
HAL Id: hal-00461780
https://hal.science/hal-00461780

Submitted on 5 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exemplar Longest Common Subsequence (extended
abstract)

Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Guillaume Fertin,
Stéphane Vialette

To cite this version:
Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Guillaume Fertin, Stéphane Vialette. Exem-
plar Longest Common Subsequence (extended abstract). International Workshop on Bioinformatics
Research and Applications (IWBRA 2006), May 2006, Reading, United Kingdom. pp.622-629. �hal-
00461780�

https://hal.science/hal-00461780
https://hal.archives-ouvertes.fr

Exemplar Longest Common Subsequence

Paola Bonizzoni1, Gianluca Della Vedova2, Riccardo Dondi1, Guillaume Fertin3, and
Stéphane Vialette4

1 Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca
Milano - Italy

2 Dipartimento di Statistica, Università degli Studi di Milano-Bicocca Milano - Italy
3 LINA - FRE CNRS 2729 Université de Nantes, Nantes Cedex 3, France

4 LRI - UMR CNRS 8623 Faculté des Sciences d’Orsay, Université Paris-Sud Bât 490, Orsay Cedex,
France

Abstract. In the paper we investigate the computational and approximation complexity
of the Exemplar Longest Common Subsequence of a set of sequences (ELCS problem), a
generalization of the Longest Common Subsequence problem, where the input sequences are
over the union of two disjoint sets of symbols, a set of mandatory symbols and a set of
optional symbols. We show that different versions of the problem are APX-hard even for
instances with two sequences. Moreover, we show that the related problem of determining
the existence of a feasible solution of the Exemplar Longest Common Subsequence of two
sequences is NP-hard.
On the positive side, efficient algorithms for the ELCS problem over instances of two se-
quences where each mandatory symbol can appear totally at most three times or the number
of mandatory symbols is bounded by a constant are given.

1 Introduction

Algorithmic studies in comparative genomics have produced powerful tools for the anal-
ysis of genomic data which has been successfully applied in several contexts, from gene
functional annotation to phylogenomics and whole genome comparison. A main goal in
this research field is to explain differences in gene order in two (or more) genomes in terms
of a limited number of rearrangement operations.

When there are no duplicates in the considered genomes, the computation of the sim-
ilarity measure is usually polynomial-time solvable, e.g., number of breakpoints, reversal
distance for signed genomes, number of conserved intervals, number of common intervals,
maximum adjacency disruption, summed adjacency disruption. It turns out that these
methods based on permutations of gene order are useless for larger genomes where several
copies of the same gene, or several highly homologous genes may be scattered across the
genome. One approach to overcoming this difficulty is based on the concept of exemplar:
for each genome, an exemplar sequence is constructed by deleting all but one occurrence of
each gene family. Another approach is based on matching operation: in this two-step pro-
cedure, the two genomes are first made balanced (the number of occurrences of each gene
from the same family must be the same in both genomes) by removing a minimum num-
ber of genes and next a one-to-one correspondence (among genes of each family) between
genes of the genomes is computed.

Unfortunately, in the presence of duplicates, most similarity measures turn out to be
NP-hard to compute for both the exemplar and the matching models, so that we generally
have to rely on heuristic approaches. We discuss here one such general purpose heuristic

approach (the Exemplar LCS problem) which is basically a constrained string alignment
problem that may be of independent interest. The basic idea of the general framework we
propose is that for most similarity measures (and for both the exemplar and the matching
models), specific common subsequences may correspond to conserved ordered sets of genes.
For example, in the exemplar model, a good similarity measure among two genomes with
duplications is obtained by looking for the longest common subsequence that must contain
at most one occurrence of each letter (or exactly one if no other occurrences of the gene
can be found elsewhere along the genomes). This measure suggests to consider a LCS-like
problem that deals with two types of letters (mandatory and optional symbols) to allow
greater flexibility in the searching process.

In this paper we will formally define such framework with a simple combinatorial
problem that generalizes the well known LCS problem and we will study its computational
and approximation complexity. We show that different versions of the problem are APX-
hard even for instances with two sequences and that even determining if a feasible solution
exists or not is NP-hard. On a positive side the hardness of the problem can be limited
in some cases, in fact we have shown that it is possible to determine efficiently a feasible
solution, provided that each symbol appears at most three times totally in the input
sequence. Finally we have designed a polynomial-time algorithm for the case where the
number of mandatory symbol is at most a constant.

