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For any non negative real values h and k, an L(h, k)-labeling of a graph

The span of an L(h, k)-labeling is the difference between the largest and the smallest value of L. We denote by λ h,k (G) the smallest real λ such that graph G has an L(h, k)-labeling of span λ. The aim of the L(h, k)-labeling problem is to satisfy the distance constraints using the minimum span. In this paper, we study the L(h, k)-labeling problem on regular grids of degree 3, 4, and 6 for those values of h and k whose λ h,k is either not known or not tight. We also initiate the study of the problem for grids of degree 8. For all considered grids, in some cases we provide exact results, while in the other ones we give very close upper and lower bounds.

INTRODUCTION

In this paper, we are interested in the frequency assignment problem, that arises in wireless communication systems. More precisely, we focus here on minimizing the number of frequencies used in the framework where radio transmitters that are geographically close may interfere if they are assigned close frequencies. This problem has originally been introduced in [START_REF] Metzger | Spectrum Management Technique[END_REF] and was later developed in [START_REF] Hale | Frequency assignment: theory and applications[END_REF]. It is equivalent to a graph labeling problem, in which the nodes represent the transmitters, and any edge joins two transmitters that are sufficiently close to potentially interfere. The aim here is to label the nodes of the graph in such a way that:

• any two neighbors (transmitters that are very close) are assigned labels (frequencies) that differ by a parameter at least h ;

• any two nodes at distance 2 (transmitters that are close) are assigned labels (frequencies) that differ by a parameter at least k ;

• the gap between the smallest and the greatest value for the labels is minimized.

This problem is usually referred to as the L(h, k)labeling problem. More formally, for any non negative real values h and k, an L(h, k)-labeling of a graph G = (V, E) is a function

L : V → R such that |L(u) -L(v)| ≥ h if (u, v) ∈ E and |L(u) -L(v)| ≥ k if
there exists w ∈ V such that (u, w) ∈ E and (w, v) ∈ E. The span of an L(h, k)-labeling is the difference between the largest and the smallest value of L. Hence, it is not restrictive to assume 0 as the smallest value of L, something which will be assumed throughout this paper. We denote by λ h,k (G) the smallest real λ such that graph G has an L(h, k)-labeling of span λ ; we call L(h, k) number of G this value. The aim of the L(h, k)-labeling problem is to satisfy the distance constraints using the minimum span.

Since its definition [START_REF] Griggs | Labeling graphs with a Condition at Distance 2[END_REF] as a specialization of the frequency assignment problem in wireless networks (12; 17), the L(h, k)-labeling problem has been intensively studied. Note that the L(h, k)-labeling problem is a generalization of some standard graph colorings, such as the usual (or proper) coloring when h = 1 and k = 0, or the 2-distance coloring (equivalent to the proper coloring of the square of the graph) when h = k = 1. We also note that the case h = 2 and k = 1 (or, more generally h = 2k), called radiocoloring or λ-coloring, is the most widely studied (see for instance (7; 9; 13; 14)).

The decision version of the L(h, k)-labeling problem is NP-complete even for small values of h and k (2). This motivates seeking optimal solutions on particular classes of graphs (see for instance (3; 4; 8; 11; 18; 19; 20; 15) and ( 6) for a complete survey). Concerning the more specific grid topologies, a large number of papers has been published on the subject. For instance, Makansi [START_REF] Makansi | Transmitter-Oriented Code Assignment for Multihop Packet Radio[END_REF] provided an optimal L(0, 1)-labeling for squared grids, that is regular grids of degree 4 (see Figure (b)). Battiti, Bertossi and Bonuccelli [START_REF] Battiti | Assigning Codes in Wireless Networks: Bounds and Scaling Properties[END_REF] found an optimal L(1, 1)-labeling for hexagonal, squared and triangular grids (that is, respectively, regular grids of degree 3, 4 and 6, see Figures (a), (b) and (c)). The L(2, 1)-labeling problem of regular grids of degree ∆, denoted G ∆ , has been studied independently by different authors (3; 7) proving that λ 2,1 (G ∆ ) = ∆ + 2 by means of optimal coloring algorithms. More recently, Fertin and Raspaud [START_REF] Fertin | L(p, q) Labeling of d-Dimensional Grids[END_REF] determined several bounds on λ h,k for d-dimensional squared grids.

In ( 5) some values of λ h,k for regular grids of degree 3, 4, and 6 are exactly computed, while in some intervals different upper and lower bounds are given ; moreover, the case h < k is not considered at all. Our goal in this paper is to improve some of those bounds, as well as to consider the case h < k. Moreover, we extend this study to a new class of graphs, namely grids of degree 8. Grids of degree 8 can be defined as the strong product of two infinite paths [START_REF] Korže | L(2,1)-labeling of strong products of cycles[END_REF] (see also Figure for a graphical representation of the four types of grids we study in this paper). Grids of degree 8 can also be seen as a natural extension of grids of degree 6, who themselves are an extension of grids of degree 4 (see Figures (a) Before going further, we observe that when h < k (a case that we will consider in this paper), there are actually two ways to define the L(h, k)-labeling problem:

• The first one is the distance-based model, which asks that two neighbors in the graph differ by at least h, while two nodes at distance 2 differ by at least k. This means that when two nodes are at the same time connected by a 1-path and a 2-path (hence when there is a cycle of length 3 in the graph), we consider the distance to be 1, and thus impose only the condition on h.

