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Counting walks in a quadrant : a unified

approach via boundary value problems

Kilian Raschel∗

March 10, 2010

Abstract

The aim of this article is to introduce a unified method for giving explicit integral
representations of the trivariate generating function of the number of paths for walks
with small steps confined in a quadrant. For a number of such walks, this yields for
the first time an explicit expression of this counting function. Moreover, the nature of
the integrand of the integral formulations obtained here is shown to be very directly
dependent on the finiteness of a well-known and naturally attached group of birational
transformations.

Keywords : lattice walks, generating function, Riemann-Carleman boundary value problem,
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1 Introduction and main results

The enumeration of planar lattice walks is a classical topic in combinatorics. For a given
set S of steps, it is a matter of counting the number of paths with jumps in S, starting and
ending at some arbitrary points in a certain time and eventually restricted to some regions
of the plane. A first natural question is simply : how many such paths exist ? A second
question concerns the nature of the associated generating function : is it rational, algebraic,
holonomic (i.e. solution of a linear differential equation with polynomial coefficients) or
non-holonomic ?

For instance, if no restriction on the paths is made, it is well-known and easy to make
explicit the counting generating function which is rational. As an other example, if the
walks are supposed to remain in a half-plane, then the generating function can also be
made explicit and is algebraic, see e.g. [BMP03].

It was next natural to consider the walks confined in the intersection of two half-
planes, as the quadrant Z

2
+. The situation seemed then more multifarious : some walks

admit an algebraic generating function, see e.g. [FH84] and [Ges86] for the walk with
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steps set S = {(−1, 0), (1, 1), (0,−1)} and starting at (0, 0), while some others admit a
counting function that is even not holonomic, see e.g. [BMP03] for the walk with steps set
S = {(−1, 2), (2,−1)} and starting at (1, 1). It appeared therefore interesting to focus on
these walks staying in Z

2
+.

This is how that M. Bousquet-Mélou and M. Mishna have very recently in [BMM09]
initiated a systematic study of the walks confined in Z

2
+, starting at the origin and

having small steps, which means that the set of admissible steps S is included in
{(i, j) : |i|, |j| ≤ 1} \ {(0, 0)}.

Figure 1: Walks with small steps confined in the quadrant Z
2
+

There are obviously 28 such models. After eliminating the trivial models as well as
the ones intrinsic to the half-plane and taking account of the fact that some models are
obtained by symmetry starting from other ones, M. Bousquet-Mélou and M. Mishna show
that it remains 79 inherently different problems to study – we will often refer to these 79
walks and to their tables stated in [BMM09].

A common starting point for the study of these 79 walks is the following : denoting
by q(i, j, k) the number of paths confined in Z

2
+, starting at (0, 0) and ending at (i, j) in

time k, their generating function

Q(x, y, z) =
∑

i,j,k≥0

q(i, j, k)xiyjzk (1)

verifies the functional equation (proved in [BMM09])

xyz



∑

(i,j)∈S

xiyj − 1/z


Q(x, y, z) = c(x, z)Q(x, 0, z)+ c̃(y, z)Q(0, y, z)− zδQ(0, 0, z)−xy,

(2)
where we have noted c(x, z) = zx

∑
(i,−1)∈S x

i, c̃(y, z) = zy
∑

(−1,j)∈S y
j and δ = 1 if

(−1,−1) ∈ S, δ = 0 otherwise. If n = #S is the number of steps, then the equality (2) is
valid at least on {|x| ≤ 1, |y| ≤ 1, |z| < 1/n}, since obviously q(i, j, k) ≤ nk.

In this way, for answering both questions stated at the very beginning of this article
it is enough to solve (2) and to study the expression of (1) so obtained.

It turns out that a key idea for examining Equation (2) is to consider some group,
introduced in a probabilistic context in [FIM99] and called there the group of the walk.
This is a group of birational transformations leaving invariant the steps generating function∑

(i,j)∈S x
iyj, and more precisely this is the group W = 〈Ψ,Φ〉 generated by

Ψ(x, y) =

(
x,

∑
(i,−1)∈S x

i

∑
(i,+1)∈S x

i

1

y

)
, Φ(x, y) =

(∑
(−1,j)∈S y

j

∑
(+1,j)∈S y

j

1

x
, y

)
.
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Obviously Ψ ◦ Ψ = Φ ◦ Φ = id and W is a dihedral group – of order even and larger than
four. In [BMM09] is calculated this order for each of the 79 cases : 23 walks admit a finite
group (and then of order four, six or eight) and the 56 others have an infinite group.

For the 23 walks with finite group, the answers to both questions (explicit expression
and nature of the function (1)) in which we are interested have been given very recently.
Indeed, in the rather voluminous paper [BMM09] are solved successfully 22 of the 23
models associated with a finite group : the series (1) is made explicit and is shown to be
either algebraic or transcendental but holonomic. As for the 23th walk, known as Gessel’s
walk, A. Bostan and M. Kauers have given in [BK09] a computer-aided proof of the fact
that the function (1) is algebraic. And even more, using a powerful computer algebra
system, they have made explicit minimal polynomials. Thanks to these polynomials,
M. van Hoeij has then managed to express the function (1) by radicals, see the appendix
of [BK09]. Before the latter result was public, we have given in [KR09a] an explicit
integral representation of the generating function (1), without computer help. Moreover,
in the work in preparation [BCK+10], A. Bostan et al. obtain integral representations
of the function (1) for the 23 walks having a finite group, by using a mathematical and
algorithmic method, based on creative telescoping and on the resolution of differential
equations of order two in terms of hypergeometric functions.

On the other hand, only two cases of the 56 walks having an infinite group have
been solved : in [MR09] M. Mishna has considered the walks with steps sets S =
{(−1, 1), (1, 1), (1,−1)} and S = {(−1, 1), (0, 1), (1,−1)}, see at the left of Picture 2 below,
has made explicit the series (1) and has shown that in both cases it is non-holonomic.

The aim of this article is to introduce a unified approach giving an explicit expression
of the generating function (1) for any of the 79 walks.

For 54 of the 56 walks with an infinite group, this result is new – up to our knowledge.
This article also gives rise, after the work [KR09a] on Gessel’s walk, to write integral
representations of the function (1) for the 22 other walks with a finite group. We will
show, besides, that the finiteness of the group and the sign of the covariance of S act very
directly on the nature (rational, algebraic, holonomic, non-holonomic) of the functions in
these integral representations.

The approach that we are going to use here is not the same according to the walks
under consideration are, or not, singular – by singular we mean here that none of the steps
(0,−1), (−1,−1), (−1, 0) belongs to S.

Figure 2: The five singular walks in the classification of [BMM09]
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In order to achieve our aim for the non-singular walks – this concerns the 23 walks
having a finite group and 51 of the 56 ones attached to an infinite group, see the tables
stated in [BMM09] –, we will here generalize up to three variables x, y, z the profound
analytic approach developed in [FIM99] by G. Fayolle, R. Iasnogorodski and V. Malyshev
for two variables x, y. To summarize, starting from the functional equation (2) we will show
that c(x, z)Q(x, 0, z) and c̃(y, z)Q(0, y, z) verify boundary value problems of Riemann-
Carleman type ; next, transforming them into boundary value problems of Riemann-
Hilbert type by use of conformal gluing functions and solving these new problems, we will
deduce the announced integral representation of (1). Moreover, we will here study in-
depth these conformal gluing functions, their analysis being just sketched out in [FIM99].
The study of these functions, that will use a uniformization of the Riemann surface{
(x, y) ∈ C

2 :
∑

(i,j)∈S x
iyj − 1/z = 0

}
given by the zeros of the kernel and fine properties

of the Weierstrass elliptic functions, will imply that the finiteness of the group and the
sign of the covariance of S are decisive quantities for the analysis of these walks.

For the 5 singular walks, the curves associated with the boundary value problems above
become degenerated into a point and the previous arguments will not work anymore. But
more easily, and once again starting from (2), we will be able in this case to make explicit
a series representation of the function (1) .

We are now going to state the main results of this article. But first of all, let us have a
close look to the kernel xyz

[∑
(i,j)∈S x

iyj − 1/z
]

that appears in (2) and let us take some
notations.

This kernel can be written as xyz
[∑

(i,j)∈S x
iyj − 1/z

]
= ã(y, z)x2 + b̃(y, z)x +

c̃(y, z) = a(x, z)y2 + b(x, z)y + c(x, z), where c̃(y, z), c(x, z) are defined just below (2),
ã(y, z) = zy

∑
(+1,j)∈S y

j , b̃(y, z) = −1 + zy
∑

(0,j)∈S y
j , a(x, z) = zx

∑
(i,+1)∈S x

i and

b(x, z) = −1 + zx
∑

(i,0)∈S x
i. Let us also define d̃(y, z) = b̃(y, z)2 − 4ã(y, z)c̃(y, z) and

d(x, z) = b(x, z)2 − 4a(x, z)c(x, z).
If the walk is non-singular then for any z ∈]0, 1/n[, d̃ (resp. d) has three or four roots,

that we call the yk(z) (resp. the xk(z)). They are such that |y1(z)| < y2(z) < 1 < y3(z) <
|y4(z)| (resp. |x1(z)| < x2(z) < 1 < x3(z) < |x4(z)|), as shown in Part 2.3 of [FIM99].