2 The problems

The Longest Common Subsequence problem (shortly LCS) is a well-known problem
in Computational Biology. Let s = s[1], s[2], . . . , s[m] and t = t[1], t[2], . . . , t[l] be two
sequences, s is a subsequence of t if for some j1 < j2 < . . . < jm s[h] = t[jh].

Let s1, s2 be two sequences, a longest common subsequence of s1 and s2 is a sequence
s of maximum length, such that s is a subsequence of both s1 and s2. Let S be a set of
sequences, then a longest common subsequence of S is a longest possible sequence s such
that s is a subsequence of each sequence in S.

A simple way to informally define a subsequence is by using the notion of threading

scheme. First write the two sequences on two parallel lines, then a threading scheme is
a set of lines, each one connecting two identical symbols of two different sequences, such
that no two lines are crossing, in this case each line corresponds to one symbol of the
subsequence.

Next we give the definition of longest common subsequence for a set of sequences.
Given a set of sequences S, the LCSProblem name Occurrences

mandatory
symbols

Occurrences
optional
symbols

ELCS(1,≤ 1) exactly 1 at most 1

ELCS(1) exactly 1 unrestricted

ELCS(≥ 1,≤ 1) at least 1 at most 1

ELCS(≥ 1) at least 1 unrestricted

Table 1. Versions of Exemplar LCS

problem asks for a longest common subse-

quences of S. The complexity of LCS prob-
lem has been deeply studied in the past.
In [7] it is shown that the problem is NP-
hard even for sequences over an alphabet
of size 2. However, when the instance of
the problem consists of a fixed number of
sequences, the LCS can be solved in poly-
nomial time via dynamic programming al-

gorithms [5, 4]. Next we state formally the Exemplar LCS problem (ELCS). Input: a

set S of sequences over alphabet Ao ∪ Am, where Ao is the set of optional symbols and
Am is the set of mandatory symbols. The sets Ao, Am are disjoint. Output: a longest
common subsequence of all sequences in S and containing all mandatory symbols.

Given an instance S of ELCS, by exemplar common subsequence we mean a feasible
solution of ELCS over S. It is possible to define different versions of the problem, according
to the number of occurrences of each symbol in the solution, as represented in Table 1. In
this paper we will deal with such different versions of ELCS. First notice that ELCS(1) and
ELCS(≥ 1) are generalizations of the Longest Common Subsequence problem, where
no mandatory symbols are present. Therefore all the hardness results for LCS apply to
ELCS(1) and ELCS(≥ 1). Moreover, we will show that the above problems are hard also
on instances of only two sequences (while the LCS problem can be solved in polynomial
time for any fixed number of sequences).

When dealing with the restriction of ELCS containing only a fixed number of se-
quences, we will denote such restriction prefixing the problem name with the number
of sequences, e.g. 2-ELCS(1,≤ 1) is the restriction of ELCS(1,≤ 1) to instances of two
sequences.

3 The results

Theorem 1 The 2-ELCS(1,≤ 1) problem is APX-hard even when each symbol appears

at most twice in each input sequence.

Proof. We prove the theorem, describing an L-reduction from Max Independent Set

on Cubic Graph to 2-ELCS(1,≤ 1). Max Independent Set on Cubic Graph is known
to be APX-hard[1]. Let G = (V,E) be a cubic graph. Then for each vertex vi there
are three edges e1(vi), e2(vi), e3(vi) incident on it. In the reduction each vertex vi is
associated with a symbol vi of Ao and a symbol xi in Am. Each edge is associated with
a distinct symbol of Am. Define a block associated with a vertex vi, as a string consisting
of a vertex symbol vi, the symbols associated with edges incident on vi in G and the
symbols xi. More precisely, there are two possible blocks associated with vi, one contained
in s1 and defined as b1(vi) = vie1(vi)e2(vi)e3(vi)xi, the second contained in s2 and defined
as b2(vi) = e1(vi)e2(vi)e3(vi)vixi. The two sequences instance of 2-ELCS(1,≤ 1) are:
s1 = b1(v1)b1(v2) · · · b1(vn), s2 = b2(v1)b2(v2) · · · b2(vn). Observe that the symbols xi are
mandatory, thus they must appear in any feasible solution of 2-ELCS(1,≤ 1). There is
only one of each xi in both s1, s2. More precisely, xi occurs in blocks b1(vi), b2(vi) of s1,
s2 respectively, thus any symbol xi in a feasible solution of 2-ELCS(1,≤ 1) over s1 and
s2 must be taken from b1(vi) and b2(vi). It follows that if vi is in a exemplar common
subsequence, then the exemplar common subsequence does not contain any symbol of
e1(vi)e2(vi)e3(vi) of b1(vi) and b2(vi). Let s be a feasible solution of 2-ELCS(1,≤ 1) over
s1, s2, then s consists of f1x1 . . . fixi . . . fnxn, where each fi is either vi or a subsequence
of e1(vi)e2(vi)e3(vi). Observe that each edge symbol is mandatory, which means that it
must appear exactly once in a common subsequence. Moreover, an edge symbol encoding
edge (vi, vj) appears in blocks b1(vi) and b1(vj) of s1 and in blocks b2(vi) and b2(vj) of s2.
Thus a common subsequence takes such edge symbol either from b1(vi) and b2(vi) or from
b1(vj) and b2(vj).