• The second one is the max-based model, which asks that two nodes connected at the same time by a 1path and a 2-path differ by at least max{h, k} ; in that sense, this model is more restrictive than the distancebased model. In particular, this model imposes that any cycle of length 3 to be always labeled with three labels at least max{h, k} apart from each other.

Note that when h ≥ k, the two definitions coincide, since max{h, k} = h. The same occurs when the considered graph has no triangles, which is the case for G 3 and G 4 . In this paper, in the study of G 6 and G 8 , when h < k, we chose to consider the max-based problem. As mentioned above, we study in this paper the L(h, k)labeling problem on regular grids of degree 3, 4, and 6 for those values of h and k whose λ h,k is either not known or not tight, and we also study the L(h, k) labeling problem in a new class of graphs, namely grids of degree 8. For all considered grids, in some cases we provide exact results, or we give close upper and lower bounds (see Figure 6.2 at the end of the paper for a summary of results). The paper is organized as follows: in Section , we give a few technical lemmas that will help to obtain general lower and upper bounds for the considered types of graphs, while in Sections , 3.2, 4.2 and 4.2, we improve bounds on the L(h, k) number of grids for degree 3, 4, 6 and 8, respectively. Note finally that if no confusion arises, we will speak interchangeably, in the rest of this paper, of a node and its label.

PRELIMINARIES

In this section, we show four different lemmas, which will prove to be useful in the rest of the paper. Lemmas 1 and 1 are concerned with lower bounds for the L(h, k) number, while Lemmas 2 and 3 deal with upper bounds.

Theorem 1. λ h,k (G ∆ ) ≥ h + (∆ -1)k when h ≤ k, for ∆ = 3, 4.
Proof. Consider an optimal L(h, k)-labeling of G ∆ , h ≤ k, ∆ = 3, 4, and let x be a node labeled 0. The smallest label among those of its neighbors must be at least h. Furthermore, the ∆ neighbors of x are all connected by a 2-length path and hence their labels must differ by at least k from each other. It follows that the greatest label must be at least h + (∆ -1)k.

Lemma 1. λ h,k (G ∆ ) ≥ ∆k when h ≤ k, for ∆ = 6, 8.
Proof. Observe that G 6 and G 8 are characterized by the property that each pair of adjacent nodes is also connected by a 2-length path. This implies that, given an optimal L(h, k)-labeling of G ∆ , h ≤ k, ∆ = 6, 8, starting from a node x labeled 0, the smallest label, among those of their neighbors must be at least k. With reasonings analogous to those of the previous proof, the claim follows.

Lemma 2. For any graph G and any

h ≤ k, λ h,k (G) ≤ k • λ 1,1 (G).
Proof. Consider an optimal L(1, 1)-labeling, say L, of G. Consider the labeling L obtained from L by substituting every label i with label ik (i = 0, 1, . . . , λ 1,1 (G)). We claim that L is an L(h, k)-labeling of G with span k • λ 1,1 (G), provided h ≤ k. Indeed, any two neighbors, which differ by at least 1 in L, differ by at least k ≥ h in L ; moreover, any two nodes connected by a 2-length path, which differ by at least 1 in L differ by at least k in L .

Lemma 3. For any graph G and any

h ≥ k 2 , λ h,k (G) ≤ h • λ 1,2 (G).
Proof. Analogously to the proof of Lemma 2, consider an L(1, 2) labeling, say L, of G. Consider the labeling L obtained from L by substituting every label i with label ih

(i = 0, 1, . . . , λ 1,2 (G)). Since h ≥ k 2 , L is an L(h, k)- labeling of G with span h • λ 1,2 ( 
G). Indeed, any two neighbors, which differ by at least 1 in L, differ by at least h in L ; moreover, any two nodes connected by a 2-length path, which differ by at least 2 in L differ by at least 2h ≥ k in L .
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Upper Bounds for

G 3 Proposition 1. λ h,k (G 3 ) ≤ h + 2k when h ≤ k 2 .
Proof. Consider an optimal L(1, 2)-labeling of G 3 over the set of labels {0, 1, . . . , 5}, whose general pattern is depicted in Figure 3.1(a). The idea is to substitute h to 1, k to 2, h+k to 3, 2k to 4, and h+2k to 5. In that case, the labeling that is produced is a feasible L(h, k)-labeling. Indeed, each pair of consecutive labels differs by either h or kh, but since we supposed h ≤ k 2 , we have kh ≥ h and thus any two consecutive labels differ by at least h. Similarly, any other pair of distinct labels differs by at least k. Moreover, the largest label used is h + 2k, hence the result. 

Proposition 2. λ h,k (G 3 ) ≤ min {5h, 3k} when k 2 ≤ h ≤ k.
Proof. By Lemma 3, since k 2 ≤ h and since there exists an L(1, 2)-labeling of G 3 that is of span 5 (see for instance the general pattern shown in Figure 3.1(a)), we know there exists an L(h, k)-labeling of G 3 of span 5h. Analogously, since h ≤ k, we obtain an L(h, k)-labeling of span 3k by Lemma 2 ; indeed, there exists an L(1, 1)labeling of G 3 that is of span 3 (whose general pattern is shown in Figure 3.1(b), see also (1)).

Lower Bounds for

G 3 Proposition 3. λ h,k (G 3 ) ≥ h + 2k when h ≤ k.
Proof. This bound directly comes from Lemma 1.