If the walk is singular, the roots above become y1(z) = y2(z) = 0 < 1 < y3(z) < |y4(z)|
(resp. x1(z) = x2(z) = 0 < 1 < x3(z) < |x4(z)|), see Part 6.1 of [FIM99].

The behavior of the branch points yk(z) and xk(z) is not so simple for z /∈]0, 1/n[ and
for this reason we will suppose in the sequel that z is fixed in ]0, 1/n[.

Now remark that
∑

(i,j)∈S x
iyj − 1/z = 0 if and only if (b̃(y, z) + 2ã(y, z)x)2 = d̃(y, z)

or (b(x, z) + 2a(x, z)y)2 = d(x, z). In particular, the algebraic functions X(y, z) and
Y (x, z) defined by

∑
(i,j)∈S X(y, z)iyj − 1/z = 0 and

∑
(i,j)∈S x

iY (x, z)j − 1/z = 0 have
two branches, meromorphic on C \ ([y1(z), y2(z)] ∪ [y3(z), y4(z)]) and C \ ([x1(z), x2(z)] ∪
[x3(z), x4(z)]) (resp. C \ [y3(z), y4(z)] and C \ [x3(z), x4(z)]) in the non-degenerate (resp.
degenerate) case.

The following straightforward result (see Part 5.3 of [FIM99]) gives some properties and
settles the notations for the two branches of the algebraic functions X(y, z) and Y (x, z).

Lemma 1. Call X0(y, z) = [−b̃(y, z) + d̃(y, z)1/2]/[2ã(y, z)] and X1(y, z) = [−b̃(y, z) −
d̃(y, z)1/2]/[2ã(y, z)] the branches of X(y, z). For all y ∈ C we have |X0(y, z)| ≤ |X1(y, z)|.
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Now we call Y0(x, z) = [−b(x, z) + d(x, z)1/2]/[2a(x, z)] and Y1(x, z) = [−b(x, z) −
d(x, z)1/2]/[2a(x, z)] the branches of Y (x, z). For all x ∈ C we have |Y0(x, z)| ≤ |Y1(x, z)|.

With these notations we can state the result concerning the explicit expression of the
function (1) for the 5 singular walks – see Picture 2. Below, by f◦k we mean f ◦ · · · ◦ f
with k occurrences of f .

Theorem 2. Suppose that the walk is singular. The following series representation holds :

Q(x, 0, z) =
1

zx2

∑

k≥0

Y0 ◦ (X0 ◦ Y0)
◦k(x, z)

[
(X0 ◦ Y0)

◦k(x, z) − (X0 ◦ Y0)
◦(k+1)(x, z)

]
.

Q(0, y, z) is obtained from the equality above by replacing X0 (resp. Y0) by Y0 (resp. X0).
Moreover Q(0, 0, z) = 0 and the function Q(x, y, z) is obtained with (2).

Theorem 2 is shown in [MR09] for both steps sets S = {(−1, 1), (1, 1), (1,−1)} and
S = {(−1, 1), (0, 1), (1,−1)} ; its proof for the three other singular walks is obtained in
the same way and we omit it.

Let us now turn to the 74 non-singular walks. We are going to state that both functions
c(x, z)Q(x, 0, z) and c̃(y, z)Q(0, y, z) verify a boundary value problem of Riemann-
Carleman type, with boundary conditions on X([y1(z), y2(z)], z) and Y ([x1(z), x2(z)], z),
and thus we begin by recalling from Part 5.3 of [FIM99] some properties of these curves.

Lemma 3. Consider X([y1(z), y2(z)], z) and Y ([x1(z), x2(z)], z). (i) These two curves are
symmetrical w.r.t. the real axis. (ii) They are connected and closed in C∪{∞}. (iii) They
split the complex plane into two connected components ; we call GX([y1(z), y2(z)], z) and
GY ([x1(z), x2(z)], z) the connected components of x1(z) and y1(z) respectively. They verify
GX([y1(z), y2(z)], z) ⊂ C \ [x3(z), x4(z)] and G Y ([x1(z), x2(z)], z) ⊂ C \ [y3(z), y4(z)].

Moreover, as illustrated by the example of Gessel’s walk, see [KR09a], these curves
are possibly not included in the unit disc and thus the functions c(x, z)Q(x, 0, z) and
c̃(y, z)Q(0, y, z) may a priori be not defined on them. For this reason we first need to
continue the generating functions up to these curves : this is exactly the object of the
following result, the proof of which being the subject of Section 2.

Theorem 4. The functions c(x, z)Q(x, 0, z) and c̃(y, z)Q(0, y, z) can be holomorphically
continued from the open unit disc D to GX([y1(z), y2(z)], z)∪D and GY ([x1(z), x2(z)], z)∪
D respectively.

Now, exactly as in Section 0 of [KR09a] we obtain that :

∀t ∈ X([y1(z), y2(z)], z) : c
(
t, z
)
Q
(
t, 0, z

)
−c
(
t, z
)
Q
(
t, 0, z

)
= tY0

(
t, z
)
−tY0

(
t, z
)
,

∀t ∈ Y ([x1(z), x2(z)], z) : c̃
(
t, z
)
Q
(
0, t, z

)
− c̃
(
t, z
)
Q
(
0, t, z

)
= X0

(
t, z
)
t−X0

(
t, z
)
t.

(3)

Therefore, by using Theorem 4, we obtain that c(x, z)Q(x, 0, z) and c̃(y, z)Q(0, y, z) can be
found among the functions holomorphic in GX([y1(z), y2(z)], z) and GY ([x1(z), x2(z)], z)
and verifying the conditions (3) on the boundary of the latter sets.

Such problems are known as boundary value problems of Riemann-Carleman type, see
e.g. [FIM99]. A standard way to solve them consists in converting them into boundary
value problems of Riemann-Hilbert type by use of conformal gluing functions (CGF).
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Definition 5. Let C ⊂ C∪ {∞} be an open and simply connected set, symmetrical w.r.t.
the real axis and different from ∅, C and C ∪ {∞}. A function u is said to be a CGF for
the set C if (i) u is meromorphic in C (ii) u establishes a conformal mapping of C onto
the complex plane cut along some arc (iii) for all t in the boundary of C , u

(
t
)

= u
(
t
)
.

It is worth noting that the existence (but no explicit expression) of a CGF for a generic
set C is ensured by general results on conformal gluing, see e.g. Chapter 2 of [Lit00].

Transforming the boundary value problems of Riemann-Carleman type into boundary
value problems of Riemann-Hilbert type thanks to a CGF, solving these new problems
and working out the solutions, we get as in [KR09a] the following.

Theorem 6. Suppose that the walk is one of the 74 non-singular walks.

The function c(x, z)Q(x, 0, z)−c(0, z)Q(0, 0, z) has the following explicit expression for
z ∈]0, 1/n[ and x ∈ GX([y1(z), y2(z)], z) :

c(x, z)Q(x, 0, z) − c(0, z)Q(0, 0, z) =

xY0(x, z) +
1

π

∫ x2(z)

x1(z)

t
[
− d(t, z)

]1/2

2a(t, z)

[
∂tw(t, z)

w(t, z) − w(x, z)
−

∂tw(t, z)

w(t, z) − w(0, z)

]
dt,

w being a CGF for GX([y1(z), y2(z)], z).

The function c̃(y, z)Q(0, y, z)− c̃(0, z)Q(0, 0, z) has the following explicit expression for
z ∈]0, 1/n[ and y ∈ GY ([x1(z), x2(z)], z) :

c̃(y, z)Q(0, y, z) − c̃(0, z)Q(0, 0, z) =

X0(y, z)y +
1

π

∫ y2(z)

y1(z)

t
[
− d̃(t, z)

]1/2

2ã(t, z)

[
∂tw̃(t, z)

w̃(t, z) − w̃(y, z)
−

∂tw̃(t, z)

w̃(t, z) − w̃(0, z)

]
dt,

w̃ being a CGF for GY ([x1(z), x2(z)], z).

The explicit expression of zQ(0, 0, z) depends on the value of c(0, z) = c̃(0, z) ∈ {0, z}.

Suppose first that c(0, z) = c̃(0, z) = z. Then δ = 1 in (2) and with (2) we obtain that
for any x, y, z verifying

∑
(i,j)∈S x

iyj − 1/z = 0 with |x| ≤ 1, |y| ≤ 1 and z ∈]0, 1/n[ :

zQ(0, 0, z) = xy−
[
c(x, z)Q(x, 0, z)−c(0, z)Q(0, 0, z)

]
−
[
c̃(y, z)Q(0, y, z)−c̃(0, z)Q(0, 0, z)

]
.

Suppose now that c(0, z) = c̃(0, z) = 0, or equivalently that δ = 0 in (2). Then the
function Q(0, 0, z) equals the limit at x goes to 0 of

1

c(x, z)

(
xY0(x, z) +

1

π

∫ x2(z)

x1(z)

t
[
− d(t, z)

]1/2

2a(t, z)

[
∂tw(t, z)

w(t, z) − w(x, z)
−

∂tw(t, z)

w(t, z) − w(0, z)

]
dt

)
.

