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s at determining a micromechanical model for the elastoplastic
metal-matrix composites reinforced by aligned inclusions. The

udied material – hydrided and irradiated Zircaloy-4 cladding tubes
de of an anisotropic and elastoplastic matrix (irradiated Zircaloy)
ropic elastic inclusions (hydrides). The homogeneous behavior of
se material is obtained by a linearization model based on the mod-
nte Castañeda and Willis, 1995). The behavior of the linear compar-

ated by the model of Ponte Castañeda and Willis (1995). The
oscopic behavior rises both from the shape of the inclusions and
ropy of the matrix. The model is compared to three-dimensional
and experimental data.
1. Introduction

In the frame of its research program on nuclear fuel
safety under accident conditions, the French ‘‘Institut de
Radioprotection et de Sûreté Nucléaire” (IRSN) studies
the constitutive materials of fuel rods in pressurized water
reactors. Due to various physical phenomena appearing in
these reactors (corrosion, irradiation, etc.), the materials
constituting the fuel rods evolve continuously and their
microstructure becomes progressively more and more
complex. This evolution of microstructure is a strong spec-
ificity of the materials from the nuclear industry, which
has motivated constant extensive research over the years.
adioprotection et de
int-Paul-Lez-Durance
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The present work focuses on the material constitutive
of cladding tubes containing nuclear fuel in pressurized
water reactors: Zircaloy-4 (Zr). This material, as other zir-
conium base alloys, is widely used in light water reactors
(fuel cladding tubes, fuel assembly spacer grids, guide
tubes, etc.) because of its high resistance to corrosion, its
small neutron absorption cross section and its good
mechanical behavior at high temperature (Froes et al.,
1996). The main limitation in the use of zirconium based
alloys is the progressive appearance of hydride precipitates
during their use inside the reactor, which drastically mod-
ifies their overall mechanical properties (Kearns, 1967;
Northwood and Kosasih, 1983; Garde, 1989; Coleman
and Hardie, 1966; Gómez et al., 2006). For Zircaloy clad-
ding tubes, numerous experimental or theoretical works
have been performed on: (i) the mechanisms of diffusion
of hydrogen (Sawatzky, 1960; Marino, 1972; Varias and
Massih, 2002), (ii) the mechanisms of dissolution and pre-
cipitation of hydrogen (Kearns, 1967; Kammenzind et al.,



1996; McMinn et al., 2000; Vizcaíno et al., 2002; Une and
Ishimoto, 2003), and (iii) the hydride-induced embrittle-
ment (Dutton et al., 1977; Coleman and Ambler, 1977;
Huang and Mills, 1991; Arsène, 1997; Lufrano and Sofronis,
2000; Grange et al., 2000). However, very few works were
devoted to the mechanical behavior of the Zircaloy before
appearance of any damage, which is of primary interest
during a reactivity initiated-type accident (see Fandeur
(2001), Fandeur et al. (2001) and references therein for a
phenomenological modelling). The present study is thus
dedicated to the overall elastoplastic mechanical behavior
of the hydrided and irradiated Zircaloy and its link with
some meaningful micromechanical parameters.

Since Zircaloy is initialy elastoplastic and anisotropic
(Delobelle et al., 1996), hydrided and irradiated Zircaloy
has to be considered as an anisotropic non-linear two-
phase metal-matrix material. The overall constitutive
behavior of this composite material is derived here from
homogenization techniques. The parameters of the macro-
scopic model are the material properties, the morphology
and the spatial distribution of each phase. Replacing the
elastoplastic behavior of the matrix phase by a non-linear
elastic behavior, one uses a generalization of the varia-
tional approach of Ponte Castañeda (1991) (or the so-called
modified secant method, see Suquet (1995)) dedicated to
composites with anisotropic phases, as presented in Ponte
Castañeda and Suquet (1998). This approach, which im-
proves the classical secant method (see for example Born-
ert and Suquet (2001)), introduces a linear comparison
composite (LCC). The LCC has here the same geometry as
the non-linear one, and its effective properties are esti-
mated by using the result of Ponte Castañeda and Willis
(1995). This estimate allows us to take into account both
the shape and the distribution of the inclusions (hydride
precipitates) inside the matrix.

The interest of the model is its ability to distinguish the
anisotropy due to the initial matrix and as well as to the
shape and the orientation of the inclusions. This work is an
extension of the previous work of Li and Ponte Castañeda
(1994) to the case of an anisotropic matrix and an isotropic
distribution of the centers of the ellipsoidal inclusions.

This paper is organized as follows. In Section 2, the
microstructure of the studied anisotropic metal-matrix
composite is detailed. In Section 3, a new elastoplastic
micromechanical-based model is derived. Section 4 deals
both with the numerical implementation of the model
and with the identification of its morphological parameter
by numerical comparisons; several predictions offered by
the model are shown. In Section 5, we review assorted
applications of the hydrided and irradiated Zircaloy in an
attempt to shed light on its practical assets.
Fig. 1. Part of a hydrided cladding tube (Lee and Hong, 2002).
2. Hydrided Zircaloy-4 cladding tubes: an elastoplastic
composite with anisotropic matrix and anisotropic
distribution of inclusions

2.1. Microstructure of hydrided Zircaloy-4 cladding tubes

The made up material of cladding tubes containing nu-
clear fuel is often a zirconium alloy. The useful properties
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and limitations of the as made standard Zircaloy-4 were
recalled in the introduction.