Figure 3 Neighborhood of a node labeled 0 in G3 Proposition 4. λ h,k (G 3 ) ≥ 3k when 2k 3 ≤ h ≤ k. Proof. Consider an optimal L(h, k)-labeling of G 3 . Sup- pose, by contradiction, that λ h,k (G 3 ) < 3k.
Let us consider a node labeled 0, and let x, y, and z be its 3 neighbors. Without loss of generality, suppose x < y < z. In view of the L(h, k)-constraints, we must have x ≥ h, y ≥ x + k ≥ h + k, and z ≥ y + k ≥ h + 2k. Furthermore, from the hypothesis λ h,k (G 3 ) < 3k, we have that z < 3k, hence y ≤ zk < 2k, and x ≤ yk < k. Let x 1 and x 2 , y 1 and y 2 , z 1 and z 2 be the not 0 neighbors of x, y, and z, respectively (see Figure 3.

2).

Let us first prove that if y m = min{y 1 , y 2 } and y M = max{y 1 , y 2 }, then y m < y < y M . Indeed, if y < y m , then y m ≥ y + h ≥ 2h + k, and consequently y M ≥ 2h + 2k. However, 2h + 2k ≥ 3k (because we supposed h ≥ 2k 3 ≥ k 2 ), a contradiction to the fact that λ < 3k. On the other hand, if y M < y, then y ≥ y M + h. And since y M ≥ y m + k ≥ 2k, we end up with y ≥ h + 2k. However, by hypothesis we know that y < 2k, a contradiction since h ≥ 0. Thus we conclude that in all the cases, we have y m < y < y M . Now, in order to prove the statement, we will show that under the hypothesis λ h,k (G 3 ) < 3k, both cases x 1 < x 2 and x 1 > x 2 lead to a contradiction.

Case 1: x 1 < x 2 . In this case x 1 ≥ k, as x 1 is connected by a 2-length path to node 0 (via x) and

x 2 ≥ x 1 + k ≥ 2k. If x 1 < x, then x ≥ x 1 + h ≥ k + h, a contradiction since x < k. Hence, x < x 1 < x 2 . It follows that x 1 ≥ x + h ≥ 2h and x 2 ≥ x 1 + k ≥ 2h + k.
Let us now consider y 1 and y 2 .

Case 1.1: y 1 < y 2 . Hence we know that y 1 < y < y 2 .

In such a case y 1 ≥ k and y 1 ≤ yh < 2kh. Note that y 1 < x 2 as y 1 < 2kh and x 2 ≥ 2k. Let us consider the common neighbor of x 2 and y 1 , α, and let us study the relative position of its label with respect to x 2 and y 1 .

• α < y 1 < x 2 . Then α ≤ y -k < k: if x < α we have α ≥ x+k ≥ h+k, a contradiction ; on the other hand, if α < x then α ≤ x -k < 0, a contradiction too.
• y 1 < x 2 < α. Then x 2 ≤ αh < 3kh ; from previous hypotheses we also have x 2 ≥ 2h + k, and this leads to a contradiction as 3k

-h ≤ 2h + k when h ≥ 2k 3 . • y 1 < α < x 2 . We have again two cases. If y 1 < α < y then α ≤ y -k < k and y 1 ≤ α -h < k -h that is a contradiction as y 1 ≥ k. If y 1 < y < α then α ≤ x 2 -h < 3k -h, y ≤ α -k < 2k -h, and 
y 1 ≤ y -h < 2k -2h that is a contradiction as y 1 ≥ k and k ≥ 2k -2h when 2k 3 ≤ h ≤ k.
Case 1.2: y 1 > y 2 . Thus we have y 1 > y > y 2 . This implies that y 1 ≥ y + h ≥ 2h + k. Hence, y 1 lies in the interval [2h + k; 3k[. However, we also know that x 2 lies in the interval [2h + k; 3k[. Since this interval is of width w < 2k-2h, we conclude that w < k (because we supposed h ≥ 2k 3 and hence h ≥ k 2 ). This leads to a contradiction because y 1 and x 2 must be at least k away from each other.

Case 2: x 1 > x 2 . With considerations analogous to those done for case x 1 < x 2 , we can derive x < x 2 < x 1 and 2h + k ≤ x 1 < 3k and 2h ≤ x 2 < 2k. Now, let us look at y 1 and y 2 .

Case 2.1: y 1 < y 2 . We thus have y 1 < y < y 2 . However, this leads to a contradiction. Indeed, y 1 > k as it is connected by a 2-length path to node 0, then

x 2 ≥ y 1 + k > 2k.
Case 2.2: y 1 > y 2 . We then have y 2 < y < y 1 . This implies that y 1 ≥ y + h ≥ 2h + k and hence y 1 > x 2 as x 2 < 2k. Now consider α, the common neighbor of x 2 and y 1 .

• x 2 < y 1 < α. Then α ≥ y 1 + h ≥ 3h + k ≥ 3k, a
contradiction since we supposed λ < 3k.

• α < x 2 < y 1 . Then α ≤ x 2 -h < 2k -h. If α > y then α ≥ y + k ≥ h + 2k, a contradiction ; if α < y then α ≤ y -k ≤ k.
However, we know that x < k ; moreover, because α < k and α must lie at least k away from x, this leads to a contradiction.