The function Q(x, y, z) has the explicit expression obtained by putting in (2) the integral
representations of Q(x, 0, z), Q(0, y, z) and Q(0, 0, z) obtained just above.
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As a consequence, for the generating functions c(x, z)Q(x, 0, z) − c(0, z)Q(0, 0, z) and
c̃(y, z)Q(0, y, z) − c̃(0, z)Q(0, 0, z) to be completely explicit, it remains to find explicitly
suitable CGF w and w̃ for the sets GX([y1(z), y2(z)], z) and G Y ([x1(z), x2(z)], z).

In this perspective let us first state the following fact – that unfortunately can be
properly and completely written only in Section 4.

Theorem 7. The functions w and w̃ explicitly defined in (10) of Section 4 are adequate
CGF for the sets GX([y1(z), y2(z)], z) and GY ([x1(z), x2(z)], z) respectively.

Having a CGF w for some set C , it is clear that any of its fractional linear
transformations [αw + β]/[γw + δ] with α, β, γ, δ ∈ C such that αγ 6= 0 is also a CGF for
C , see Definition 5. They are actually the only ones, see page 39 in Chapter 2 of [Lit00].

In particular, once Theorem 7 shown, we will have the explicit expression of all possible
CGF, but the way in which they depend on the steps set S is yet unclear. In fact we have
the following link – intrinsic, because independent of the choice of the CGF.

Theorem 8. If the group of the walk is finite (resp. infinite), then any CGF for the
sets GX([y1(z), y2(z)], z) or GY ([x1(z), x2(z)], z) is algebraic (resp. non-holonomic, and
then, of course, non-algebraic). Moreover, in the case of a finite group, if in addition the
covariance (i.e. the quantity

∑
(i,j)∈S ij) is negative or zero (resp. positive), then any CGF

is rational (resp. algebraic non-rational).

Furthermore, in the case of a finite group, we will in Section 4 considerably simplify
the explicit expression of the CGF : in Propositions 28, 29 and 31 we will consider the
walks having a negative or zero covariance and we will then give the rational expression
of the CGF, next in Proposition 30 we will concentrate on the walks having a positive
covariance and we will then give minimal polynomials for the algebraic non-rational CGF.

Let us now make two remarks around Theorem 6.

Remark 9. Theorem 6 can be extended without difficulty to the case of the generating
function counting the number of paths confined in the quadrant, starting at (i0, j0) and
ending at (i, j) in time k, for any initial state (i0, j0).

Remark 10. Both c(x, z)Q(x, 0, z)−c(0, z)Q(0, 0, z) and c̃(y, z)Q(0, y, z)−c̃(0, z)Q(0, 0, z)
are written in Theorem 6 as the sum of two functions not holomorphic near [x1(z), x2(z)]
and [y1(z), y2(z)] respectively. However, these segments being included in the unit disc,
the sum of these two functions is of course holomorphic in their neighborhood. In fact, by
an application of the residue theorem exactly as in Section 4 of [KR09b], we could write
both generating functions as functions clearly holomorphic near these segments and having
actually their singularities near respectively [x3(z), x4(z)] and [y3(z), y4(z)].

The rest of the article is organized as follows.
First in Section 2 we prove Theorem 4 and we comment on other continuation methods.
Next Section 3 is a technical and introductory part to Section 4. We study closely the

surface
{
(x, y) ∈ C

2 :
∑

(i,j)∈S x
iyj − 1/z = 0

}
and particularly we uniformize it.

Finally in Section 4 we are interested in conformal gluing. There we prove Theorems 7-
8 and Propositions 28-31.
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2 Holomorphic continuation of the generating functions

Notation. For the sake of shortness we will drop, from now on, the dependence of the
different quantities on z ∈]0, 1/n[ ; it is implied that any statement in the sequel begins
with “for any z ∈]0, 1/n[”.

This part aims at proving Theorem 4, in other words at showing that the generating
functions c(x)Q(x, 0) and c̃(y)Q(0, y), already holomorphic in their open unit disc D , can
be holomorphically continued up to GX([y1, y2]) ∪ D and GY ([x1, x2]) ∪ D respectively.

First of all, note that the location of the sets GX([y1, y2]) and GY ([x1, x2]) depends
strongly on the steps set S. In particular, it may happen that they are included in the unit
disc – it is e.g. the case for both walks represented on Picture 6, as it will be illustrated
on Picture 3 –, in that case Theorem 4 is obvious. On the other hand, there exist actually
walks for which these sets don’t belong to the unit disc – it is e.g. the case of Gessel’s
walk, see [KR09a].

Before starting the proof of Theorem 4, let us remark some facts around this important
result. In [KR09a] we have also introduced a procedure of continuation for c(x)Q(x, 0) and
c̃(y)Q(0, y) ; we choose here to present an other way in order to make this continuation,
weaker but more elementary : weaker because Theorem 4 yields a continuation of
the generating functions up to GX([y1, y2]) ∪ D and GY ([x1, x2]) ∪ D and not up to
C \ [x3, x4] and C \ [y3, y4] as in [KR09a], but more elementary because this continuation
is done directly on the complex plane, rather than on the Riemann surface given by a
uniformization of

{
(x, y) ∈ C

2 :
∑

(i,j)∈S x
iyj − 1/z = 0

}
as in [KR09a].

In order to be more accurate, let us first summarize the three-steps procedure of
continuation we used in [KR09a] for Gessel’s walk : firstly we had lifted the functions to the
uniformization space defined in Section 3, secondly we had continued the lifted generating
functions up to the whole uniformization space by use of the functional equation (2) and
of the automorphisms (9), thirdly we had projected these continued lifted functions.

The advantages of this procedure are multiple : let us emphasize, among others, that
it leads to a continuation up to the whole cut complex planes C \ [x3, x4] and C \ [y3, y4],
and that it seems us to be quite natural by making symmetrical the roles of x and y.

On the other hand, if this procedure could be presented in a synthetic way for Gessel’s
walk, it could appear somewhat tedious in the general case, as the algorithmic procedure
used in the second step of the continuation would depend strongly on the steps set S
considered. This is why we have chosen to prove rather Theorem 4.

Proof of Theorem 4. We are going to explain the procedure of continuation only for
c(x)Q(x, 0), we would continue c̃(y)Q(0, y) similarly.

To begin with, let us note that evaluating (2) at any x, y in the unit disc D such that∑
(i,j)∈S x

iyj − 1/z = 0 leads to c(x)Q(x, 0) + c̃(y)Q(0, y) − zδQ(0, 0) − xy = 0. As a
consequence, if x ∈ {x ∈ C : |Y0(x)| < 1} ∩ D , we obtain

c(x)Q(x, 0) + c̃(Y0(x))Q(0, Y0(x)) − zδQ(0, 0) − xY0(x) = 0. (4)

Since x ∈ {x ∈ C : |Y0(x)| < 1}∩D is non-empty, see (i) of Lemma 11 below, both functions
c(x)Q(x, 0) and c̃(Y0(x))Q(0, Y0(x)) as well as the identity (4) can be extended up to the
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connected component of {x ∈ C : |Y0(x)| < 1} ∪ D containing {x ∈ C : |Y0(x)| < 1} ∩ D ,
by analytic continuation.

Therefore, in order to prove Theorem 4, it is enough to show that GX([y1, y2]) ∪ D is
connected and included in {x ∈ C : |Y0(x)| < 1}∪D , since GX([y1, y2])∪D has obviously
a non-empty intersection with {x ∈ C : |Y0(x)| < 1} ∩ D . These facts are exactly the
objects of (ii) and (iii) in Lemma 11 below.

It remains thus only to prove that this continuation of c(x)Q(x, 0) is holomorphic on
GX([y1, y2]) ∪ D .

On D this is immediate, c(x)Q(x, 0) being there defined by its power series.
On (GX([y1, y2]) ∪ D) \D , it follows from (4) that the function c(x)Q(x, 0) may have

eventually the same singularities as Y0 – namely the branch cuts [x1, x2], [x3, x4] – and is
holomorphic elsewhere. But these segments don’t belong to (GX([y1, y2])∪D) \D : with
Section 1 we have that [x1, x2] is included in D and by Lemma 3 we get that [x3, x4] is
exterior to GX([y1, y2]).

The continuation of c(x)Q(x, 0) is thus holomorphic on GX([y1, y2])∪D and Theorem 4
is proved. �

Lemma 11. (i) {x ∈ C : |Y0(x)| < 1}∩D is non-empty (ii) GX([y1, y2])∪D is connected
(iii) GX([y1, y2]) ∪ D is included in {x ∈ C : |Y0(x)| < 1} ∪ D .

Proof. Note first that (i) is a straightforward consequence of Lemma 12. (ii) is also clear :
both sets GX([y1, y2]) and D are connected and the intersection GX([y1, y2]) ∩ D is non-
empty, e.g. because x1 belongs to both sets, so that the union GX([y1, y2])∪D is connected.
And now we show (iii).

Clearly, it is enough to prove that (GX([y1, y2]) ∪ D) \ D is included in {x ∈ C :
|Y0(x)| < 1}. This will follow from an application of the maximum modulus principle (see
e.g [JS87]) to the function Y0 on (GX([y1, y2]) ∪ D) \ D .

First of all let us note that Y0 is analytic on the latter domain, since thanks to Section 1
it is included in C \ ([x1, x2] ∪ [x3, x4]).