After the manufacturing process, zirconium based al-
loys structures contain about 10 ppm of hydrogen (North-
wood and Kosasih, 1983). During their life in reactors,
these structures pick up some hydrogen from various
sources: fuel humidity, hydrogen produced by water radi-
olysis, oxidation of the Zircaloy by the water coolant, etc.
(Northwood and Kosasih, 1983; Aitchison, 1969). This
picked-up hydrogen diffuses in the structure and precipi-
tates over a given solubility limit, leading to some zirco-
nium hydrides (Sawatzky, 1960). These hydrides can be
found under three crystallographic forms: the c-hydrides
(ZrH) and the �-hydrides (ZrH2) with a face-centered
tetragonal structure, and the d-hydrides (ZrH2) with a
face-centered cubic structure. If very high hydrogen con-
centrations can be locally observed without any adverse
associated effects, the presence of small quantities of hy-
drides can drastically reduce both the overall ductility
and the fracture toughness of the hydrided Zircaloy, as well
at room temperature as in standard conditions reached in
reactors (Kearns, 1967; Coleman and Hardie, 1966). Then,
the associated embrittlement strongly depends on the
morphology and on the orientation of the hydrides (Ells,
1968). The shape of these hydrides is often described as a
‘cornflakes’-like shape (Perovic and Weatherly, 1984),
and modelled by a parallelepipedic shape (‘platelets’) (Shi
and Puls, 1994; Wäppling et al., 1997). Moreover, these hy-
drides are mainly oriented in an axial-circumferential
plane and are randomly distributed in space (Arsène,
1997). Fig. 1 shows a portion of a cladding tube (gray parts
are platelets of hydrides).

The effect of irradiation on Zircaloy properties is less
clearly identified. One admits that the irradiation induces
an overall hardening of the Zircaloy: increase of the yield
stress and decrease of the ductility (see Fandeur, 2001
and references therein). However, the quantification of
these effects often depends on how the so-called term
‘irradiation’ is interpreted. Concerning an in situ irradia-
tion, both neutronic and hydrogenation effects have to be
taken into account. This situation could be convenient for
an empirical or semi-empirical description of cladding
tubes understood as a complete structure, but do not lead
to a proper mechanical description of the separate effects
of the irradiation and hydrogenation on the Zircaloy mate-
rial. Since a micromechanical approach is adopted in the
present work, these effects have to be clearly distin-
guished. ‘Irradiation’ is thus here understood as the neu-
tronic effects produced on each phase constituting the
irradiated and hydrided Zircaloy.



After some years in a reactor, a cold worked stress-re-
lieved Zircaloy-4 cladding tube exhibits five concentric
zones: two inner oxide and hydride-fully dense layers, a
central layer with hydride platelets and two outer hy-
dride-fully dense and oxide layers. This work focuses on
the mechanical behavior of the central zone, which occu-
pies the largest part of the cladding tube (at least 80% of
the radius). The investigated material is depicted in
Fig. 2: hydrides form parallel platelets perpendicular to
the radial direction and whose centers are isotropically
distributed in space.

2.2. Properties of the phases

Following the experimental results of Delobelle et al.
(1996), Kuroda et al. (2002), Yamanaka et al. (1999,
2001) and Desquines and Fédérici (2001), the studied
two-phase metal-matrix composite is assumed to be
made of an elastoplastic and anisotropic matrix and elas-
tic inclusions. The matrix behavior is supposed to be iso-
tropic in its elastic part and orthotropic in its plastic
part, following the Hill criterion; and the inclusions are
supposed to be linear elastic and isotropic. Only mono-
tonic loading are considered here and the elastoplastic
behavior for the matrix is replaced by a non-linear elas-
tic behavior. The constitutive behavior of each phase of
the composite is assumed to be governed by a potential
wðiÞ such that the microscopic strain and stress fields (�
and r) are related by:

r ¼ @wðiÞ

@�
�ð Þ i ¼ 1; 2: ð1Þ

The dual potentials of wðiÞ are denoted tðiÞ such that:

� ¼ @t
ðiÞ

@r
ðrÞ i ¼ 1;2: ð2Þ

The relations (1) and (2) are used under the small strains
assumption. In the following equations, exponents 1 and
2 refer to the matrix and to the inclusions, respectively.

The stress potential related to the linear elastic and iso-
tropic inclusions reads:

tð2ÞðrÞ ¼ tð2ÞelaðrÞ with tð2ÞelaðrÞ ¼
1

2kð2Þ
r2

m þ
1

6lð2Þ ðr
VM
eq Þ

2
;

ð3Þ

and the stress potential related the elastoplastic and aniso-
tropic matrix reads:
Fig. 2. The studie
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tð1ÞðrÞ ¼ tð1ÞelaðrÞþtð1ÞplaðrÞ with tð1ÞelaðrÞ ¼
1

2kð1Þ
r2

mþ
1

6lð1Þ
ðrVM

eq Þ
2;

ð4Þ

where coefficients kðiÞ and lðiÞ denote respectively to the
bulk and shear moduli of the phase i (i ¼ 1;2), the quantity
rVM

eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 ðrd : rdÞ

q
denotes the von Mises stress, rd de-

notes the deviatoric part of r, and rm ¼ 1
3 TrðrÞ is the first

invariant of the stress.
Following Mücke and Bernhardi (2003), the anisotropic

plastic behavior of the matrix can be derived from the fol-
lowing stress potential, which states a multiaxial Ramberg-
Osgood law for anisotropic materials:

tð1ÞplaðrÞ ¼
rð1Þo

� �2

6lð1Þ
� H rH

eq � rð1Þo

� �
� 2

nþ 1
rH

eq

rð1Þo

 !nþ1

� 1

0@ 1A� rH
eq

rð1Þo

 !2

� 1

0@ 1A24 35;
ð5Þ

where H is Heavyside’s function, the scalar n is the harden-
ing coefficient (n ¼ 1 refers to the elastic case and n! þ1
refers to the perfectly plastic case), rð1Þo denotes the elastic
limit of the matrix, and the quantity

rH
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
ðrd : M : rdÞ

r
ð6Þ

is the so-called Hill stress (M being a fourth order tensor
sometimes called matrix of anisotropy).