Let I be the set of vertices appearing in s, then we can show that I is an independent
set of G. Assume that symbols vi, vj ∈ I. Then (vi, vj) is not an edge of G, otherwise the

solution s in fi and fj contains symbols vi and vj respectively. An immediate consequence
is that the edge symbol associated with (vi, vj), that can appear only in fi and fj, is
not contained in s. Since each edge symbol is mandatory, it must appear in any feasible
solution of 2-ELCS(1,≤ 1), which is a contradiction.

Observe that the length of a feasible

4
v

A

E

C

v

vv
1 2

3

D

B
F

s1 = v1CAEx1v2CFBx2v3AFDx3v4EBDx4

s2 = CAEv1x1CFBv2x2AFDv3x3EBDv4x4

Fig. 1. Reducing the graph K4

solution of 2-ELCS(1,≤ 1) over s1, s2 is
|V |+ |E| + |I|, where I is an independent
set of G.

On the other side, assume that I is an
independent set of G. It is easy to compute
a feasible solution of 2-ELCS(1,≤ 1) over
s1, s2 of size |V |+ |E|+ |I|, retaining only
the symbols associated with vertices in I

in the exemplar common subsequence. In-
deed, note that, since I is an independent
set, for each edge e = (vi, vj) at least one
of vi, vj is not in I, hence each symbol
associated with e can be retained once in
a feasible solution of 2-ELCS(1,≤ 1) over
s1, s2. ut

A similar proof can be given also for 2-ELCS(≥ 1,≤ 1).

Theorem 2 The 2-ELCS(≥ 1,≤ 1) problem is APX-hard even when each symbol appears

at most twice in each input sequence.

Proof. The reduction is similar to the previous one, but for each vertex vi of the graph, we
have four symbols va

i vb
i v

c
i v

d
i and the blocks b1(vi) and b2(vi) associated with vi in sequences

s1 and s2 respectively are defined as follows: b1(vi) = va
i vb

iv
c
i v

d
i e1(vi)e2(vi)e3(vi)xi; b2(vi) =

e1(vi)e2(vi)e3(vi)v
a
i vb

i v
c
i v

d
i xi.

Again the symbols xi are mandatory, therefore they must appear in any feasible so-
lution of 2-ELCS(≥ 1,≤ 1) over s1, s2. There is only one occurrence of each symbol xi

in both s1, s2. More precisely xi appears in blocks b1(vi) and b2(vi) of s1 and s2. It fol-
lows that any symbol xi in an exemplar common subsequence must be taken from the
blocks of s1, s2 associated with vi, that is b1(vi) and b2(vi). Since each mandatory edge
symbols appears twice in each input sequence, it must appear once or twice in a common
subsequence.

Clearly if sequence va
i vb

i v
c
i v

d
i is in a feasible solution of 2-ELCS(≥ 1,≤ 1) over s1, s2,

then this solution does not contain occurrence of symbols of sequence e1(v1)e2(v1)e3(v1)
in b1(vi) and b2(vi). This means that a feasible solution of 2-ELCS(≥ 1,≤ 1) over s1, s2

consists of g1x1 . . . gixi . . . gnxn, where each gi is either a subsequence of va
i vb

i v
c
i v

d
i or gi is

a subsequence of e1(vi)e2(vi)e3(vi). Observe that each edge symbol is mandatory, which
means that it must appear exactly once in an exemplar common subsequence. Thus an
exemplar common subsequence takes each edge symbol from one of the two blocks where
it appears.