Next we prove that |Y0| < 1 on the boundary of the set (GX([y1, y2]) ∪ D) \ D , and
for this it is enough to show that |Y0| < 1 on {|x| = 1} ∪X([y1, y2]).

But by Lemma 12 it is immediate that |Y0| < 1 on {|x| = 1}, and by Lemma 13 we get
that Y0(X([y1, y2])) = [y1, y2], segment which is known to belong to the unit disc, thanks
to Section 1.

In this way, the maximum modulus principle directly entails that |Y0| < 1 on the
domain (GX([y1, y2]) ∪ D) \ D .

Lemma 12. Y0({|x| = 1}) ⊂ {|y| < 1}.

Proof. To avoid any confusion – in this proof we are going to use different values of z –,
we reintroduce here the variable z. Let us first recall that Y0 is one of the two solutions in
y of

∑
(i,j)∈S x

iyj −1/z = 0, and that if Y1 denotes the other one then we have |Y0| ≤ |Y1|,
see Lemma 1.

We are going to prove Lemma 12 first for z = 1/n and we will deduce from this
particular case the remaining cases z ∈]0, 1/n[.

9



For z = 1/n the equality
∑

(i,j)∈S x
iyj−1/z = 0 can be written

∑
(i,j)∈S(1/n)xiyj = 1 ;

since
∑

(i,j)∈S(1/n) = 1 we can apply Lemma 2.3.4 of [FIM99] and in this way we directly
obtain that Y0({|x| = 1}, 1/n) ⊂ {|y| ≤ 1}.

Suppose now that z ∈]0, 1/n[. In this case it is not possible to have
∑

(i,j)∈S x
iyj−1/z =

0 with |x| = |y| = 1 : indeed, for |x| = |y| = 1 we have |
∑

(i,j)∈S x
iyj| ≤

∑
(i,j)∈S 1 = n <

1/z. As a consequence Y0({|x| = 1}, z) ∩ {|y| = 1} = ∅. By connectedness this implies
that either Y0({|x| = 1}, z) ⊂ {|y| < 1} or Y0({|x| = 1}, z) ⊂ {|y| > 1}.

But once again with Lemma 2.3.4 of [FIM99] we get Y0({|x| = 1}, 1/n)∩{|y| < 1} 6= ∅,
so that by continuity we obtain for z ∈]0, 1/n[ that Y0({|x| = 1}, z) ⊂ {|y| < 1}.

In the proof of Theorem 4, we have also used the following result, proved in Part 5.3
of [FIM99] for z = 1/n ; the proof for other values of z is completely similar and we omit it.

Lemma 13. Suppose that the walk is non-singular – see Section 1. Then the two functions
X0 : G Y ([x1, x2]) \ [y1, y2] → GX([y1, y2]) \ [x1, x2] and Y0 : GX([y1, y2]) \ [x1, x2] →
GY ([x1, x2]) \ [y1, y2] are conformal and reciprocal the one from the other.

3 Uniformization

This part is introductory to Section 4 and consists in studying closely the set of zeros of
the kernel, namely K =

{
(x, y) ∈ C

2 :
∑

(i,j)∈S x
iyj − 1/z = 0

}
.

Proposition 14. For any non-singular walk, K is a Riemann surface of genus one.

Proof. From Section 1 we know that
∑

(i,j)∈S x
iyj−1/z = 0 if and only if (b(x)+2a(x)y)2 =

d(x). But the Riemann surface of the square root of a third or fourth degree polynomial
with distinct roots has genus one, see e.g. [JS87], therefore the genus of K is also one.

Remark 15. Note first that Proposition 14 can’t be extended to the singular walks. Indeed,
it follows from Section 1 that for the singular walks the polynomial d has a double root at
0 and two simple roots at x3 6= x4, and it is well-known, see e.g. [JS87], that the Riemann
surface of the square root of such a polynomial has genus zero.

Note also that Proposition 14, implicitly stated for z ∈]0, 1/n[, can’t be extended to
z = 0 or z = 1/n in the general case.

Indeed, for z = 0 we have d(x) = x2 and the Riemann surface of the square root of
this polynomial is a disjoint union of two spheres, see e.g. [JS87].

As for z = 1/n, it may happen that the genus of K is still one as it may happen that
it becomes zero. In fact, Parts 2.3 and 6.1 of [FIM99] entail that it equals one (resp. zero)
if and only if not the two (resp. the two) equalities

∑
(i,j)∈S i = 0 and

∑
(i,j)∈S j = 0 hold.

With Proposition 14 it is immediate that K is isomorphic to some torus C/Ω. A
suitable lattice Ω (in fact the only possible lattice, up to a homothetic transformation) is
made explicit in Parts 3.1 and 3.3 of [FIM99], namely Ω = ω1Z + ω2Z, where

ω1 = ı

∫ x2

x1

dx

[−d(x)]1/2
, ω2 =

∫ x3

x2

dx

[d(x)]1/2
. (5)
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By using the same arguments as in Part 3.3 of [FIM99], we immediately obtain that we
have in addition the uniformization K = {(x(ω), y(ω)), ω ∈ C/Ω}, where

x(ω) = F (℘(ω), ℘′(ω)), y(ω) = G(℘(ω), ℘′(ω)), (6)

with F (p, p′) = x4 + d′(x4)/(p − d′′(x4)/6), G(p, p′) = [−b(F (p, p′)) + d′(x4)p
′/(2(℘(ω) −

d′′(x4)/6)
2)]/[2a(F (p, p′))] if x4 6= ∞ and F (p, p′) = (6p − d′′(0))/d′′′(0), G(p, p′) =

[−b(F (p, p′))−3p′/d′′′(0)]/[2a(F (p, p′))] if x4 = ∞, ℘ being the Weierstrass elliptic function
with periods ω1, ω2.

It is well-known, see e.g. [JS87], that ℘ satisfies the differential equation

℘′(ω)2 = 4[℘(ω) − ℘(ω1/2)][℘(ω) − ℘([ω1 + ω2]/2)][℘(ω) − ℘(ω2/2)]. (7)

Moreover, it is proved in Part 3.3 of [FIM99] that ℘(ω1/2) = f(x3), ℘([ω1+ω2]/2) = f(x2)
and ℘(ω1/2) = f(x1).

We are now going to be interested in the location on the parallelogram [0, ω2[×[0, ω1/ı[
of the reciprocal images through the uniformization of the important cycles that are the
branch cuts [x1, x2], [x3, x4], [y1, y2] and [y3, y4]. For this we need to define a new period,
namely

ω3 =

∫ x1

X(y1)

dx

[d(x)]1/2
. (8)

In Part 3.3 of [FIM99] is shown the following.

Lemma 16. ω3 ∈]0, ω2[.

By using then exactly the same analysis as in Part 5.5 of [FIM99], we get the following
very nice result – one of the essential purposes of having introduced the uniformization (6).

Proposition 17. x−1([x1, x2]) = [0, ω1[+ω2/2, x
−1([x3, x4]) = [0, ω1[, y

−1([y1, y2]) =
[0, ω1[+(ω2 + ω3)/2 and y−1([y3, y4]) = [0, ω1[+ω3/2.

Now we would like to study more accurately ω3. First, by use of the same arguments
as the ones given page 14 of [KR09b], we obtain the location of ω3 w.r.t. ω2/2.

Proposition 18. ω3 < ω2/2 (resp. ω3 = ω2/2, ω3 > ω2/2) if and only if the covariance
(i.e. the quantity

∑
(i,j)∈S ij) of the walk is negative (resp. zero, positive).

It could appear surprising to introduce here the covariance, in fact it will turn out that
on its sign depends interestingly a lot of quantities – in this perspective see Subsection 4.4.

If the group W = 〈Ψ,Φ〉 defined in Section 1 is finite, we can precise Proposition 18.

Proposition 19. For any k ≥ 2, the group W = 〈Ψ,Φ〉 has order 2k if and only if there
exists an integer q ∈ {1, . . . , k − 1}, independent of z and having no common divisor with
k, such that for all z ∈]0, 1/n[, ω3 = (q/k)ω2.

In particular, since it is proved in [BMM09] that the group W takes only the orders 4,
6, 8 and ∞, Propositions 18-19 lead immediately to the following.
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Corollary 20. The group W = 〈Ψ,Φ〉 has order 4 if and only if for all z ∈]0, 1/n[,
ω3 = ω2/2. For k ∈ {3, 4}, it has order 2k and a negative (resp. positive) covariance if
and only if for all z ∈]0, 1/n[, ω3 = ω2/k (resp. ω3 = ω2 − ω2/k)).

Before beginning the proof of Proposition 19, we emphasize that the birational trans-
formations Ψ and Φ can obviously be understood as automorphisms of K , and we recall
from Part 3.1 of [FIM99] that thanks to the uniformization (6) these automorphisms of
K become on C/Ω the automorphisms ψ and φ with the following expressions :

ψ(ω) = −ω, φ(ω) = −ω + ω3. (9)

They are such that ψ◦ψ = φ◦φ = id, x◦ψ = x, y◦ψ = [c(x)/a(x)]/y, x◦φ = [c̃(y)/ã(y)]/x
and y ◦ φ = y.

Proof of Proposition 19. Let us begin by proving the converse sense of Proposition 19 and
for this let us, here again, reintroduce the variable z.