3. A micromechanical model based on variational
bounds

3.1. Formulation of the problem

We consider a representative volume element (RVE) V
as depicted in Fig. 2. Each phase i occupies a domain V ðiÞ,
and its volume fraction f ðiÞ is defined as jV ðiÞj=jV j, where
jDj denotes the volume of any domain D. Moreover, the
spatial averages of any quantity A over the volume V and
over V ðiÞ are respectively defined as :

hAi ¼ 1
jV j

Z
V

AdV and hAiðiÞ ¼ 1

jV ðiÞj

Z
V ðiÞ

AdV : ð7Þ

Considering a quasi-static problem and neglecting the
body forces, the effective behavior is sought in the same
form as for the phases (Eq. (1)):
d material.



E ¼ @UeffðRÞ
@R

; ð8Þ

where E and R are the macroscopic strain and stress
respectively:

E ¼ h�i; R ¼ hri; ð9Þ

and Ueff is the effective stress-energy potential, which
satisfies:

UeffðRÞ ¼ inf
s2SðRÞ

htðsÞi; ð10Þ

where t ¼ tðiÞ in each phase i, and S is the set of admissi-
ble stress-functions, which depends on the localization
method. When homogeneous stress boundary conditions
are considered, this set is defined as (m being the unit outer
normal vector to the RVE):

SðRÞ ¼ s; divðsÞ ¼ 0 in V ; s � m ¼ R � m on @Vf g; ð11Þ

Determining exactly this effective stress-energy potential
is a formidable task, that cannot yet be achieved from a
general point of view. In the next section, this effective
stress-energy potential is lower bounded using the varia-
tional principle of Ponte Castañeda (1991) based on a
linear comparison composite (LCC). The equivalence
between this principle and the modified secant method
of Suquet (1995) leads to solve a linear elastic homogeni-
zation problem for the LCC, whose elastic properties of
phases derive from some secant moduli evaluated at the
second moment of the stress.

3.2. The variational method of Ponte Castañeda (1991) and its
link with the modified secant method of Suquet (1995)

Considering a linear comparison composite described
by a field of compliance tensors LoðxÞ, and defining the fol-
lowing quantity (� denotes the tensor product):

S ¼ 1
2
ðr� rÞ; ð12Þ

the stress-energy potential Ueff ðRÞ can be rewritten as
(Ponte Castañeda, 1991):

UeffðRÞ ¼ sup
LoðxÞ

Ueff
o ðRÞ � hsup

S

LoðxÞ :: S� G x;Sð Þf gi
� �

;

ð13Þ

where Ueff
o ðRÞ is the stress-energy potential of the LCC, and

Gðx;SÞ ¼ tðx;rÞ.
Considering now a LCC characterized by a set of piece-

wise constant compliances LðiÞo (for instance, a two-phase
LCC having the same microstructure as the considered
non-linear composite), the optimization problem (13) be-
comes lower bounded by:

UeffðRÞP UeffðRÞ ¼ sup
L
ðiÞ
o

Ueff
o ðRÞ �

Xi¼2

i¼1

f ðiÞVðiÞ LðiÞo
� ��1
� �( )

ð14Þ

with,

VðiÞ LðiÞo
� ��1
� �

¼ sup
r

tðiÞo ðrÞ � tðiÞðrÞ
	 


; ð15Þ
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where tðiÞo denotes the microscopic stress-energy potential
of each phase i of the LCC . This lower bound Ueff ðRÞ turns
now to be evaluated.

As pointed out by Ponte Castañeda and Suquet (1998),
this variational procedure can be interpreted as a secant
one, where the secant moduli of the phases are evaluated
at the second moments of the fields. This shed light on
why the ‘‘variational linear comparison method” is also
known as the ‘‘modified secant method” (Suquet, 1995).
Recalling that the chosen LCC has the same geometry as
the non-linear composite (second order of the stress uni-
form in each phase), and that the inclusions are linear elas-
tic, the use of this equivalence leads to the following
system comprising a non-linear problem related to the ma-
trix and a linear problem related to the LCC :

Input : R;

Non-linear problem :

Find Lð1Þo and hSið1Þ such that :

Lð1Þo ¼ L
ð1Þ
sct hSi

ð1Þ
� �

hSið1Þ ¼ 1
2

1
f ð1Þ

@

@L
ð1Þ
o

R : Leff
o : R

� �
8>>><>>>:

Linear problem :
Solve :
�ðxÞ ¼ LðiÞo : rðxÞ 8x 2 V ðiÞ;

r 2 SðRÞ and � 2 C1;

8><>:
Output : E ¼ Leff

o : R;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð16Þ

where hSið1Þ is the second moment of the stress on the ma-
trix phase of the LCC (Ponte Castañeda and Suquet, 1998),
L
ðiÞ
sct is the secant compliance of the phase i of the LCC, de-

fined by

� ¼ @t
ðiÞðrÞ
@r ¼ L

ðiÞ
sctðrÞ : r; ð17Þ

and Leff
o is the effective compliance of the LCC, which is

determined in the next section, giving:

E ¼ @Ueff
o ðRÞ
@R

¼ Leff
o ðRÞ : R: ð18Þ
3.3. The estimate for the overall behavior of the LCC

Since the chosen LCC has the same microstructure as
the non-linear composite, an estimate for the overall
behavior of the LCC has to take into account separately
the shape and the distribution of the inclusions. The esti-
mate of Ponte Castañeda and Willis (1995) is thus here
retained:

Leff
o ¼ Lð1Þo þ f ð2Þ Lð2Þ � Lð1Þo

� ��1 þ 1� f ð2Þ
� �

Q
� ��1

; ð19Þ

where:

Q ¼ ðLð1Þo Þ
�1 � 1

1� f ð2Þ
ðLð1Þo Þ

�1 : ðPi � f ð2ÞPdÞ : ðLð1Þo Þ
�1
:

ð20Þ

The fourth order tensors Pi and Pd are the Hill tensors re-
lated respectively to the shape and to the distribution of
the inclusions. In this estimate, the inclusions are repre-
sented by aligned and isotropically distributed ellipsoids,



defined by two aspect ratios: wL, the ratio of the width in
the radial direction (r) to the length in the longitudinal
direction (z) of the ellipsoids, and wT , the ratio of the width
in the radial direction (r) to the length in the transverse
direction (h) of the ellipsoids. The link between these two
aspect ratios and those of the associated platelets is exami-
nated in Section 4.3. Moreover, this estimate states that the
reference medium is the matrix phase, which is here aniso-
tropic. The tensor Pi thus refers to the Hill tensor concern-
ing the Eshelby problem of an ellipsoidal inclusion in an
unbounded and anisotropic medium. Although recent
works allow to derive explicit expressions (but rather com-
plex in the present context) of the Hill tensor in this case
(Masson, 2008), one assumes that the tensor Pi is well-
estimated when replacing the matrix behavior in this
Eshelby problem by its projection onto the isotropic basis:

PJKðLð1Þo Þ ¼
Lð1Þo :: J

J :: J
Jþ Lð1Þo :: K

K :: K
K; ð21Þ

where Jijkl ¼ 1=3dijdkl and K ¼ I� J (with Iijkl ¼ 1=2ðdikdjlþ
dildjkÞ and d the Kronecker symbol). The same assumption
is used for the Hill tensor Pd related to the Eshelby problem
of a spherical inclusion (statistically isotropic distribution).
The relevance of this assumption is checked in the case of
flat and circular inclusions (wT ¼ wL ¼ 0) in an orthotropic
medium, for which Suvorov and Dvorak (2002) give an
analytical solution of the Hill tensor: the two Eshelby ten-
sors obtained with the assumption (21) and with the exact
solution of Suvorov and Dvorak (2002), respectively, are
numerically very close to each other in the context of the
studied problem. It is assumed in the sequel that this
hypothesis is still valid for the LCC and for any aspect ra-
tios 0 6 wL; wT 6 1. The expressions of these Hill tensors
Pi and Pd can be derived from the corresponding Eshelby
tensors whose expressions are given in Mura (1982).

Moreover, the effective compliance (19) is positive def-
inite under conditions on the distribution type, the inclu-
sions shape and the volume fractions of the phases. For a
spherical distribution, when wL ¼ wT ¼ w, the condition
f ð2Þ 6 w ensures the consistency of (19) by introducing
‘‘security ellipsoids” surrounding the inclusions (Ponte
Castañeda and Willis, 1995). From a physical point of view,
this condition consists in excluding particule overlap.
Table 1
Material properties used for the Zircaloy-4 in the cold worked stress state
and for the inclusions of hydrides at room temperature after Desquines and
Fédérici (2001), Yamanaka et al. (1999), Yamanaka et al. (2001) and
Delobelle et al. (1996).

Matrix Inclusions

Young’s modulus 98GPa 135GPa
Poisson’s ratio 0:325 0:32
Elastic limit 500 MPa —
Hardening exponent n 71 —
4. Implementation of the model and identification of
the morphological parameter

Keeping in mind that the practical use of the present
model concerns the particular case of a Zircaloy-4 matrix
(in a cold worked stress state) containing hydride inclu-
sions, the validation of the model is here performed with
mechanical data related to this material. This validation
is done in three steps. First, material properties of the Zir-
caloy-4 are given. Second, the numerical implementation
of the model is detailed. Third, the morphological parame-
ters of the model are identified and the model is validated
by comparisons with three-dimensional periodic finite ele-
ment simulations. Finally, some predictions and abilities of
the model are presented; in particular, the role of a new
parameter introduced in the sequel allowing a smooth
5

transition from a Hill plastic matrix to a von Mises one is
fully detailed (‘‘Hill-to-von Mises” parameter).

4.1. Material properties

The values of the material properties used for Zircaloy-4
in the cold worked stress state and for the inclusions of hy-
drides at room temperature are given in Table 1. Elastic
coefficients of the matrix are given by Desquines and Fédé-
rici (2001), whereas the ones of the inclusions are given by
Yamanaka et al. (1999) and Yamanaka et al. (2001). The va-
lue of the initial yield stress of the matrix in the z direction
is given by Delobelle et al. (1996).

Values of matrix M components are extracted from the
experimental data of Delobelle et al. (1996) on non-irradi-
ated and hydrided Zircaloy-4 in the cold worked stress
state. Since coefficients Mrzrz and Mrhrh are difficult to be
experimentally determined, they are here arbitrarily fixed
to 1. These coefficients have a minor influence when the
applied load is mainly longitudinal (z) and transverse (h):
this is precisely the case during a Reactivity Initiated Acci-
dent, which is the main motivation of this study. Using the
following vectorial representation of r :

r ¼ rrr; rhh; rzz;
ffiffiffi
2
p

rhz;
ffiffiffi
2
p

rrz;
ffiffiffi
2
p

rrh

n oT
; ð22Þ

the matrix M takes thus the form:

M ¼

1:0 �0:72 �0:28 0 0 0
�0:72 1:1 �0:38 0 0 0
�0:28 �0:38 0:66 0 0 0
0 0 0 1:7 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
: ð23Þ

These anisotropy coefficients are consistent with the re-
cent work of Leclercq et al. (2007).

Anticipating on the last part of the paper (Section 5) and
following some authors as Nakatsuka and Nagai (1987),
one suspects that irradiation effects induce a progressive
decrease of the plastic anisotropy of the Zircaloy matrix.
A slightly modified anisotropic matrix fM is substituted to
M in the Hill criterion:fM ¼ ð1� aÞKþ aM: ð24Þ

The parameter a allows a smooth transition from a Hill cri-
terion (a ¼ 1) to a standard von Mises one (a ¼ 0). A new
definition of the Hill stress is thus used:



rH
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
rd : fM : rd

r
: ð25Þ

This ‘‘Hill-to-von Mises” parameter a is a key concept of

the paper. When a ¼ 1, Eq. (24) reduces to fM ¼M and
the equivalent stress (25) corresponds to the initial Hill cri-
terion: the matrix exhibits the same anisotropic plasticity
as the one measured by Delobelle et al. (1996). In the fol-
lowing, this situation corresponds to a ‘fresh’ state, where
the matrix does not undergo any irradiation. When a ¼ 0,

Eq. (24) reduces to fM ¼ K and the corresponding equiva-

lent stress (25) reads
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 rd : K : rd

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 rd : rd

q
¼ rVM

eq ,

which corresponds to the von Mises criterion: the matrix
exhibits in that case a standard isotropic plasticity. The
parameter a allows thus a progressive transition from an
initial anisotropic plasticity to an isotropic one. When
0 < a < 1, the situation is intermediate between a Hill cri-
terion and a von Mises one. The effect of this parameter on
the overall yield surface of the composite will be quantita-
tively characterized in due time.