Assume that I is an independent set of G, then we claim that there exists a feasible
solution s of 2-ELCS(≥ 1,≤ 1) over s1, s2 of length |V | + 3|V | + |I|. Such a feasible

solution consists of g1x1 . . . gixi . . . gnxn, where each gi = va
i vb

i v
c
i v

d
i if vi ∈ I and gi =

e1(vi)e2(vi)e3(vi) otherwise. Indeed it is immediate to note that the length of sequence
s is |V | + 3(|V | − |I|) + 4|I| = |V | + 3|V | + |I| and that it is a common subsequence of
s1 and s2. Moreover, all mandatory symbols encoding an edge are included in s. W.l.o.g.
assume to the contrary that a symbol encoding the edge (v1, v2) is not included in s. This
fact implies that g1 = va

1
vb
1
vc
1
vd
1

and g2 = va
2
vb
2
vc
2
vd
2
, hence v1, v2 ∈ I, contradicting the

assumption that I is an independent set of G.
Assume now that there exists a feasible solution s of 2-ELCS(≥ 1,≤ 1) over s1, s2

with length |V |+ 3|V |+ |I|. We can assume that, for each block in s1, s2, either va
i vb

i v
c
i v

d
i

or e1(vi)e2(vi)e3(vi) appears as a substring of s. Let Y be the set of blocks for which
va
i vb

i v
c
i v

d
i is part of s. Hence the vertices corresponding to Y are an independent set of G.

By a trivial counting argument, it is easy to shows that for |I| blocks s includes va
i vb

iv
c
i v

d
i .

We claim that such blocks encode an independent set. W.l.o.g. assume that va
1
vb
1
vc
1
vd
1

and
va
2
vb
2
vc
2
vd
2

are included in s, then there is no edge (v1, v2) in G, otherwise the mandatory
symbol encoding such edge would not be in s. ut

A related problem is that, given an instance of 2-ELCS, of determining if a feasible
solution exists. In this section we will consider a general version of the 2-ELCS problem.

Notice that both reductions described above hold for instances that are known to
admit a feasible solution, therefore they are not sufficient for dealing with the problem.
Observe that, since only mandatory symbols are relevant for the existence of a solution,
removing all optional symbols does not change the fact that a feasible solution exists or
not. Therefore in this section we can assume that both input sequences are made only of
mandatory symbols.

Clearly, in order to have a feasible solution, each mandatory symbol must appear in
both input sequences. Since it is trivial to verify in polynomial time such property, in the
following we can assume that each mandatory symbol appears in both input sequences.
The number of occurrences of each mandatory symbol in the instance is a fundamental
parameter, in fact we will show that finding a feasible solution can be done in polynomial
time for small values of such parameter, but becomes intractable for different values.

Theorem 3 The problem of determining if a feasible solution exists for an instance of

2-ELCS where each mandatory symbol appears totally at most three times in the input

sequences, can be solved in polynomial time.

Proof. We prove the theorem reducing an instance of 2-ELCS, where each mandatory
symbol appears totally at most three times in the input sequences to an instance of 2SAT,
that is the restriction of Satisfiability to instances where each clause contains at most
two literals. Notice that 2SAT can be solved in polynomial time [2].

For each symbol s, let occ1(s) (respectively occ2(s)) be the set of positions of the input
sequence s1 (resp. s2) where the symbol s appears. Clearly both occ1(s) and occ2(s) are
not empty and |occ1(s)| + |occ2(s)| ≤ 3. For each symbol s there are at most two pairs in
occ1(s)× occ2(s), for otherwise |occ1(s)|+ |occ1(s)| > 3, let us associate with each of such
pairs a variable xs,i, where i ∈ {1, 2} if there are two pairs in occ1(s) × occ2(s) and i = 1
if there is only one pair in occ1(s) × occ2(s).