Suppose first that for some value z ∈]0, 1/n[, ω3/ω2 = q/k, the integers q and k having
no common divisor. This means that 〈ψ, φ〉 is a finite group of order 2k, see (9), which is
equivalent to the fact 〈Ψ,Φ〉 has order 2k on {(x, y) ∈ C

2 :
∑

(i,j)∈S x
iyj − 1/z = 0} – but

a priori not on C
2. This implies that for any x ∈ C, the equalities (Φ◦Ψ)◦k(x, Y0(x, z)) =

(x, Y0(x, z)) and (Φ ◦ Ψ)◦k(x, Y1(x, z)) = (x, Y1(x, z)) hold.
Suppose now that for any value z ∈]0, 1/n[, ω3/ω2 is this same rational number q/k.

In particular for any fixed x ∈ C and all z ∈]0, 1/n[, (Φ ◦ Ψ)◦k(x, Y0(x, z)) = (x, Y0(x, z)).
In other words, for any fixed x ∈ C and any y ∈ {Y0(x, z) : z ∈]0, 1/n[}, (Φ ◦Ψ)◦k(x, y) =
(x, y). Since the set {Y0(x, z) : z ∈]0, 1/n[} is not isolated, by analytic continuation we
obtain that for any x ∈ C and any y ∈ C, (Φ ◦ Ψ)◦k(x, y) = (x, y), in such a way that
〈Ψ,Φ〉 is finite as a group of birational transformations, of order less than or equal to 2k.

〈Ψ,Φ〉 is of order exactly 2k because 〈ψ, φ〉 has order 2k and thus we can find some
elements (x, y) of order exactly 2k. This entails the converse sense of Proposition 19.

Suppose now that W = 〈Ψ,Φ〉 has order 2k. The group 〈ψ, φ〉 generated by ψ and φ is
a fortiori finite, of order 2r(z) ≤ 2k, which means that inf{p > 0 : (φ ◦ψ)◦p = id} = r(z).
With (9) this immediately implies that r(z)ω3 is some point of the lattice ω1Z + ω2Z,
contrary to pω3 for p ∈ {1, . . . , r(z)− 1}. But with Lemma 16 we have ω3 ∈]0, ω2[, so that
we get r(z)ω3 = q(z)ω2, where q(z) ∈ {1, . . . , r(z) − 1} has no common divisor with r(z).

Moreover, from (5) and (8) we know that ω3/ω2 = q(z)/r(z) is a holomorphic function
of z ; taking rational values it has to be constant, say ω3/ω2 = q/r. Finally, if r was strictly
smaller than k, then with the first part of the proof we would obtain that W = 〈Ψ,Φ〉 has
also order 2r, and not 2k as assumed, so that r = k and Proposition 19 is proved. �

The location of the reciprocal images through (6) of [x1, x2], [x3, x4], [y1, y2] and [y3, y4]
being known, let us give, in Picture 3, some examples of the parallelogram [0, ω2[×[0, ω1/ı[
– in addition of the one corresponding to Gessel’s walk that can be found in [KR09a].

Indeed, for the first walk of Picture 5, the group has order four, see [BMM09], and
with Corollary 20 we get ω3 = ω2/2. In addition it is quite easy to show that in this
case X([y1, y2]) = X([y3, y4]) = Y ([x1, x2]) = Y ([x3, x4]) is equal to the unit circle.
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Figure 3: Examples of the parallelogram [0, ω2[×[0, ω1/ı[ with its important cycles, at the
left for the first walk of Picture 5 below and at the right for the second walk of Picture 6

In particular, we obtain that x−1({|x| = 1}) = ([0, ω1[+ω2/4) ∪ ([0, ω1[+3ω2/4) and
y−1({|y| = 1}) = ([0, ω1[) ∪ ([0, ω1[+ω2/2).

Also, for the second walk of Picture 6, the group has order six and the covariance is
negative, hence with Corollary 20 we get ω3 = ω2/3. Then by using the same arguments as
in the proof of Proposition 23 of [KR09a] we obtain the location of the cycles x−1({|x| = 1})
and y−1({|y| = 1} for this walk, namely x−1({|x| = 1}) = ([0, ω1[+ω2/4)∪ ([0, ω1[+3ω2/4)
and y−1({|y| = 1} = ([0, ω1[+5ω2/12) ∪ ([0, ω1[+11ω2/12).

4 Conformal gluing functions

The main subject of Section 4 is to introduce and to study suitable CGF (see Definition 5)
for the sets GX([y1, y2]) and GY ([x1, x2]) for the 74 non-degenerate walks.

For this we will first, in Subsection 4.1, find explicitly all appropriate CGF for both
sets above (essentially thanks to the uniformization studied in Section 3) and in particular
we will prove Theorem 7. Then we will remark that the behavior of these CGF is quite
different according to the finiteness of the groupW . This is why we will focus separately, in
Subsections 4.2 and 4.3, on the walks having an infinite and next a finite group, and we will
prove Theorem 8 and Propositions 28-31. Finally, in Subsection 4.4, we will compare this
classification of the 79 walks according to the nature of the CGF with the one according
to the nature of the series (1), obtained from [BMM09] and [BK09].

4.1 Finding all suitable conformal gluing functions

In [FIM99] is found explicitly one CGF and only for z = 1/n, see (10) below. Let us
begin here by generalizing this result and by finding the expressions of all possible CGF
for the sets X([y1, y2]) and Y ([x1, x2]) for any value of z, and for this let us quote page 126
of [FIM99] : if we note ŵ = w◦x or ŵ = w◦y, with x, y defined in (6), then the problem of
finding a CGF w is equivalent to find a function ŵ meromorphic in [ω2/2, (ω2 +ω3)/2]×R,
ω1 periodic, with only one simple pole in the domain [ω2/2, (ω2 +ω3)/2]× [0, ω1/ı] hatched
at the left of Picture 4 below, and satisfying to the next two conditions :

(i) for all ω ∈ [−ω1/2, ω1/2], ŵ([ω1 + ω2]/2 + ω) = ŵ([ω1 + ω2]/2 − ω),

(ii) for all ω ∈ [−ω1/2, ω1/2], ŵ([ω1 + ω2 + ω3]/2 + ω) = ŵ([ω1 + ω2 + ω3]/2 − ω).
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Figure 4: Domains of definition of ŵ (at the left) and w̌ (at the right)

Setting w̌(ω) = ŵ([ω1 + ω2]/2 + ω), the problem mentioned above obviously becomes
to find a function w̌ meromorphic in [0, ω3/2] × R, ω1 periodic, with only one simple pole
in the domain [0, ω3/2] × [−ω1/(2ı), ω1/(2ı)], and such that :

(i’) for all ω ∈ [−ω1/2, ω1/2], w̌(ω) = w̌(−ω),

(ii’) for all ω ∈ [−ω1/2, ω1/2], w̌(ω3/2 + ω) = w̌(ω3/2 − ω).

Now we remark that by analytic continuation, (i’) allows us to continue w̌ from
[0, ω3/2]×R up to [−ω3/2, ω3/2]×R, and next, also by analytic continuation, (ii’) enables
us to continue w̌ as a ω3 periodic function – since evaluating (ii’) at ω3/2+ω and using (i’)
lead to w̌(ω3 +ω) = w̌(ω). In particular, the problem of finding the CGF finally becomes :
to find w̌ an even elliptic function with periods ω1, ω3 with only two simple poles at ±p
(or one double pole at p if p and −p are congruent modulo the lattice) in the parallelogram
[−ω3/2, ω3/2] × [−ω1/(2ı), ω1/(2ı)] drawn at the right of Picture 4 above.

A crucial fact for us is then the following – below, ℘1,3 denotes the Weierstrass elliptic
function with periods ω1, ω3.

Lemma 21. Let p ∈ [−ω3/2, ω3/2] × [−ω1/(2ı), ω1/(2ı)].
If p = 0, the only solutions of the problem above are the α+ β℘1,3(ω) for α, β ∈ C.
If p 6= 0, the only solutions are the α+ β/[℘1,3(ω) − ℘1,3(p)] for α, β ∈ C.

Proof. It is well-known, see e.g. Theorem 3.11.1 and Theorem 3.13.1 of [JS87], that an even
elliptic function with periods ω1, ω3 and having with 2q poles in a period parallelogram is
necessarily a rational transformation of order q of ℘1,3. In our case, w̌, which has exactly
two poles of order one or one pole of order two in [−ω3/2, ω3/2] × [−ω1/(2ı), ω1/(2ı)], is
thus a fractional linear transformation of ℘1,3.

In particular, it is immediate that p = 0 yields w̌(ω) = α+ β℘1,3(ω).
If p 6= 0 then ℘1,3(p) 6= ∞ and we obtain w̌(ω) = [α℘1,3(ω)+γ]/[℘1,3(ω)−℘1,3(p)].

Applying Lemma 21 for p = 0 we get that

w(t) = ℘1,3

(
x−1(t) − [ω1 + ω2]/2

)
, w̃(t) = ℘1,3

(
y−1(t) − [ω1 + ω2]/2

)
(10)

are suitable CGF for the sets X([y1, y2]) and Y ([x1, x2]), x
−1 and y−1 denoting in (10) the

reciprocal functions of the coordinates of the uniformization (6). Theorem 7 is thus proved.
Applying now Lemma 21 for any value of p yields that the fractional linear

transformations of (10) are the only possible CGF.