• x 2 < α < y 1 . Then α ≤ y 1 -h < 3k -h. If α > y then α ≥ y + k ≥ h + 2k
that is greater than 3kh under the hypothesis h ≥ 2k 3 , a contradiction ; if α < y then α ≤ yk ≤ k that again contradicts the fact that α must lie at least k away from x.

Altogether, we see that every possible case leads to a contradiction. This proves that the initial assumption, λ < 3k, is false, and consequently the proposition is proved.

Proposition 5. λ h,k (G 3 ) ≥ 3h when k ≤ h ≤ 3k 2 .
Proof. The proof is analogous to the previous one, i.e., by contradiction we assume that there exists a L(h, k)labeling with span λ < 3h, we start from node labeled 0, we look at its neighbors and prove that neither x 1 < x 2 nor x 1 > x 2 can occur. Wlog, let us assume x < y < z. Hence, x ≥ h, y ≥ h + k and z ≥ h + 2k. On the other hand, z < 3h, y < 3hk and x < 3h -2k. Let x 1 and x 2 , y 1 and y 2 , z 1 and z 2 be the not 0 neighbors of x, y, and z, respectively (see Figure 3.2). We first prove that if y m = min{y 1 , y 2 } and y M = max{y 1 , y 2 }, then y m < y < y M . Indeed, if y < y m , then y m ≥ y + h ≥ 2h + k, and consequently y M ≥ 2h + 2k. However, 2h + 2k ≥ 3h (because we supposed h ≤ 3k

2 ), a contradiction to the fact that λ < 3h. On the other hand, if y M < y, then y ≥ y M + h. And since y M ≥ y m + k ≥ 2k, we end up with y ≥ h + 2k. However, by hypothesis we know that y < 3hk, a contradiction since 3hk ≤ h + 2k, because we supposed h ≤ 3k

2 . Thus we conclude that in all the cases, we have y m < y < y M . Now, as in the previous proof, let us consider x 1 and x 2 (see Figure 3.2), and show that, under the hypothesis λ < 3h, none of the cases x 1 < x 2 and x 1 > x 2 can occur.

Case 1: x 1 < x 2 . This implies x 1 ≥ k, as x 1 is connected by a 2-length path to node 0 (via x). If x 1 < x, then x ≥ x 1 + h ≥ h + k, that is a contradiction as x < 3h -2k ≤ h + k under the hypothesis h ≤ 3k 2 . Hence, x < x 1 < x 2 . It follows that x 1 ≥ x + h ≥ 2h and x 2 ≥ x 1 + k ≥ 2h + k.
Let us consider now y 1 and y 2 .

Case 1.1: y 1 < y 2 . Then we know that y 1 < y < y 2 . Note that y 1 < x 2 as x 2 ≥ 2h+k and y 1 ≤ y-h ≤ y 2 -2h < 3h -2h = h. Now, let us consider α, the common neighbor of y 1 and x 2 .

• y 1 < x 2 < α. The contradiction comes from the inequality α ≥ x 2 + h ≥ 3h + k.

• α < y 1 < x 2 . Then y 1 ≥ α + h ≥ h, y ≥ y 1 + h ≥ 2h and y 2 ≥ y + h ≥ 3h, a contradiction. • y 1 < α < x 2 . Since we have y 1 ≥ k, this implies α ≥ y 1 + h ≥ h + k and α ≤ x 2 -h < 2h.
It is easy to see that the same bounds hold also for y. Hence y and α both lie in the interval

[h + k; 2h[, of width w < h -k, that is w ≤ k.
The contradiction comes from the fact that α and y being connected by a 2length path, they must lie at least k away from each other.

Case 1.2: y 1 > y 2 . Thus, we know that y 1 > y > y 2 . We know that x 2 and y 1 must be at least k away from each other. Moreover, 2h + k ≤ x 2 < 3h and 2h + k ≤ y 1 < 3h. Hence, both x 2 and y 1 lie in an interval of width w < h-k. Since we supposed h ≤ 3k 2 , we conclude w < k, a contradiction.

Case 2: x 1 > x 2 . We can easily see that in that case we must have x 1 > x 2 > x. Indeed, x 2 ≥ k, since it is connected by a 2-length path to node 0. Hence, if x > x 2 , then x ≥ h + k. However, we know that x < 3h -2k, a contradiction since h ≤ 3k

2 . Hence we conclude that x 1 > x 2 > x, which implies x 2 ≥ x + h ≥ 2h and x 1 ≥ x 2 + k ≥ 2h + k. Now let us consider y 1 and y 2 .

Case 2.1: y 1 < y 2 . Let us then consider α, the common neighbor of y 1 and x 2 , and let us look at its relative position compared to x and y. There are three possible cases.

• α > y > x. We recall that we are in the case

x 1 > x 2 > x, that is x 2 ≥ x + h ≥ 2h. If α > x 2 then α ≥ x 2 +h ≥ 3h, a contradiction to the hypothesis λ < 3h. Now, if α < x 2 , α ≤ x 2 -h. Since x 2 ≤ x 1 -k < 3h-k, we conclude α ≤ 2h -k. But y ≥ h + k and α ≥ y + k, that is α ≥ h + 2k
. This is a contradiction since 2hk ≤ h + 2k, by the hypothesis that h ≤ 3k 2 . • y > α > x. We then conclude that α ≤ y-k < 3h-2k.