Graphically the possible variables are represented in Fig. 3 with a line connecting
two identical symbols belonging to different sequences. The case |occ1(s)| + |occ1(s)| =

3 is represented by the two leftmost lines and the variables xs,1, xs,2, while the case
|occ1(s)| + |occ1(s)| = 2 is represented by the rightmost line and the variable xt,1. Each
truth assignment to the variables can be viewed as picking the lines corresponding to true
variables. Let C be the set of clauses of the instance of 2SAT that we are constructing.
For each pair xs,1, xs,2 of variables, the clauses ¬xs,1 ∨ ¬xs,2 and xs,1 ∨ xs,2 are added
to C. Moreover, for each symbol s such that there is only one pair in occ1(s) × occ2(s),
add the clause xs,1 to C (this corresponds to forcing the variable xs,1 to be true). The
fact that all these clauses are satisfied in any feasible solution of 2SAT, corresponds to
pick exactly one of the lines associated with each symbol. Two lines (or two variables)
are called crossing if they cross in the drawing built as in Fig. 3. More formally, notice
that each variable xs,i is associated with an occurrence of s in s1 (denoted as s1(s, i)) and
one occurrence of s in s2 (denoted as s2(s, i)). A pair xs,i, xt,j of variables is crossing if
in s1 the symbol s1(s, i) precedes s1(t, j) and in s2 the symbol s2(s, i) does not precede
s2(t, j) or, symmetrically, if in s1 the symbol s1(s, i) does not precede s1(t, j) and in s2

the symbol s2(s, i) precedes s2(t, j). For each pair xs,i, xt,j of crossing variables, the clause
¬xs,i ∨ ¬xt,j is added to C.

We can prove that the original instance of 2-ELCS has a feasible solution if and only
if the instance of 2SAT is satisfiable, that is there is a truth assignment for all variables
such that all clauses in C are evaluated true.

Assume that there is a feasible solution z of the instance of 2-ELCS then, for each
symbol s, we pick the lines connecting the symbols retained in z. By definition of common
subsequence there cannot be two crossing lines, and exactly one of the lines associated with
each symbol must be picked as |occ1(s)| + |occ1(s)| ≤ 3, therefore we have constructed a
feasible solution of 2SAT.

Conversely given a truth assignment for all variables that satisfies all clauses in C, it
is immediate to note that there are not two crossing lines, and that there is exactly one
line for each symbol, therefore it is immediate to construct a feasible solution of 2-ELCS
that contains all symbols. ut

Notice that the above result holds for all the restrictions of 2-ELCS as no symbol ap-
pears twice in both input sequences, therefore it can appear at most once in any solution.
Slightly relaxing the constraint on the number of occurrences of each symbol makes the
problem hard to solve efficiently, in fact if each mandatory symbol can have three occur-
rences in each sequence then the problem becomes NP-hard, as shown in the following
theorem.

S1

S2
x

xs,1 x
x

x
s,2

u,1
v,1

t,1

Fig. 2. Reducing 2-ELCS to 2SAT

Theorem 4 The problem of determining if a feasible solution exists for an instance of

2-ELCS where each mandatory symbol appears at most three times in each input sequence,

is NP-hard.

Proof. We will prove the theorem reducing 3SAT to 2-ELCS, with a reduction very similar
to the one shown before. Let C = {C1, . . . , Ck} be a set of clauses, each one consisting of
at most three (possibly negated) literals. We construct an instance of 2-ELCS associating
a block with each variable. The block of s1 associated with variable xi is defined as the
symbol xi, followed by the sequence of clauses containing xi, followed by the sequence of
clauses containing ¬xi, where in each sequence the clauses are ordered according to the
index in {C1, . . . , Ck}. In s2 the block associated with variable xi is defined as the symbol
xi, followed by the sequence of clauses containing ¬xi, followed by the sequence of clauses
containing xi (again the clauses are ordered according to the index in {C1, . . . , Ck}). For
example if x1 appears negated in C1 and not negated in C2, C3, then the corresponding
blocks are x1C2C3C1 (in s1) and x1C1C2C3 (in s2). Both sequences s1 and s2 consist of
the sequence of all blocks associated to the variables of the original instance of 3SAT. All
symbols are mandatory, also notice that each symbol appear at most three times in each
sequence as each clause contains at most three literals.

Each symbol xi appears exactly once in each sequence, therefore there is no ambiguity
on which occurrence is retained in any exemplar common subsequence. Consequently each
symbol retained must correspond to occurrences taken from the same block. Inside the
block associated with xi, retaining the clauses where xi appears as a positive literal is
mutually exclusive with retaining the clauses where xi appears as a negative literal, by
definition of exemplar common subsequence. The first case (that is retaining the clauses
where xi appears as a positive literal) corresponds to setting xi to true, while the second
case corresponds to setting xi to false. In both case the clauses retained are satisfied by
the assignment of variables xi.