14



Remark 22. As said in Section 1, it can be deduced from [Lit00] – by using general results
on Fredholm integral equations – that two CGF for the same set are necessarily fractional
linear transformations the one from the other.

It is worth noting that in our case, we have recovered this fact by using only the
properties of the Weierstrass elliptic functions written in Lemma 21.

Remark 23. The functions w and w̃ of (10) are related together through w̃ = w(X0) :
indeed, (6) entails that x(ω) = X0(y(ω)).

Let us now concentrate on w and w̃ defined by (10), and note first that in Section 4
of [KR09b] we have proved their following global properties.

Proposition 24. The function w (resp. w̃) defined by (10) is meromorphic on C\ [x3, x4]
(resp. C\ [y3, y4]) and has there one simple pole, at x2 (resp. Y (x2)), and the lower integer
part of ω2/(2ω3) double poles at some points of the segment ]x2, x3[∩(C \ GX([y1, y2]))
(resp. ]y2, y3[∩(C \ GY ([x1, x2]))).

Now we remark that with (6) it is immediate that w(t) = ℘1,3

(
℘−1(f(t))− [ω1+ω2]/2

)
,

with f(t) = d′′(x4)/6+d′(x4)/(t−x4) if x4 6= ∞ and f(t) = d′′(0)/6+d′′′(0)t/6 if x4 = ∞.
The CGF w is therefore equal to the Weierstrass elliptic function with periods ω1, ω3

evaluated at a translation of the reciprocal of the Weierstrass elliptic function with periods
ω1, ω2. It turns out that the theory of transformation of elliptic functions – the basic result
of which being here recalled in Lemma 25 below – entails that this expression admits a
very nice simplification if ω3/ω2 is rational.

But Proposition 19 shows that the latter condition is related to the group W = 〈Ψ,Φ〉
defined in Section 1, since it states that ω3/ω2 is rational for all z ∈]0, 1/n[ if and only if
the group W is finite, so that we will consider separately the study of w and w̃ according
to the finiteness of this group.

First, in Subsection 4.2, we will concentrate on the case of an infinite group of the
walk, and we will show that w and w̃ are then non-holonomic, which will prove the part
of Theorem 8 concerning the infinite group.

Then, in Subsection 4.3, we will consider the case of a finite group. We will see that
w and w̃ are then algebraic, and we will complete the proof of Theorem 8. Moreover, we
will considerably simplify the explicit expressions of w and w̃ given in (10) for all the 23
walks having a finite group : see Proposition 28 (resp. 29-30, 31) for the walks associated
with a group of order four (resp. six, eight).

It is worth noting that, even for z = 1/n, the forthcoming results of Subsections 4.2-4.3
on an in-depth study of the CGF are new – up to the best of our knowledge.

In order to close this part we state the following result, mentioned above and proved e.g.
at http://functions.wolfram.com/EllipticFunctions/WeierstrassP/16/06/03/ ; it
will be of the highest importance for the proofs of Propositions 28-31.

Lemma 25. Let ℘̆ be the Weierstrass elliptic function with some periods ώ, ὼ and let p
be some positive integer. Then the Weierstrass elliptic function with periods ώ, ὼ/p can
be written in terms of ℘̆ as ℘̆(ω) +

∑n−1
k=1

[
℘̆(ω + kὼ/p) − ℘̆(kὼ/p)

]
.
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4.2 Case of an infinite group

Remark 26. If the walk admits an infinite group, it may happen that ω3/ω2 is rational
for some values of z, but ω3/ω2 has also to take non-rational values.

Indeed, if for all z ∈]0, 1/n[ ω3/ω2 was rational, then ω3/ω2 would be a rational
constant, since with (5) and (8) ω3/ω2 is a holomorphic function of z, and Proposition 19
would then entail that the group is finite.

Let us now prove the part of Theorem 8 concerning the group infinite, and more
precisely that for any z ∈]0, 1/n[ such that ω3/ω2 is non-rational, the CGF w and w̃
defined in (10) are non-holonomic.

Proof. The class of holonomic functions being closed under algebraic substitution, see e.g.
[FS09], it is enough to prove that v(t) = w(f−1(t)) = ℘1,3(℘

−1(t) − [ω1 + ω2]/2) is non-
holonomic, since on the one hand f is rational and on the other hand w̃ = w(X0) with X0

algebraic. We are going first to show that v is non-algebraic, and then we will prove that
if v is holonomic then it has to be algebraic, in such a way that v will be non-holonomic.

Suppose thus that v is algebraic, in other words assume that there exist polynomials
a0, . . . , aq with aq 6= 0 such that

∑q
k=0 ak(t)v(t)

k = 0. By definition of v and since the
Weierstrass elliptic function is non-algebraic, at least one of a0, . . . , aq is non-constant.

Evaluating now the last equality at t = ℘(ω + [ω1 + ω2]/2) and using the definition of
v, we get

∑q
k=0 ak(℘(ω+ [ω1 +ω2]/2))℘1,3(ω)k = 0. Since ℘(ω+ [ω1 +ω2]/2) is a rational

transformation of ℘(ω), see e.g. the addition theorem (14) below, the previous equality
reads P (℘(ω), ℘1,3(ω)) = 0, where P is a polynomial non-constant w.r.t. the two variables.

Now we recall from [JS87] that ℘ (resp. ℘1,3) has poles at every point of the lattice
ω1Z + ω2Z (resp. ω1Z + ω3Z). Moreover, it is well-known that if ω3/ω2 is non-rational
then ω2Z + ω3Z is dense in R. In particular, if ω3/ω2 is non-rational then the poles
of P (℘(ω), ℘1,3(ω)) are non-isolated, which is a contradiction between the principle of
analytic continuation and the fact that P (℘(ω), ℘1,3(ω)) is non-zero and meromorphic.

Suppose now that v is holonomic, i.e. that there are polynomials a0, . . . , aq with aq 6= 0
such that

∑q
k=0 ak(t)v

(k)(t) = 0, v(k) denoting the kth derivative of v, and let us show
that in this case

q∑

k=0

ak(t)v
(k)(t) = U(t, v(t)) + V (t, v(t))v′(t), (11)

where the dependence of U and V w.r.t. the first (resp. second) variable is rational (resp.
polynomial), and where at least U or V is non-zero. Before showing these facts, let us
explain how they entail the algebricity of v.

If V is identically zero then U has to be non-zero. Moreover, since U is rational w.r.t.
the first variable and since with (11) we have U(t, v(t)) = 0, U has to be non-constant
w.r.t. the second variable and (11) immediately yields that v is then algebraic.

Suppose now that V is not identically zero. From (11) and the supposed holonomy
of v it follows that U(t, v(t))2 − V (t, v(t))2v′(t)2 = 0. Also, noting g the derivative of
℘−1 – if g2 and g3 are the invariants of ℘ we have g(t) = [4t3 − g2t − g3]

−1/2 – we get
v′(t)2 = g(t)2℘′

1,3(℘
−1(t)−[ω1+ω2]/2)

2. But if g2,1,3 and g3,1,3 are the invariants of ℘1,3 we

16



have ℘′2
1,3 = 4℘3

1,3−g2,1,3℘1,3−g3,1,3, and finally we get U(t, v(t))2−V (t, v(t))2g(t)2[4v(t)3−

g2,1,3v(t) − g3,1,3] = 0. The latter quantity is rational in the first variable, since g(t)2 is
rational, and an odd degree polynomial in the second, in such a way that v is algebraic.

So it is enough to prove (11). For this we are going to show that for any k,

v(k)(t) = Uk(t, v(t)) + Vk(t, v(t))v
′(t), (12)

where the dependence of Uk (resp. Vk) is rational w.r.t. the first variable and polynomial
of degree exactly ⌊k/2+1⌋ (resp. ⌊(k− 1)/2⌋) w.r.t. the second variable, ⌊ · ⌋ denoting the
lower integer part. Equality (11) will be then an immediate consequence of (12). Indeed,
if q is even then by using (12) in (11) we obtain that the degree of U in v is exactly
⌊q/2 + 1⌋ and U is thus obviously non-zero. Likewise, if q is odd we get that the degree
of V is exactly ⌊(q − 1)/2⌋ and is thus clearly non-zero if q ≥ 3. If q = 1 then we easily
make explicit V0 = 0 and V1, and we immediately deduce that V is also non-zero.

Let us now show (12). For k = 0 this is obvious. As for k ≥ 1, a straightforward

calculation leads to v(k)(t) =
∑k

p=1 bp(t)℘
(p)
1,3(℘

−1(t) − [ω1 + ω2]/2), with bk = g(t)k,

bk−1(t) = [k(k − 1)/2]g′(t)g(t)k−2 and for p ∈ {2, . . . , k − 1}, bk−p is a polynomial in the
variables g(t), g′(t), . . . , g(p)(t). Moreover, if p is even then bp clearly is rational whereas if
p is odd then bp/g is rational. Next by a repeated use of Lemma 27 below and by using
that ℘′

1,3(℘
−1(t) − [ω1 + ω2]/2) = v′(t)/g(t) we obtain

v(k)(t) =
∑

p 6=0 even

bp(t)pp/2(v(t)) + v′(t)
∑

p odd

[bp(t)/g(t)]p
′
(p−1)/2(v(t)).