On the other hand, we have α ≥ x + k ≥ h + k. This is a contradiction since h + k ≥ 3h -2k due to the fact that we supposed h ≤ 3k 2 . • y > x > α. In that case, if α < y 1 , then y 1 ≥ α + h ≥ h, which implies y ≥ 2h and y 2 ≥ 3h, a contradiction to the hypothesis λ < 3h. Now, if α > y 1 , then α ≥ h, which in turns means that x ≥ h + k and y ≥ h + 2k. However, we know that y < 3hk, a contradiction since 3hk ≤ h + 2k due to the fact that we supposed h ≤ 3k 2 .

Case 2.2: y 1 > y 2 . Here, we consider the three nodes z, z 1 and z 2 . We first show that if z m = min{z 1 , z 2 } and z M = max{z 1 , z 2 }, then z m < z M < z. Indeed, if z M > z then z M ≥ z + h, and since we know z ≥ h + 2k, we conclude z M ≥ 2h + 2k, a contradiction to the fact that λ < 3h since 2h + 2k ≥ 3h. Now let us look at the relative positions of z 1 and z 2 . There are two cases to consider.

• z 1 > z 2 . In that case, we have z > z 1 > z 2 . Now let us look at β, common neighbor of z 1 and y 2 , and let us consider the relative positions of β and y.

β < y. First, we note that β < z 1 . Indeed, z 2 ≥ k (it is connected by a 2-length path to node 0), thus z 1 ≥ 2k. However, β < y by hypothesis, hence β ≤ yk, that is β < 2hk. Moreover, 2hk ≤ 2k since we are in the case h ≤ 3k 2 , and thus we conclude that β < z 1 . This implies β ≤ z 1 -h, that is β ≤ z -2h ; and since z ≤ λ < 3h, we get β < h. On the other hand, y 2 < y, thus y 2 ≤ yh. But since y < 2h, we then have y 2 < h. Hence, both β and y 2 lie in the interval [0; h[. However, they are neighbors and thus should have labels that are at least h away, a contradiction.

β > y. Then we have β ≥ y + k, that is β ≥ h + 2k. However, we know that z ≥ h + 2k as well. Thus, β and z lie in the interval [h + 2k; λ[, where λ < 3h by hypothesis. Thus the width of this interval w satisfies w < 2h -2k, and thus w < k because we supposed h ≤ 3k 2 . However, β and z are neighbors, and thus should have labels at least differing by h, a contradiction with the fact that w < h.

• z 2 > z 1 . In that case, we know that z > z 2 > z 1 . In particular, this means that z 2 < 2h, and z 1 < 2hk. However, z 1 ≥ k since it is connected by a 2-length path to node 0. We also have y ≤ z -h < 2h, and thus y 2 ≤ yh < h ; and since h ≥ k, we conclude that y 2 ≤ 2hk. Moreover, y 2 ≥ k since it is connected by a 2-length path to node 0. Hence, both z 1 and y 2 lie in the interval [0; 2hk[, of width w < 2h -2k, that is w < k since we supposed h ≤ 3k 2 . However, z 1 and y 2 are connected by a 2-length path, and thus should have labels at least differing from k, a contradiction.

Altogether, we see that every possible case leads to a contradiction. This proves that the initial assumption, λ < 3h, is false, and consequently the proposition is proved.

Proposition 6. λ h,k (G 3 ) ≥ h + 3k when 3k 2 ≤ h ≤ 2k.
Proof. Consider an optimal L(h, k)-labeling of G 3 with span λ. By contradiction, suppose λ < h + 3k. Let us consider a node labeled 0, and let x, y, and z be its 3 neighbors. Without loss of generality, suppose x < y < z.

In view of the L(h, k)-constraints, we must have x ≥ h, y ≥ x + k ≥ h + k, and z ≥ y + k ≥ h + 2k. Furthermore, for the hypothesis λ < h + 3k, z < h + 3k, hence y ≤ zk < h + 2k, and x ≤ yk < h + k. Let x 1 and x 2 , y 1 and y 2 , z 1 and z 2 be the not 0 neighbors of x, y, and z, respectively (see Figure 3.

2).

Let us first prove the following, which will be useful in the rest of the proof: if y m = min{y 1 , y 2 } and y M = max{y 1 , y 2 }, then y m < y < y M . Indeed, if y < y m < y M , we have y m ≥ y + h ≥ 2h + k, and y M ≥ y m + k ≥ 2h + 2k. However, this contradicts the fact that λ < h + 3k, because 2h + 2k ≥ h + 3k (since we supposed h ≥ 3k 2 ). Now suppose y m < y M < y. Then y m ≥ k, because it is connected by a 2-length path to node 0. Thus y M ≥ y m + k ≥ 2k, and y ≥ y M + h ≥ h + 2k, which contradicts the fact that y < h + 2k. Altogether, we conclude that the only possible case is y m < y < y M (1).

In the following we show that, under the hypothesis λ < h + 3k, both cases x 1 < x 2 and x 1 > x 2 lead to a contradiction, which will prove the statement.

Case 1: x 1 < x 2 . This implies x 1 ≥ k, as x 1 is connected by a 2-length path to node 0 (via x) and

x 2 ≥ x 1 + k ≥ 2k. If x 1 < x, then x ≥ x 1 + h ≥ k + h, that is a contradiction as x < h + k. Hence, we have x < x 1 < x 2 . It follows that x 1 ≥ x + h ≥ 2h and x 2 ≥ x 1 + k ≥ 2h + k. Moreover, x 1 ≤ x 2 -k < h + 2k and x ≤ x 1 -h < 2k.
Let us now consider y 1 and y 2 .

