℘(ω − ω1/2 + ω2/6) − ℘(2ω2/3). Then, using the
addition formula (23) for ℘, noting K = e1+2 − 2℘(ω2/3) − 2℘(ω1/2 + ω2/6), using that
℘(ω1/2+ω2/6) = ℘(ω1/2−ω2/6) and ℘′(ω1/2+ω2/6) = −℘′(ω1/2−ω2/6)—got from the
fact that ℘(ω1/2+ω) is even and ℘′(ω1/2+ω) is odd—we have that ℘1,3(ω− [ω1 +ω2]/2)
equals

(e1+2 − e1)(e1+2 − e2)

℘(ω) − e1+2
− 2℘(ω) +

1

2

℘′(ω)2 + ℘′(ω1/2 + ω2/6)
2

[℘(ω) − ℘(ω1/2 + ω2/6)]2
+K. (28)

With Equations (17) and (28), it is now clear that ℘1,3(ω−[ω1+ω2]/2) can be written as
A(℘(ω))/B(℘(ω)); moreover we can take B(℘(ω)) = (℘(ω)−e1+2)(℘(ω)−℘(ω1/2+ω2/6))

2.
Now we show that ℘(ω1/2+ω2/6) = f(1/x2

1/2). For this we will express ℘(ω1/2+ω2/6)
with respect to z. Since ℘(ω1/2 + ω2/6) = e1 + [(e1 − e2)(e1 − e1+2)]/[℘(ω2/6) − e1] it is
enough to express ℘(ω2/6) with respect to z. For this we will first find ℘(ω2/3) explicitly
and we will then use, for ω = ω2/3, the fact ℘(ω/2) is equal to

℘(ω)+[(℘(ω)−e1)(℘(ω)−e2)]
1/2+[(℘(ω)−e1)(℘(ω)−e1+2)]

1/2+[(℘(ω)−e2)(℘(ω)−e1+2)]
1/2,

see [15, 24]. In other words, for all coefficients in (28) to be explicit with respect to z, it
is enough to find only ℘(ω2/3) in terms of z.

And now we show that for both {N,SE,W} and {N,E,SE,S,W,NW}, ℘(ω2/3) = 1/3.
For this we use the following fact, already recalled in [17]: the quantity x = ℘(ω2/3) is
the only positive root of

x4 − g2x
2/2 − g3x− g2

2/48,

g2 = −4[e1e2 + e1e1+2 + e2e1+2] and g3 = 4e1e2e1+2 being the invariants of ℘. By using
the explicit expressions of e1, e2 and e1+2—see the proof of Theorem 3 (i)—we easily show
that 1/3 is a root of the polynomial above; 1/3 being positive we get ℘(ω2/3) = 1/3.
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Then an elementary calculation leads to ℘(ω1/2+ω2/6) = f(1/x2
1/2). Next with (17)

we also obtain ℘′(ω1/2 + ω2/6) and thus all coefficients in (28) are known in terms of z.
In particular, this is also the case for the polynomials A and B. After a lengthy but easy
calculation we obtain the facts claimed in the items above, and thus Theorem 3 (ii).

Proof of Theorem 3 (iv). This case, concerning ω2/ω3 = 4, could be obtained by applying
(22) for p = 4; the details would be essentially the same as above, so that we omit them.

Finite group of the walk and positive covariance. The only such possible walks
are {NE,S,W}, {N,E,SW}, {N,NE,E,S,SW,W}, as well as Gessel’s walk {E,SW,W,NE}.
The latter has already been considered in [17]: there we have shown that the CGFs w and
w̃ defined by (21) are algebraic (of degree three in t), and we have found their minimal
polynomials.

By using the same key idea as in [17]—namely, a double application of (22)—we are
now going to prove Theorem 3 (iii), i.e., to show that for the three walks {NE,S,W},
{N,E,SW} and {N,NE,E,S,SW,W}, w and w̃ are algebraic (of degree two in t), and to
find their minimal polynomials.

Proof of Theorem 3 (iii). First recall that for the three walks considered here ω2/ω3 = 3/2,
and define the auxiliary period ω4 = ω2/3.

First, with ω4 = ω2/3 and (22), we shall be able to express ℘1,4 as a rational function
of ℘. Moreover, since ω4 = ω3/2 and once again with (22), we shall write ℘1,4 as a rational
function of ℘1,3. As an immediate consequence, ℘1,3 will be an algebraic function of ℘.
Then, with (21) and the addition formula (23), we shall obtain that the CGF w defines
an algebraic function of t.

Rational expression of ℘1,4 in terms of ℘. By using exactly the same arguments as in the
proof of Theorem 3 (ii), we obtain the following three facts: firstly ℘1,4(ω − [ω1 + ω2]/2)
is equal to (28); secondly ℘(ω2/3) = 1/3; and thirdly the expressions of all coefficients
in (28) with respect to z are explicit. This way, we conclude that there exist K1 and K2

which depend only on z—and could be made explicit—such that

℘1,4(x
−1(t) − [ω1 + ω2]/2) = K1 +

K2u(t)

[t− x2][t− 1/x2
1/2]2

, (29)

with u(t) as described in the statement of Theorem 3 (iii).