4.2. Implementation of the model

The presented model is applied to the constitutive
behaviors (2)–(6) of the considered composite.

The secant modulus of the matrix L
ð1Þ
sct is obtained by

using Eqs. (2) and (17) for i ¼ 1:

� ¼ @t
ð1ÞðrÞ
@r

¼ L
ð1Þ
sct ðrÞ : r: ð26Þ

Note that:

@rH
eq

@r
¼ 3

2rH
eq

fM : rd and rd ¼ K : r: ð27Þ

Then, using the stress-energy potential (4) with Eq. (5), we
get:

L
ð1Þ
sct ðrÞ¼L

ð1Þ
el þ

1
2lð1Þ

rH
eq

rð1Þo

 !n�1

�1

0@ 1AfM : K

0@ 1AHðrH
eq�rð1Þo Þ;

ð28Þ

where L
ð1Þ
el denotes the compliance for the elastic linear and

isotropic part of the matrix.
At this stage, it is worth noting that L

ð1Þ
el is written in terms

of the von Mises stress rVM
eq (see Eq. (4)) and that the right

hand side of Eq. (28) is written in terms of the Hill stress
rH

eq. This particularity, due to the matrix anisotropy, does
not allow to express the strain-energy potential related to
this phase in a simple manner. Our stress approach, scarcely
employed for (perfect) plastic behaviors, provides an origi-
nal and efficient mean to circumvent to this issue.

The tensor L
ð1Þ
sct can be written in terms of S, noting that

(see Eqs. (12), (25) and (27) and recalling that fM is as-
sumed constant by phase):

rH
eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3fM :: K : S : Kð Þ

q
: ð29Þ

The partial derivative of R : Leff
o : R with respect to Lð1Þo used

in the problem (16) is estimated component by component
(i; j; k; l ¼ 1;2;3):
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@R : Leff
o ðLð1Þo ;vÞ : R
@Lð1Þo

!
ijkl

¼ @R : Leff
o ðLð1Þo ;vÞ : R
@L
ð1Þ
oijkl

�R : Leff
o ðLð1Þo þhH;vÞ : R�R : Leff

o ðLð1Þo ;vÞ : R
h

¼D R : Leff
o : R

� �
ijkl ðnotationÞ

ð30Þ

where v states for the set of variables ðLð2Þ; wL; wT ; f ð2ÞÞ;H
is a unit fourth order tensor which has the major and the
minor symmetries, linked to the gradient component (only
the components ijkl; klij; jikl; ijlk; jilk are non-zero). The va-
lue of the scalar h is chosen small enough to have the same
derivative by upper value (þh) or by lower value (�h) (in
the following, h ¼ 10�6). Under this condition, the incre-
mental quotient method (30) gives accurate results with
material properties given in Table 1 and does not suffer
from a strong sensitivity to parameter h.

Using Eqs. (16), (29) and (30) evaluated at Lð1Þo ¼ L
ð1Þ
sct

ðrH
eqÞ, the final problem can be rewritten in the form of a

non-linear scalar equation with respect to the Hill stress:

rH
eq

� �2
¼ 3fM :: K :

1
2f ð1Þ

D R : Leff
o : R

� �
L
ð1Þ
sct ðrH

eqÞ
� �
 �

: K


 �
:

ð31Þ

This equation is solved using a Newton-Raphson algorithm
with numerical jacobian: about 15 iterations are needed to
obtain a precision of 10�6 on the function which has to be
nullified in Eq. (31).

4.3. Numerical identification of the morphological parameters
and validation of the model

As already mentioned, the proposed model is based on a
LCC containing ellipsoidal inclusions, with a longitudinal
and transversal aspect ratios denoted by wL and wT ,
whereas the inclusions in the real material are akin to
platelets (aspect ratios wp

L and wp
T ). Comparison with

numerical simulation results enables us to identify the link
between the ellipsoidal and platelet aspect ratios. This
identification is performed in the simple case where
wL ¼ wT � w and wp

L ¼ wp
T � wp.

Assuming that the medium is periodic, the finite ele-
ment software Abaqus� is used to carry out simulations
on unit cells containing parallel and randomly distributed
square base platelets (see Fig. 3). Only constant aspect ratio
unit cells are considered. We examine three cases and set
wp to 0:05;0:1 and 0:125 (one sample for each wp). The unit
cells are submitted to macroscopic strain rate _E and peri-
odic boundary conditions are introduced to ensure the
periodicity of the microscopic strain and stress (Michel
et al., 2001). The inclusions are elastic (Young’s Modulus
and Poisson ratio given in Table 1). The matrix is elastic
plastic with an isotropic elastic part and an orthotropic
plastic part with an isotropic exponential hardening
(material parameters given in Table 1 and Eq. (23)). The
Hill-to-von Mises parameter a is set to 1.

The identification of the morphological parameter of
the model w is performed for uniaxial tension tests in the
z direction and in the h direction in the case of thin plate-
lets (wp ¼ 0:05 and f ð2Þ � 4:4%). This identification is per-



Fig. 3. Various three-dimensional unit cells used for the numerical simulations and their projections onto the r–h plane.
formed assuming that ellipsoidal aspect ratio w and plate-
let aspect ratio wp are proportional. The accuracy of this
identification is illustrated in Fig. 4. In the sequel, the fol-
lowing relation is used:

w � 1:7wp; ð32Þ

and the corresponding morphology for the platelets and for
the ellipsoids onto the r-h plane are shown in Fig. 5.