Case 1.1: y 1 < y 2 . By (1) above, we have y 1 < y < y 2 . Let us now consider α (common neighbor of y 1 and x 2 ), and let us study its relative position compared to x and y (we recall that x < y by hypothesis).

• α > y > x. Hence we have α ≥ y + k ≥ h + 2k. But

x 2 ≥ 2h + k ≥ h + 2k as well. Hence, both α and x 2 lie in the interval [h + 2k; h + 3k[, of width w < k ≤ h. However, x 2 and α are neighbors, thus they must be at least h away, a contradiction.

• y > α > x. In that case, α ≤ yk < 2k. But we also have α ≥ x + k ≥ h + k, a contradiction.

• y > x > α. Since x < 2k, we conclude that α ≤ xk < k. However, we know y 1 ≥ k (because it is connected by a 2-length path to node 0). Thus α < y 1 , hence y 1 ≥ α + h ≥ h. But we know y 1 < y < y 2 , thus y 1 ≤ yh, and y ≤ y 2h < 3k, thus y 1 < 3kh. But we cannot have y 1 ≥ h and

y 1 < 3k -h, since h ≥ 3k 2 .
Case 1.2: y 2 < y 1 . By (1) above, we have y 2 < y < y 1 . Hence y 1 ≥ y +h ≥ 2h+k. We also know that x 2 ≥ 2h+k, since x < x 1 < x 2 . Thus y 1 and x 2 share the same interval [2h + k; h + 3k[, of width w < 2kh ≤ k. But y 1 and x 2 are connected by a 2-length path, and thus must be at least k away, which is impossible.

Hence, at this point we conclude that necessarily x 1 > x 2 . Thus let us consider this case.

Case 2: x 2 < x 1 . In that case, it is easily seen that actually x 1 > x 2 > x, since x > x 2 would imply x ≥ x 2 + h ; and since x 2 ≥ k (it is connected by a 2-length path to node 0), we would have x ≥ h + k, a contradiction to the fact that x < h + k. Now let us look again at the relative positions of y 1 and y 2 .

Case 2.1: y 1 < y 2 . By (1) above, we have y 1 < y < y 2 . This implies that y ≤ y 2h < 3k. And since we know by hypothesis that x < y, we conclude that x ≤ yk < 2k.

• α > y > x. Then α ≥ y + k ≥ h + 2k. However, we know

x 2 < x 1 , that is x 2 ≤ x 1 -k < h + 2k, hence we conclude α > x 2 . Thus α ≥ x 2 + h, and since x 2 > x we have x 2 ≥ x + h ≥ 2h, we conclude α ≥ 3h, a contradiction to the fact that λ < h + 3k, since we supposed h ≥ 3k 2 . • y > α > x. Then α ≥ x + k ≥ h + k, and α ≤ y -k < 2k
. This is a contradiction since h + k ≥ 2k by hypothesis.

• y > x > α. Then α ≤ xk < k. However, y 1 ≥ k (it is connected by a 2-length path to node 0). Thus y 1 > α, which means y 1 ≥ α + h ≥ h. But we know that y 1 < y, that is y 1 ≤ yh < 3kh. This is a contradiction since h ≥ 3kh by hypothesis.

Case 2.2: y 1 > y 2 . By (1) above, we have y 2 < y < y 1 . Let us now look at the relative positions of z, z 1 and z 2 . We first note that if z m = min{z 1 , z 2 } and z M = max{z 1 , z 2 }, then z m < z M < z. Indeed, if z M > z then z M ≥ z + h, and since we know z ≥ h + 2k, we conclude z M ≥ h + 3k, a contradiction.

• z 1 > z 2 . Hence z > z 1 > z 2 , by the argument above.

Let us derive here some inequalities that will be useful in the following. Since z < h + 3k and z 1 ≤ zh, we conclude z 1 < 3k. Moreover, we know that z 2 ≥ k and z 1 > z 2 , thus we conclude z 1 ≥ z 2 + k ≥ 2k. Finally, we recall that h + 2k ≤ z < h + 3k. Now let us look at the relative positions of β and y.

-

β < y. Then β ≤ y -k < 2k. Since z 1 ≥ 2k, we conclude β < z 1 . Thus β ≤ z 1 -h ≤ 3k -h.
We also know that y 2 ≤ 3kh because y 2 < y ≤ yh, and because y < 3k. Hence, both β and y 2 are contained in the interval [0; 3kh[, of width w < 3kh. But 3kh ≤ h by hypothesis, and since β and y 2 must be at least h away, this is impossible.

β > y. Then β ≥ y + k ≥ h + 2k. This implies that both β and z lie in the interval [h + 2k; h + 3k[, of width w < k. However, β and z must be at least k away from each other, a contradiction.

• z 2 > z 1 . Hence z > z 2 > z 1 .
In particular, we have k ≤ z 1 < 2k. But we also know that k ≤ y 2 < 3k-h ≤ 2k. Thus y 2 and z 1 both lie in the interval [k; 2k[, of width w < k. But they must be at least k away, a contradiction.