With the values of bk and bk−1 given above this immediately yields (12), and therefore
also (11), and finally the fact that v, w and w̃ are non-holonomic.

Let us recall from [JS87] the following classical fact, that we have used in the proof
above.

Lemma 27. For any integer r ≥ 0 we have ℘(2r) = pr(℘), where pr(x) is a polynomial
with dominant coefficient equal to (2r + 1)!xr+1.

4.3 Case of a finite group

Thanks to Proposition 19, we obtain that for the 23 walks having a finite group, ω2/ω3

is rational. Moreover, with [BMM09] and Corollary 20 it is enough to consider the cases
ω2/ω3 equal to 2, 3, 3/2, 4, 4/3. According to the classification of [BMM09] there are
respectively 16, 2, 3, 1, 1 such walks.

Proposition 28. If the walk has a group of order four (i.e. if S has a vertical symmetry,
see [BMM09]), or equivalently if ω2/ω3 = 2, then w defined in (10) is an affine combination
of [(t/x4 − 1)(t − x1)]/[(t − x2)(t − x3)

]
. Moreover, suitable and explicit CGF for the set

GY ([x1, x2]) are w(X0(t)), or, more symmetrically, [(t/y4 − 1)(t− y1)]/[(t − y2)(t− y3)].
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Figure 5: Two examples among the sixteen walks with a group of order four

Proposition 29. For both walks represented on Picture 6 – the only ones with a group
of order six and a negative covariance, or equivalently verifying ω2/ω3 = 3 –, w and w̃
defined in (10) are affine combinations of respectively

u(t)

(t− x2)(t− 1/x2
1/2)2

,
ũ(t)

(t− y2)(t− 1/y2
1/2)2

,

with u(t) = t2 and ũ(t) = t (resp. u(t) = ũ(t) = t(t+ 1)) for the walk at the left (resp. at
the right) of Picture 6.

Figure 6: The two walks with a group of order six and a negative covariance

Proposition 30. For the three walks represented on Picture 7 – the only ones with a
group of order six and a positive covariance, or equivalently verifying ω2/ω3 = 3/2 –,
there exist α, β, δ, γ which are algebraic w.r.t. z and made explicit in the proof, such that
w = w̃ defined in (10) is the only solution with a pole at x2 of

w2 +

[
α+ β

u(t)

(t− x2)(t− 1/x2
1/2)2

]
w +

[
δ + γ

u(t)

(t− x2)(t− 1/x2
1/2)2

]
= 0,

with u(t) = t2 (resp. u(t) = t, u(t) = t(t+ 1)) for the walk at the left (resp. in the middle,
at the right) of Picture 7.

Figure 7: The three walks with a group of order six and a positive covariance
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Proposition 31. For the walk represented at the left of Picture 8 – the only one with a
group of order eight and a negative covariance, or equivalently verifying ω2/ω3 = 4 –, w
and w̃ defined in (10) are affine combinations of respectively

t2

(t− x2)(t− 1)2(t− x3)
,

t(t+ 1)2

(t− x2)2(t− x3)2
.

Figure 8: The two walks with a group of order eight

As for the walk at the right of Picture 8 above, known as Gessel’s walk, the functions
w and w̃ have been found explicitly in [KR09a].

Finite group of the walk and negative or zero covariance As a first enlightening
example, let us consider the case of a covariance equal to zero – or equivalently ω2/ω3 = 2.

Proof of Proposition 28. It will follow from the equality (peculiar to the case ω2/ω3 = 2) :

℘1,3(ω − [ω1 + ω2]/2) = −2f(x1) + (f(x2) − f(x3))
2 ℘(ω) − f(x1)

(℘(ω) − f(x2))(℘(ω) − f(x3))
. (13)

Indeed, if (13) holds, let us evaluate it at ω = ℘−1(f(t)) : with (10) we obtain that
there exist two constants K1 and K2 such that w(t) = K1 + K2[f(t) − f(x1)]/[(f(t) −
f(x2))(f(t) − f(x3))]. But by using the explicit expression of f , it is immediate that if
x4 6= ∞ then w(t) = K1 + K3[(t − x1)(t − x4)]/[(t − x2)(t − x3)] and if x4 = ∞ then
w(t) = K1 + K4[t − x1]/[(t − x2)(t − x3)], K3 and K4 being some non-zero constants.
Therefore for proving Proposition 28 it is enough to show (13).

For this, start by applying Lemma 25 for p = 2 : we get ℘1,3(ω − [ω1 + ω2]/2) =
℘(ω− [ω1+ω2]/2)+℘(ω−ω1/2)−℘(ω2/2). Now, taking the usual notations e1 = ℘(ω1/2),
e1+2 = ℘([ω1 +ω2]/2) and e2 = ℘(ω2/2), we can state the two following particular cases of
the addition formula (14) : ℘(ω−[ω1+ω2]/2) = e1+2+[(e1+2−e1)(e1+2−e2)]/[℘(ω)−e1+2]
and ℘(ω−ω1/2) = e1+[(e1−e2)(e1−e1+2)]/[℘(ω)−e1]. In this way and after simplification
we obtain ℘1,3(ω−[ω1+ω2]/2) = e1−e2+e1+2+(e1−e1+2)

2[℘(ω)−e2]/[(℘(ω)−e1)(℘(ω)−
e1+2)]. Finally, by using the equalities e1 = f(x3), e1+2 = f(x2) and e2 = f(x1), see
below (7), as well as e1 + e1+2 + e2 = 0, we immediately obtain (13). �

Let us now consider the case of a negative covariance – or equivalently ω2/ω3 equal to 3
or 4 –, and begin with the situation ω2/ω3 = 3 which concerns the two walks of Picture 6.

Proof of Proposition 29. First of all, let us sketch the proof. We will first show that
there exist and we will make explicit two third degree polynomials A and B such that
℘1,3(ω− [ω1 +ω2]/2) = A(℘(ω))/B(℘(ω)). In particular with (10) we will then obtain that
w(t) = A(f(t))/B(f(t)). Next we will consider separately the two walks of Picture 6.
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(i) For the walk at the left of Picture 6 we have x4 = ∞ and then A(f(t)) andB(f(t)) are
also third degree polynomials, see the expression of f below (10). We will show that
B(f(t)) = (t−x2)(t−1/x2

1/2)2. In addition, if r(t) denotes the rest of the euclidean
division of A(f(t)) by B(f(t)), we will prove that r(t) = (r′′(0)/2)t2 with r′′(0) 6= 0,
in such a way that w(t) = B(f(∞))/A(f(∞)) + (r′′(0)/2)t2/[(t− x2)(t− 1/x2

1/2)2].

(ii) For the walk at the right of Picture 6 we have x4 6= ∞ and then (t−x4)
3A(f(t)) and

(t−x4)
3B(f(t)) are third degree polynomials. We will show that (t−x4)

3B(f(t)) =
(t − x2)(t − 1/x2

1/2)2. If r(t) denotes the rest of the euclidean division of (t −
x4)

3A(f(t)) by (t−x4)
3B(f(t)), then we will prove that r(t) = (r′′(0)/2)t(t+1) with

r′′(0) 6= 0 so that w(t) = B(f(∞))/A(f(∞))+(r′′(0)/2)t(t+1)/[(t−x2)(t−1/x2
1/2)2].

Finally, starting from the so obtained explicit formulation of w and by using that
w̃ = w(X0), an elementary calculation will lead, for each walk, to the expression of w̃
stated in Proposition 29, this will conclude the proof.

So we begin by finding explicitly, for both walks of Picture 6, two polynomials A and
B of degree three such that ℘1,3(ω − [ω1 + ω2]/2) = A(℘(ω))/B(℘(ω)).

Applying Lemma 25 with p = 3 we get ℘1,3(ω − [ω1 + ω2]/2) = ℘(ω − [ω1 + ω2]/2) +
℘(ω−ω1/2−ω2/6)−℘(ω2/3)+℘(ω−ω1/2+ω2/6)−℘(2ω2/3). Then, using the addition
formula for ℘, namely the following equality, see e.g. [JS87], valid for all ώ, ὼ,

℘(ώ + ὼ) = −℘(ώ) − ℘(ὼ) + (1/4)[℘′(ώ) − ℘′(ὼ)]2/[℘(ώ) − ℘(ὼ)]2, (14)

and notingK = e1+2−2℘(ω2/3)−2℘(ω1/2+ω2/6) we have that ℘1,3(ω−[ω1+ω2]/2) equals

(e1+2 − e1)(e1+2 − e2)

℘(ω) − e1+2
− 2℘(ω) +

1

2

℘′(ω)2 + ℘′(ω1/2 + ω2/6)
2

[℘(ω) − ℘(ω1/2 + ω2/6)]2
+K. (15)

To obtain (15), we have used that ℘(ω1/2+ω2/6) = ℘(ω1/2−ω2/6) and ℘′(ω1/2+ω2/6) =
−℘′(ω1/2 − ω2/6), got from the fact that ℘(ω1/2 + ω) is even and ℘′(ω1/2 + ω) is odd.