The model is validated for a less dilute case wp ¼ 0:125;
f ð2Þ � 10:93%. Fig. 6 shows the comparison between
numerical periodic simulations and predictions of the
model. Uniaxial tension tests in the z direction and in
Fig. 4. Identification of the morphological parameter of the model w (lines)
wp ¼ 0:05. Uniaxial tension test in the z direction: (a) Rzz vs. Ezz , (c) Rzz vs. Ehh

proposed model coincides with the numerical simulations for w ¼ 0:088 ’ 1:7w

7

the h direction are considered, and the aspect ratios of
the ellipsoids of the LCC invoked in the model depend
on the aspect ratios of the platelets using the identified
relation (32). In the sequel, this relation is assumed to
be valid even when two different longitudinal and trans-
versal aspect ratios are considered: wT � 1:7wp

T and
wL � 1:7wp

L .

4.4. Predictions and abilities of the model

In the elastic part, the overall anisotropy of the compos-
ite rises only from the shape and orientation of the inclu-
by comparison with numerical simulations (points) for f ð2Þ � 4:4% and
and Err; and in the h direction: (b) Rhh vs. Ehh , (d) Rhh vs. Err and Ezz . The
p .



Fig. 5. Link between the ellipsoidal aspect ratio w and the platelet aspect
ratio wp in the transverse direction: (a) projection of a platelet and the
associated ellipsoid wT ¼ 1:7wp

T onto the r-h plane, (b) definition of wT ,
and (c) definition of wp

T .

Fig. 7. Overall anisotropy of the elastic response versus shape of the
inclusions w for various volume fraction f ð2Þ (f ð2Þ varies from 5% to 50%,
the condition of ‘security ellipsoids’ f ð2Þ 6 w is satisfied): for spherical
inclusions (w ¼ 1), the composite is isotropic; for oblate inclusions
(w < 1), the higher the volume fraction (or the lower the aspect ratio)
the higher the elastic anisotropy.
sions (isotropic elasticity for the phases). This overall elas-
tic anisotropy is quantified using a classical criterion of
isotropy:

fðBÞ ¼ 1� jjB� PJKðBÞjj
jjBjj ; ð33Þ

where jjBjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B :: B
p

for any fourth order tensor B. The
evolution of this criterion with the aspect ratio w and the
volume fraction of the inclusions f ð2Þ is given in Fig. 7. As
expected, and due to the statistically isotropic distribution
in space of the inclusions, the elastic response of the com-
posite exhibits an overall isotropy for any volume fraction
when inclusions are spheroids (w ¼ 1). For oblate inclu-
sions (w < 1), the anisotropy of the overall elastic behavior
increases with respect to volume fraction and decreases
with respect to aspect ratio.

The overall anisotropy of the composite in its plastic
part is characterized by three parameters in the model:
the coefficient a of ‘Hill-to-von Mises’ criterion of the ma-
trix (see Eq. (24)), the aspect ratio w and the volume frac-
Fig. 6. Validation of the model. Same legend as Fig. 4 wit
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tion of inclusions f ð2Þ. The separate effects of these
parameters on the overall yield surface are illustrated in
Fig. 8. As shown in Fig. 8 (top), the effect of the ‘Hill-to-
von Mises’ parameter a ensures a smooth transition from
a Hill criterion (a ¼ 1) to a von Mises one (a ¼ 0). As a gen-
eral rule, Fig. 8 (top and bottom) illustrates the fact that the
presence of elastic inclusions in a plastic matrix leads to
increase the initial elastic domain. The size of this domain
increases with respect to the volume fraction of inclusions
f ð2Þ, and decreases with respect to the aspect ratio w. In
particular, the present model quantifies the fact that thin
inclusions aligned with a plane perpendicular to the r
direction significantly increase the size of the elastic
domain in z and h directions but not in the r direction (par-
allel assembly versus serie assembly).

Details of the influence of volume fraction and aspect
ratio of inclusions on the plastic flow are given in Fig. 9,
h wp ¼ 0:125; f ð2Þ � 10:93% and w ¼ 1:7wp ¼ 0:221.



and the overall plastic anisotropy is compared for the three
main directions (r; h and z) in Fig. 10. As depicted in these
figures, the inclusions have a greater effect on plastic hard-
ening than on initial yield surface. The magnitude of the
yield stress and plastic hardening and their sensitivity to
Fig. 8. Effect of the three parameters of the model on the anisotropy of the norm
parameter a (w ¼ 0:5 and f ð2Þ ¼ 10%); (middle) effect of the inclusion aspect rat
volume fraction of inclusions f ð2Þ (w ¼ 0:5;a ¼ 1 and f ð2Þ ¼ 0; 10%; 20%). Points
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volume fraction and to aspect ratio are larger in z direction
than in r or h directions.

This model is applied next to the prediction of the plastic
and anisotropic behavior of hydrided and irradiated Zircaloy.
alized initial effective yield surface: (top) effect of the ‘Hill-to-von Mises’
io w (f ð2Þ ¼ 20%;a ¼ 1 and w varies from 1 to 0:1); (bottom) effect of the
: normalized initial yield surface of the matrix without inclusion.



5. Application to the hydrided and irradiated Zircaloy

This section is devoted to some applications of the
proposed model to hydrided and irradiated Zircaloy.
Material parameters of constituting phases have been gi-
ven in Section 4. Model predictions are compared to
Fig. 9. Effect of the volume fraction f ð2Þ (left column) and of the aspect ratio w of
in the three directions successively: (left column) w ¼ 0:2;a ¼ 1 and f ð2Þ ¼ 0%;
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experimental data. We pay a particular attention to over-
all engineering parameters such as ultimate tensile stress
and elongation in the longitudinal (z) and transverse (h)
directions. Variations of plastic anisotropy due to hydrid-
ing and to irradiation respectively are studied and their
combined effects are analyzed. We attempt to link the
inclusions (right column) on the plastic flow during uniaxial tension tests
0:05%; 10%; 20%; (right column) f ð2Þ ¼ 10%;a ¼ 1 and w ¼ 0:1; 0:2; 0:4.