Altogether, we have shown that every possible case leads to a contradiction. This proves that the initial assumption, λ < h + 3k, is false. This proves the proposition.

4 REGULAR GRIDS OF DEGREE 4 4.1 Upper Bounds for G 4 Proposition 7. λ h,k (G 4 ) ≤ h + 3k when h ≤ k 2 .
Proof. Consider the L(1, 2)-labeling whose general pattern is depicted in Figure 4.1(a). This labeling has span 7. If we now substitute labels 0, h, k, h + k, 2k, h + 2k, 3k, h + 3k to labels 0, 1, . . . , 7, the new labeling we obtain is an L(h, k)labeling of G 4 . Indeed, it is easy to see that when h ≤ k 2 , each pair of consecutive labels differs by at least h, while each other pair of distinct labels differs by at least k. Moreover, the largest label used is h + 3k, hence the result. Proof. By Lemma 3, since k 2 ≤ h and since there exists an L(1, 2)-labeling of G 4 that is of span 7 (as shown in Figure 4.1(a)), we know there exists an L(h, k)-labeling of G 4 of span 7h. Analogously, since h ≤ k, we obtain an L(h, k)-labeling of span 4k by Lemma 2 ; indeed, there exists an L(1, 1)labeling of G 4 that is of span 4 (whose pattern is shown in Figure 4.1(b), see also [START_REF] Battiti | Assigning Codes in Wireless Networks: Bounds and Scaling Properties[END_REF]).

Proposition 8. λ h,k (G 4 ) ≤ min {7h, 4k} when k 2 ≤ h ≤ k.
Proposition 9. λ h,k (G 4 ) ≤ 3h + k when 3k 2 ≤ h ≤ 5k 3 .
Proof. Consider the L(3, 2)-labeling of G 4 whose general pattern is depicted in Figure 4.1(c). This labeling has span 11. If we now substitute labels 0, hk, k, h, 2hk, h + k, 2h, 3hk, 2h + k, 3h, 4hk, 3h + k to labels 0, 1, . . . , 11, the new labeling we obtain is an L(h, k)-labeling of G 4 . By construction, any pair of labels that are at least 3 away in the list differs by at least h, while any pair of labels that is at least 2 away in the list differs by at least k, because we supposed 3k 2 ≤ h. Moreover, the largest label used is 3h + k, hence the result.

Proposition 10. λ h,k (G 4 ) ≤ 11k 2 when 11k 8 ≤ h ≤ 3k 2 . Proof. It is known (see (5)) that λ h,k (G 4 ) ≤ 4h when h ≥ k. Since λ h,k is a non decreasing function, Proposition 9 implies that λ h,k (G 4 ) ≤ 11k 2 when 11k 8 ≤ h ≤ 3k 2 .

Lower Bounds for G 4

Proposition 11. λ h,k (G 4 ) ≥ h + 3k when h ≤ k.

Proof. This bound directly comes from Lemma 1.

REGULAR GRIDS OF DEGREE 6

Proposition 12. λ h,k (G 6 ) = 6k when h ≤ k.

Proof. The upper bound is proved observing that since h ≤ k, we obtain an L(h, k)-labeling of span 6k by Lemma 2 ; indeed, there exists an L(1, 1)-labeling of G 6 of span 6, whose general pattern is shown in Figure 4.2 (see also [START_REF] Battiti | Assigning Codes in Wireless Networks: Bounds and Scaling Properties[END_REF]).

The lower bound directly comes from Lemma 1. Proof. Once again we exploit the L(1, 1)-labeling of G 8 whose general pattern is depicted in Figure 6.1(a). If we substitute 0, h, 2h, . . . 8h to labels 0, 1, . . . , 8, the new labeling we obtain is an L(h, k)-labeling of G 8 . Indeed, it is easy to see that each pair of consecutive labels differs by at least h, and thus by at least k since k ≤ h. Moreover, the largest label used is 8h, hence the result. The upper bound of 10k comes from the L(2, 1)-labeling of G 8 whose general pattern is shown in Figure 6.1(b). If we substitute 0, k, 2k, . . . 10k to labels 0, 1, . . . , 10, the new labeling we obtain is an L(h, k)-labeling of G 8 . Indeed, it is easy to see that when k ≤ h ≤ 2k, each pair of non consecutive labels differs by at least 2k ≥ h, while any pair of distinct labels differs by at least k. Moreover, the largest label used is 10k, hence the result.

Proposition 15. λ h,k (G 8 ) ≤ min {5h, 14k} when 2k ≤ h ≤ 3k.
Proof. Consider the L(2, 1)-labeling whose general pattern is described in Figure 6. 1(b). This labeling has span 10. If we now substitute 0, k, h, h + k, 2h, 2h + k, 3h, 3h + k, 4h, 4h + k, 5h to labels 0, 1, . . . , 10, the new labeling we obtain is an L(h, k)-labeling of G 8 . Indeed, it is easy to see that each pair of non consecutive labels differs by at least h. On the other hand, since 2k ≤ h, any pair of distinct labels differs by at least k. Moreover, the largest label used is 5h.

Analogously, the other bound is given using an L(3, 1)labeling, such as the one whose general pattern is shown in Figure 6.1(c). This labeling is of span 14. If we now substitute 0, k, 2k, . . . , 14k to labels 0, 1, . . . , 14, the new labeling we obtain is an L(h, k)-labeling of G 8 . Indeed, when h ≤ 3k, each pair of labels that are at least 3 away in the list differs by at least 3k ≥ h, while any pair of distinct labels differs by at least k. Moreover, the largest label used is 14k, hence the result.