With (7) and (15), it is now clear that ℘1,3(ω − [ω1 + ω2]/2) can be written as
A(℘(ω))/B(℘(ω)), moreover we can take B(℘(ω)) = (℘(ω)−e1+2)(℘(ω)−℘(ω1/2+ω2/6))

2.
Now we show that ℘(ω1/2+ω2/6) = f(1/x2

1/2). For this we will express ℘(ω1/2+ω2/6)
w.r.t. z. Since ℘(ω1/2 + ω2/6) = e1 + [(e1 − e2)(e1 − e1+2)]/[℘(ω2/6) − e1] it is enough
to express ℘(ω2/6) w.r.t. z. For this we will first find explicitly ℘(ω2/3) and we will then
use, for ω = ω2/3, the fact ℘(ω/2) equals (see e.g. [JS87])

℘(ω)+[(℘(ω)−e1)(℘(ω)−e2)]
1/2+[(℘(ω)−e1)(℘(ω)−e1+2)]

1/2+[(℘(ω)−e2)(℘(ω)−e1+2)]
1/2.

In other words, for all coefficients in (15) to be explicit w.r.t. the variable z, it is enough
to find only ℘(ω2/3) in terms of z.

And now we show that for both walks of Picture 6, ℘(ω2/3) = 1/3. For this we use the
following fact, already recalled in [KR09a] : the quantity x = ℘(ω2/3) is the only positive
root of x4 − g2x

2/2 − g3x − g2
2/48, g2 = −4[e1e2 + e1e1+2 + e2e1+2] and g3 = 4e1e2e1+2

being the invariants of ℘. By using the explicit expressions of g2 and g3 (we recall that e1,
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e2 and e1+2 are known explicitly w.r.t. z, see the proof of Proposition 28), we easily show
that 1/3 is a root of the polynomial above, being positive we get ℘(ω2/3) = 1/3.

Then an elementary calculation leads to ℘(ω1/2 + ω2/6) = f(1/x2
1/2). Next with (7)

we also obtain ℘′(ω1/2 + ω2/6) and thus all coefficients in (15) are known in terms of z.
In particular, this is also the case for the polynomials A and B. After a tedious but easy
calculation we obtain the facts claimed in (i) and (ii) above, and, thus, Proposition 29. �

Proposition 31 – concerning ω2/ω3 = 4 – could be obtained by applying Lemma 25 for
p = 4, the details would be essentially the same as above, so that we omit to write them.

Finite group of the walk and positive covariance The only such walks are the
three ones of Picture 7 as well as the one at the right of Picture 8.

The latter, known as Gessel’s walk, has already been considered in [KR09a] : there
we have shown that the CGF w and w̃ defined by (10) are algebraic (of degree three in t)
and we have made explicit their minimal polynomials.

By using the same key idea as in [KR09a] – namely, a double application of Lemma 25 –
, we are going now to prove Proposition 30, i.e. to show, for the three walks of Picture 7,
that w and w̃ are algebraic (of degree two in t) and to find their minimal polynomials.

Proof of Proposition 30. Let us first of all recall that for the three walks considered here
ω2/ω3 = 3/2, and define the auxiliary period ω4 = ω2/3.

First, with ω4 = ω2/3, thanks to Lemma 25 we will be able to express ℘1,4 as a rational
function of ℘. Moreover, since ω4 = ω3/2, once again with Lemma 25 we will write ℘1,4

as a rational function of ℘1,3. As an immediate consequence, ℘1,3 will be an algebraic
function of ℘. Then, with (10) and the addition formula (14) we will obtain that the CGF
w defines an algebraic function of t.

Rational expression of ℘1,4 in terms of ℘. By using exactly the same arguments as in the
proof of Proposition 29, we obtain the three following facts : firstly ℘1,4(ω− [ω1 +ω2]/2) is
equal to (15), secondly ℘(ω2/3) = 1/3 and thirdly the expression of all coefficients in (15)
w.r.t. z is explicit. In this way we obtain that there exist K1 and K2 which depend only
on z and could be made explicit, such that

℘1,4

(
x−1(t) − [ω1 + ω2]/2

)
= K1 +

K2u(t)

(t− x2)(t− 1/x2
1/2)2

(16)

with u(t) as described in the statement of Proposition 30.

Rational expression of ℘1,4 in terms of ℘1,3. Applying, as in the proof of Proposition 28,
Lemma 25 for p = 2, we obtain that ℘1,4(ω) = ℘1,3(ω) + ℘1,3(ω + ω3/2) − ℘1,3(ω3/2).
Denoting by e1,1,3 = ℘1,3(ω1/2), e1+3,1,3 = ℘1,3([ω1 + ω3]/2) and e3,1,3 = ℘1,3(ω3/2) we
have ℘1,3(ω+ω3/2) = e3,1,3+[(e3,1,3−e1,1,3)(e3,1,3−e1+3,1,3)]/[℘1,3(ω)−e3,1,3]. In particular
we immediately obtain that

℘1,3(ω)2 −
[
e3,1,3 + ℘1,4(ω)

]
℘1,3(ω) +

[
(e3,1,3 − e1,1,3)(e3,1,3 − e1+3,1,3) + e3,1,3℘1,4(ω)

]
= 0.
(17)

Therefore, once the expressions of e1,1,3, e1+3,1,3 and e3,1,3 will be known explicitly,
Equations (10), (16) and (17) will immediately entail Proposition 30.
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It remains thus to find explicitly e1,1,3, e1+3,1,3 and e3,1,3. This will be a consequence
of the possibility of expanding ℘1,4 in two different ways.

First, we have seen just above that ℘1,4(ω) = ℘1,3(ω) + [(e3,1,3 − e1,1,3)(e3,1,3 −
e1+3,1,3)]/[℘1,3(ω) − e3,1,3], so that by using the usual expansion of ℘1,3 at 0, namely
℘1,3(ω) = ω−2 + g2,1,3ω

2/20 + g3,1,3ω
4/28 + O(ω6), g2,1,3 and g3,1,3 being the invariants

of ℘1,3, as well as the following straightforward equality (e3,1,3 − e1,1,3)(e3,1,3 − e1+3,1,3) =
3e3,1,3

2 − g2,1,3/4, we get

℘1,4(ω) = ω−2 +
[
3e3,1,3

2 − g2,1,3/5
]
ω2 +

[
g3,1,3 + 3e3,1,3

3 − g2,1,3e3,1,3/4
]
ω4 +O(ω6). (18)

Second, by applying Lemma 25 for p = 3 we obtain ℘1,4(ω) = −℘(ω) + [℘′(ω)2 +
℘′(ω2/3)

2]/[2(℘(ω)−℘(ω2/3))]− 4℘(ω2/3). Using that ℘(ω2/3) = 1/3 as well as (7) yield

℘1,4(ω) = ω−2 +
[
2/3 − 9g2/20

]
ω2 +

[
10/27 − g2/2 − 27g3/28

]
ω4 +O(ω6). (19)

By identifying the expansions (18) and (19) we obtain the expression of g2,1,3 and g3,1,3

in terms of g2, g3 and e3,1,3.
In addition, e3,1,3 is obviously a solution of 4e3,1,3

3 − g2,1,3e3,1,3 − g3,1,3 = 0. If we use
the expressions of g2,1,3 and g3,1,3 obtained just above, we obtain that e3,1,3

3 + [9g2/16 −
5/6]e3,1,3 +[35/108− 27g3/32− 7g2/16] = 0. We can solve this equation (we recall that g2
and g3 are known explicitly w.r.t. z) and in this way we get e3,1,3. Next we obtain g2,1,3

and g3,1,3, or, equivalently, e1,1,3 and e1+3,1,3. In particular, the expansion (17) is now
completely known and Proposition 30 is proved. �

4.4 Concluding remarks

Some of the 23 walks associated with a finite group have been and are still the object of
numerous studies, as illustrated by the recent and vivid interest in the famous Gessel’s
walk, see [KKZ09], [BK09] and [KR09a]. But other walks have also repeatedly caught the
attention of the mathematical community, as Kreweras’ walk (represented here at the left
of Picture 7), see [BMM09] and the references therein, as well as Gouyou-Beauchamps’
walk (drawn at the left of Picture 8), which, among others, has strong connections with
the enumeration of non-crossing matchings, see [CDD+07].

However, certain questions concerning these walks – as the one of explaining some
closed form expressions for quantities associated with them – are still open, see [BMM09].
We hope that Propositions 28-31 and the results of [KR09a], which give simple explicit
expressions of the CGF w and w̃ for these 23 walks, and therefore thanks to Theorem 6
which yield an explicit expression of the trivariate generating function (1), with a different
formulation from the one obtained in [BMM09] and [BK09], will lead to make progress in
this perspective.

Another thing is that, although it is yet unclear how the nature of the CGF yields the
nature of the generating function (1), we can make the following observation a posteriori.
Subsections 4.2-4.3 imply that we can split the 23 walks having a finite group into two
families, according to the nature of the CGF : for the 19 walks with negative or zero
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covariance the CGF is rational, see Propositions 28, 29 and 31, whereas for the 4 walks with
positive covariance the CGF is algebraic non-rational : see Proposition 30 and [KR09a].

It is interesting to remark that this classification – that clearly implies that the sign of
the covariance is a notable and natural quantity, thanks to Proposition 18 – is the same
as the classification according to the nature of the series (1) : if the walk has negative
or zero covariance then the generating function is holonomic non-algebraic, see [BMM09],
whereas if the walk has positive covariance then (1) is algebraic, see [BMM09] and [BK09].
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