Rational expression of ℘1,4 in terms of ℘1,3. Applying, as in the proof of Theorem 3 (i),
the identity (22) for p = 2, we obtain that ℘1,4(ω) = ℘1,3(ω)+℘1,3(ω+ω3/2)−℘1,3(ω3/2).
Noting then e1,1,3 = ℘1,3(ω1/2), e1+3,1,3 = ℘1,3([ω1+ω3]/2) and e3,1,3 = ℘1,3(ω3/2) we have
℘1,3(ω + ω3/2) = e3,1,3 + [(e3,1,3 − e1,1,3)(e3,1,3 − e1+3,1,3)]/[℘1,3(ω) − e3,1,3]. In particular,
we immediately obtain that

℘1,3(ω)2−[e3,1,3+℘1,4(ω)]℘1,3(ω)+[(e3,1,3−e1,1,3)(e3,1,3−e1+3,1,3)+e3,1,3℘1,4(ω)] = 0. (30)

Therefore, once the expressions of e1,1,3, e1+3,1,3 and e3,1,3 will be known explicitly,
Equations (21), (29) and (30) will immediately entail Theorem 3 (iii).

25



It thus remains for us to find explicitly e1,1,3, e1+3,1,3 and e3,1,3. This will be a
consequence of the possibility of expanding ℘1,4 in two different ways.

First, we saw above that ℘1,4(ω) = ℘1,3(ω)+[(e3,1,3−e1,1,3)(e3,1,3−e1+3,1,3)]/[℘1,3(ω)−
e3,1,3], so that by using the expansion of ℘1,3 at 0, namely, ℘1,3(ω) = 1/ω2 +
g2,1,3ω

2/20 + g3,1,3ω
4/28 + O(ω6), g2,1,3 and g3,1,3 being the invariants of ℘1,3, as well

as the straightforward equality (e3,1,3 − e1,1,3)(e3,1,3 − e1+3,1,3) = 3e3,1,3
2 − g2,1,3/4, we get

℘1,4(ω) = 1/ω2 + [3e3,1,3
2 − g2,1,3/5]ω

2 + [g3,1,3 + 3e3,1,3
3 − g2,1,3e3,1,3/4]ω

4 +O(ω6). (31)

Second, by applying the identity (22) for p = 3 we obtain ℘1,4(ω) = −℘(ω)+ [℘′(ω)2 +
℘′(ω2/3)

2]/[2(℘(ω) − ℘(ω2/3))] − 4℘(ω2/3). Using that ℘(ω2/3) = 1/3 as well as (17)
yields

℘1,4(ω) = 1/ω2 + [2/3 − 9g2/20]ω
2 + [10/27 − g2/2 − 27g3/28]ω

4 +O(ω6). (32)

By identifying the expansions (31) and (32) we obtain the expressions of g2,1,3 and
g3,1,3 in terms of g2, g3 and e3,1,3.

In addition, e3,1,3 is obviously a solution of 4e3,1,3
3 − g2,1,3e3,1,3 − g3,1,3 = 0. If we use

the expressions of g2,1,3 and g3,1,3 obtained just above, we conclude that e3,1,3
3 +[9g2/16−

5/6]e3,1,3 +[35/108− 27g3/32− 7g2/16] = 0. We can solve this equation (we recall that g2
and g3 are known explicitly with respect to z) and, this way, we get e3,1,3. Next we obtain
g2,1,3 and g3,1,3, or, equivalently, e1,1,3 and e1+3,1,3. In particular, the expansion (30) is
now completely known and Theorem 3 (iii) is proved.

7 Conclusions and perspectives

To conclude, we would like to mention some open problems and perspectives related to
this paper.

— In the finite group case, finding the way to generate a vanishing differential equation
for the counting function starting from Theorem 1 is an open problem; on the other
hand, it is certainly possible to verify a posteriori that the function satisfies a certain
differential equation.

— In the infinite group case, it is an open problem to find the asymptotic, as n→ ∞, of
qi,j,n; see in particular the conjectures of Bostan and Kauers [3] on the total numbers
of walks

∑
i,j>0 qi,j,n. The singularity analysis of the expression of Q(x, y; z) obtained

in Theorem 1—generically delicate, see [22, Chapter F]—should lead to these results.

— Last but not least, proving from Theorem 1 the conjecture of Bousquet-Mélou and
Mishna—namely, that in the infinite group case, Q(x, y; z) is non-holonomic—is also
an open problem. However, everything suggests that this conjecture is true—like the
fact that all known examples of infinite group [1, 21] have non-holonomic counting
functions, or else the link, suggested by Figure 6, between the nature of Q(x, y; z)
and that of w(x; z) and w̃(y; z). A way to prove this conjecture consists in studying
precisely, via Theorem 1, the singularities of Q(x, y; z).
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Group Covariance Walks Nature of Q Nature of w and w̃

holonomic rational
4 = 0 and 14 others [6] [6, 10] [Theorems 2 and 3 (i)]

6 < 0
holonomic

[6, 10]
rational

[Theorems 2 and 3 (ii)]

8 < 0
holonomic

[6, 10]
rational

[Theorems 2 and 3 (iv)]

6 > 0
algebraic
[6, 10]

algebraic
[Theorems 2 and 3 (iii)]

8 > 0
algebraic
[4, 10]

algebraic
[17]

= 0
< 0 non-holonomic

∞ > 0 and 50 others [6] ? [Theorem 2]

Figure 6: Comparison a posteriori between the classification of the 74 non-singular walks
according to the nature of the CGFs w and w̃ and the classification (still incomplete)
according to the nature of the series Q, obtained from [4, 6, 10]
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