Fig. 10. Anisotropy of the plastic flow : comparison of the overall
response of the composite during simple tension tests in the three
directions successively (i ¼ r; h; z) for w ¼ 0:1 and f ð2Þ ¼ 3%. The yield
stress and the plastic hardening increase from direction h to direction r,
and from direction r to direction z. The dotted lines recall the uniaxial
response in the three directions of the plastic matrix and elastic
inclusions.

Fig. 11. Engineering stress–strain curves in the transverse and longitu-
dinal directions. Initial anisotropy of the non hydrided, non irradiated
Zircaloy (a ¼ 1; f ð2Þ ¼ 0). Transverse-to-longitudinal anisotropy:
RT=RL ¼ 0:77 and AT=AL ¼ 0:83.

Fig. 12. Identification of the transverse aspect ratio wT : evolution of the
normalized longitudinal ultimate tensile stress with respect to the
hydrogen content (in ppm). Comparison between experimental data
(square: Kuroda et al. (2002); cross: Grange et al. (2000)) and predictions
of the proposed model (‘lower value’: wlow

T ¼ 0:1; ‘more trusted value’:
wtrust

T ¼ 0:25; ‘upper value’: wup
T ¼ 1:0; wL ¼ wT in all cases, a ¼ 1).
parameters of both phenomena (volume fraction f ð2Þ of
inclusion for the hydriding, and Hill-to-von Mises param-
eter a for the irradiation) to an integrated measure of the
in-pile duration (the ‘burn-up’), and a prediction of the
overall plastic anisotropy with respect to the burn-up is
compared to experimental data.

In what follows, the predictions of the proposed micro-
mechanical-based model are compared to experimental
data on the basis of two main overall engineering parame-
ters that can be easily achieved by experimental
techniques, namely the ultimate tensile stress, denoted by
R, and the uniform elongation, denoted by A. The ultimate
tensile stress R is simply defined as the peak load on an
engineering stress–strain curve, and the uniform elongation
A is defined as the plastic engineering strain associated to
this ultimate tensile stress R. In order to avoid any ambi-
guity, we underline that the present definition of the
ultimate tensile stress R does not correspond to any local-
ization process: the proposed model exhibits only strain
hardening in a rational stress–strain diagram; a peak load
can only be observed in an engineering diagram (see
Fig. 11). This last value states here for the ultimate tensile
stress. Since the applied part of the present study is de-
voted to the mechanical behavior of Zircaloy cladding
tubes, the relevant parameters R and A concern the longi-
tudinal (z) and transverse (h) directions, respectively
denoted by RL and AL (longitudinal), and by RT and AT

(transverse). The transverse-to-longitudinal anisotropy of
Zircaloy tubes can be characterized by ratios RL=RT and
AL=AT . These ratios are plotted in Fig. 11 for the ‘fresh’
Zircaloy, i.e. without any hydride inclusions (f ð2Þ ¼ 0), nor
irradiation effects (a ¼ 1) ; the plastic anisotropy is fully
defined by the Hill matrix (23).
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5.1. Transverse behavior

The initial anisotropy evolves with the presence of
aligned inclusions. Fig. 12 compares the evolution of the
normalized transverse ultimate tensile stress RT with
respect to the hydrogen content in the cladding to exper-
imental data of Kuroda et al. (2002) and Grange et al.
(2000). In this graph, RT is normalized by the transverse
ultimate tensile stress of non hydrided and non-irradi-
ated Zircaloy, and the hydrogen content ½H� is linked to



Fig. 13. Evolutions of transverse-to-longitudinal ultimate tensile stress
RT=RL with longitudinal-to-transverse inclusion aspect ratio wL=wT for
various values of the Hill-to-von Mises parameter a (wT fixed to
wtrust

T ; f ð2Þ ¼ 3%).
the volume fraction of hydrides by: ½H� ’ ð1:66�
106=91Þf ð2Þ. The following transverse aspect ratios are
exhibited:

(1) an upper value: wup
T ¼ 1:0,

(2) a lower value: wlow
T ¼ 0:1,

(3) a more trusted value: wtrust
T ¼ 0:25,

which correspond respectively to a lower value, an upper
value and a ‘best-estimate’ value of the normalized trans-
verse ultimate tensile stress. This bounding-estimating
approach has been conducted in order to overcome some
uncertainties on the experimental data: no clear informa-
tions are given about the aspect ratio of the hydrides in the
sheets of Zircaloy tested by Kuroda et al. (2002), and the
material tested by Grange et al. (2000) is slightly different
(recrystallized state). Moreover, due to these uncertainties,
no particular value was retained for the longitudinal aspect
ratio wL, and the simple choice wL ¼ wT was made for this
identification of wT . We checked that this choice has no sig-
nificant influence on the transverse tensile stress (orthoradi-
al loading) investigated at this stage.