Proposition 16. λ h,k (G 8 ) ≤ 4h + 2k when 3k ≤ h ≤ 6k.
Proof. Starting from the L(3, 1)-labeling used in the previous proof (cf. also Figure 6.1(c)) of span 14, we substitute labels 0, k, 2k, h, h + k, h + 2k, 2h, 2h + k, . . . , 4h, 4h + k, 4h+2k to labels 0, 1, . . . , 14. This new labeling is also an L(h, k)-labeling of G 8 . Indeed, each pair of labels that are at least 3 away in the list differs by at least h by construction, while any pair of distinct labels differs by at least k because h ≥ 3k. Moreover, the largest label used is 4h+2k, hence the result.

Proposition 17. λ h,k (G 8 ) ≤ 3h + 8k when h ≥ 6k.
Proof. Consider the labeling whose general pattern is depicted in Figure 6.1(a). This labeling is an L(1, 1)-labeling of span 11, with the additional property that the only consecutive labels that can appear on neighboring nodes are of the form 3i + 2 and 3(i + 1). We now replace any label l of this labeling by a new label, thanks to the following rule (cf. Figure6.1(b)): any label of the form l = 3i + j (i = 0, 1, 2, 3, j = 0, 1, 2) is replaced by l = (h + 2k)i + jk. In this new labeling, any pair of labels of the form 3i + 2 and 3(i + 1) is now separated by h. Moreover, the labeling we started from is an L(1, 1)-labeling, and any two differing labels in the new labeling are at least k away. Thus, this new labeling is an L(h, k)-labeling, of span 3h + 8k. However, we can derive a better lower bound of 3h + 3k, taking into account nodes d and h in addition to the previous study. This bound then derives from a very tedious case by case analysis that is not developed here. Instead, we have run an exhaustive search by computer on the grid restricted to those nine nodes. The source and binary codes corresponding to this search are available at the following URL: http://www.sciences.univ-nantes.fr/info/perso/permanents/fertin/Lhk/Lhk.c).

CONCLUDING REMARKS

In this paper, we have studied the L(h, k)-labeling problem on regular grids of degree 3, 4, 6 and 8, and we have improved, in many different cases, the bounds on the L(h, k) number in each of these classes of graphs. A graphical representation of our results is depicted in Figure 6.2: bold lines in this figure are results from this paper, grey lines are previously known results, and grey zones represent the gaps that still exist between the known lower and upper bounds.

Though we managed to obtain tight bounds in several cases, there are still some other cases for which the gap is not closed, and it actually looks difficult to improve the bounds without using case by case analysis arguments, as we have sometimes done in this paper. However, a natural question consists in closing the gaps that still remain in all the four classes of graphs considered here. Moreover, as observed in the introduction, when h < k we have considered in this paper the max-based model, that imposes a condition on labels of nodes connected by a 2-length path instead of using the concept of distance 2 (we recall that when h ≥ k, the two definitions coincide). Hence, it is also natural to ask for a similar study in the case h < k, but using this time the distance-based definition. We note that this makes sense only for G 6 and G 8 , since there are no triangles in G 3 and G 4 , and thus in that case the two definitions coincide. Moreover, since the max-based model is by definition more restrictive than the distance-based model, the upper bounds we obtain in the max-based model also apply in the distance-based model, while this is not a priori the case for lower bounds. 
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  Proof. This bound directly comes from Lemma 1.Proposition 19. λ h,k (G 8 ) ≥ 2h + 6k when k ≤ h ≤ 3k.Proof. Consider any optimal L(h, k)-labeling of G 8 . Let λ be the greatest label. Let us consider a label x which is neither 0 nor λ (note that there must exist one since G 8 contains K 3 as an induced subgraph ; note also that necessarily, x lies in the interval [h; λh]). Now, consider its 8 neighbors, say v 1 . . . v 8 . Then no other label than x can be used in the interval ]x-h; x+h[ for the v i s. However, all the v i s are pairwise connected by 2-length paths, so they must be at least k away from each other. If there are α (resp. β) labels for the v i s in the interval [0; xh] (resp. [x + h; λ]), then we must have (xh) -(α -1)k ≥ 0 and λ ≥ (x+h)+(β -1)k, with α+β = 8. Since λ h,k (G 8 ) = λ, we conclude that λ h,k (G 8 ) ≥ 2h + (α + β -2)k, hence the result. Proposition 20. λ h,k (G 8 ) ≥ 3h + 3k when h ≥ 3k.Proof. First, observe that we have λ h,k (G 8 ) ≥ 3h + k. Indeed, consider an optimal L(h, k)-labeling of G 8 , a node labeled 0, and the set of its neighbors (see Figure6.2). Wlog, suppose min{a, b, c} ≤ min{e, f, g}. Since a, b and c are neighbors of 0, then we have min{a, b, c} ≥ h. And since any node among e, f and g are connected by a 2length path to any node among a, b and c, we conclude that min{e, f, g} ≥ h + k. Finally, since e, f and g induce a K 3 , we have max{e, f, g} ≥ 3h + k.

6.2 Lower Bounds for G 8

Proposition 18. λ h,k (G 8 ) ≥ 8k when h ≤ k.
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