It is immediate to note that any feasible solution must contain all clauses, therefore
we have computed a truth assignment of the variables that satisfies all clauses in C,
completing the proof. ut

The above results have a simple but definitive consequence on the approximability of
the 2-ELCS problem where each mandatory symbol appears at most three times in both
input sequences, as they rule out any possible polynomial-time approximation algorithm.

Since the problem can be extended to instances consisting of a set of sequences, it is
interesting if the above results can be made stronger. In fact, the well-known inapprox-
imability results by Jiang and Li [6] for the LCS problem, immediately apply also to the
ELCS(≥ 1) problem, since ELCS(≥ 1) is more general than LCS. A closer inspection of
their proofs shows that their result also apply to all versions of ELCS, as the optimal
solutions in their reductions contain at most one occurrence of each symbol, hence there
cannot be any O(n1−ε) ratio polynomial-time approximation algorithm unless P=NP,
even if no mandatory symbol is allowed and all symbols appear at most twice in each
sequence.

4 Restricting the problem

We are now interested in determining if a reasonable restriction can lead to an efficient
solution. This section is devoted to the restriction of 2-ELCS(1) where the number of
mandatory symbols is at most a constant. Our algorithm is based on two phases: the
first step consists of guessing the exact ordering of all mandatory symbols in the optimal
solution, the second step basically fills in the gaps between each pair of mandatory symbol.

Since each mandatory symbol appears exactly once in a feasible solution, the correct
ordering of the mandatory symbol is a permutation of Am. Since |Am| is a constant, we
can run the second phase for all possible permutations of Am at the expense of only a
constant multiplicative increase in time complexity.

Let s be a permutation of mandatory symbol, the second phase consists of computing
a longest common subsequence s∗ of {s1, s2} with the costraint that s is a subsequence
of s∗. In the following let us denote by s[i] the i-th character of the sequence s and by
s[i . . . j] the substring of s starting with s[i] and ending with s[j]. The recurrence equation
for ELCS[i, j, k], that is the length of an optimal solution over the sequences s1[1 . . . i],
s2[1 . . . j] that is a supersequence of the sequence s[1] · · · s[k] is:

ELCS[i, j, k] = max















ELCS[i − 1, j − 1, k] + 1 if s1[i] = s2[j], s1[i] ∈ Ao

ELCS[i − 1, j − 1, k − 1] + 1 if s1[i] = s2[j] = s[k]
ELCS[i − 1, j, k],ELCS[i, j − 1, k] if s1[i] = s2[j] 6= s[k], s1[i] ∈ Am

ELCS[i − 1, j, k],ELCS[i, j − 1, k] if s1[i] 6= s2[j]

The boundary conditions are ELCS[0, j, 0] = 0 and ELCS[i, 0, 0] = 0 for 0 ≤ i ≤ |s1|
and 0 ≤ j ≤ |s2|. The value of the optimal solution can be read in ELCS[|s1|, |s2|, |s|],
once the matrix ELCS has been completely filled in. The actual optimal solution can be
constructed by standard backtracking techniques [3]. The recurrence equation is for the
2-ELCS(1) problem, but it can be easily modified for the 2-ELCS(≥ 1), by removing the
requirement s1[i] ∈ Ao in the first condition of the equation, so that a mandatory symbol
can be retained more than once.

References

1. P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theoretical Computer
Science, 237(1–2):123–134, 2000.

2. B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of certain
quantified boolean formulas. Information Processing Letters, 8(3):121–123, 1979.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2nd
edition, 2001.

4. K. Hakata and H. Imai. The longest common subsequence problem for small alphabet size between many
strings. In Proc. 3rd International Symp. on Algorithms and Computation (ISAAC), pages 469–478,
1992.

5. W. Hsu and M. Du. New algorithms for the LCS problem. Journal of Computer and System Sciences,
19:133–152, 1984.

6. T. Jiang and M. Li. On the approximation of shortest common supersequences and longest common
subsequences. SIAM Journal on Computing, 24(5):1122–1139, 1995.

7. D. Maier. The complexity of some problems on subsequences and supersequences. Journal of the ACM,
25:322–336, 1978.