5.2. Longitudinal-to-transverse behavior, evolution of the
plastic anisotropy of the matrix

Since the transverse aspect ratio wT has been bounded-
estimated on transverse loadings, the longitudinal aspect
ratio wL is now identified comparing the longitudinal re-
sponse of hydrided Zircaloy to the transversal one. The
experimental database PROMETRA (Balourdet et al.,
1999; Yvon et al., 2001; Desquines et al., 2004; Cazalis
et al., 2007) has shown that, for a cladding tube containing
about 500 ppm of hydrogen (f ð2Þ ’ 3%), the ultimate ten-
sile stresses are nearly the same in the h and z directions,
whereas the uniform elongation in the z direction is about
twice the one in the h direction, namely:

RT ’ 0:97RL ðultimate tensile stressÞ; ð34Þ
Fig. 14. Evolution of the longitudinal-to-transverse inclusion aspect ratio
wL=wT with respect to the Hill-to-von Mises parameter a corresponding
to RT=RL ¼ 0:97 (f ð2Þ ¼ 3%).
AT ’ ð0:5� 0:6ÞAL ðuniform elongationÞ: ð35Þ

Another time, this experimentally observed overall trans-
verse-to-longitudinal anisotropy is induced both by the
plastic anisotropy of the matrix and by the shape and spa-
tial distribution of the inclusions. Two remaining parame-
ters affect this anisotropy: the longitudinal aspect ratio wL,
and the Hill-to-von Mises parameter a. Focussing on the
ultimate tensile stress, the influence of these two parame-
ters is illustrated in Fig. 13 for a given value of the trans-
verse inclusion aspect ratio (wT ¼ wtrust

T ) and f ð2Þ ¼ 3%.
For a given degree of plastic anisotropy inside the matrix
(a fixed), the overall anisotropy decreases when the longi-
tudinal-to-transverse inclusion aspect ratio wL=wT in-
creases. For a given inclusion shape (wL=wT fixed), the
overall anisotropy increases with the parameter a. This last
remark is straightforward, recalling that when a ¼ 0, the
matrix follows a von Mises criterion. In conclusion, various
couples fa; wL=wTg are appropriate candidates to mimic
the experimental anisotropy (34).

Moreover, Fig. 13 indicates that, when a is greater than
0:1, the experimental transverse-to-longitudinal ultimate
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tensile stress (34) cannot be obtained under the condition
wL=wT 6 1. Since hydrides are longer in the longitudinal
direction than in the transversal direction (see Fig. 1), this
condition has to be satisfied (most of experimental measure-
ments suggest wL=wT ’ 0:1� 0:2). This last result, obtained
for wT ¼ wtrust

T , shows qualitatively that the Hill-to-von Mises
parametera is lower than 0:1 for hydrided and irradiated Zir-
caloy cladding tubes containing about 500 ppm of hydrogen.
Fig. 14 confirms quantitatively this result for each estimated-
bounded value of wT . In other words, comparing the present
modeling to the overall plastic anisotropy of highly irradi-
ated and hydrided Zircaloy cladding tubes implies that the



Fig. 15. Evolution of RT=RL with the burn-up (line) for an exponential
decreases of a with the burn-up (dashed line). Ratio of the Knoop
hardness in two different sections and directions due to the experimental
data of Nakatsuka and Nagai (1987) (points): results of tests on a normal
to ez section with the indenter diagonal in the radial direction to results of
tests on normal to er section with the indenter diagonal in the
longitudinal direction (f ð2Þ ¼ 0).
plastic anisotropy of the matrix phase decreases with the
irradiation level. For irradiation corresponding to about
500 ppm mean hydrogen content (typically 5 cycle rods) in-
side a cladding tube, the matrix phase should have lost about
90% of its plastic anisotropy. This result is in agreement with
some experimental measurements, which demonstrate
qualitatively that the plastic anisotropy decreases with the
neutron fluence (Nakatsuka and Nagai, 1987).

5.3. Towards an evolution of the overall behavior with burn-up

In order to predict the overall plastic behavior of the in-
pile Zircaloy, one has to incorporate in the present model-
ing a dependence of both the Hill-to-von Mises parameter
a and the volume fraction f ð2Þ on the burn-up. Sorting the
effects of neutron irradiation and hydriding, Nakatsuka
and Nagai (1987) show on Zircaloy-2 that the dependence
of Knoop hardness increase on neutron fluence is similar to
that of ultimate tensile stress. This result supplies experi-
mental evolution of the ratio RT=RL with the fluence /
(in n=cm2) without hydrides (f ð2Þ ¼ 0). The case / ¼ 0 cor-
responds to a ¼ 1 in the present model. Moreover we pro-
pose on the basis of the PROMETRA database to link the
fluence to the burn-up (BU) as:

/ð1021n=cm2Þ ¼ 0:18BU ðGWd=tUÞ: ð36Þ

The unit GWd=tU measures the fuel burn-up rate (Giga
Watt days per tonne of initial uranium). As already men-
tioned, the irradiation dose is suspected to reduce the plas-
tic anisotropy of the matrix. Since the degree of anisotropy
of the matrix is linked in the model to the Hill-to-von
Mises parameter a (the plastic anisotropy decreases with
a), we suggest here a decrease of a with the burn-up. The
following exponential decrease seems adequate:

a ¼ e�6�10�2BU : ð37Þ

Further investigations are required to definitively confirm
this last relation. The resulting evolution of the trans-
verse-to-longitudinal ultimate tensile stress ratio RT=RL

with the burn-up is given in Fig. 15, and compared to the
experimental results of Nakatsuka and Nagai (1987).

Moreover, it is interesting for practical purpose to cou-
ple the effects of neutron irradiation and hydriding. In that
case, both parameter a and hydride volume fraction f ð2Þ de-
pend on the burn-up. Based on the PROMETRA database,
relation (36) is then completed by:

f ð2Þ ¼ 5� 10�4BU ðGWd=tUÞ: ð38Þ

Again, we underline that the so-called ‘effects of irradia-
tion’ – as employed in the nuclear industry context – com-
bine both neutron irradiation effects and hydriding ones.
The proposed approach is able to model these effects sep-
arately or simultaneously.

6. Conclusion

An estimate of the effective behavior of hydrided and
irradiated Zircaloy-4 cladding tubes has been put forward.
This effective behavior is elastoplastic and anisotropic. It
takes into account an elastoplastic and orthotropic matrix
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with a power law and linear elastic and isotropic inclusions
in the form of aligned platelets whose centers are isotrop-
ically distributed. The modified secant method of Ponte
Castañeda and Suquet (1998) has been implemented using
the estimate of Ponte Castañeda and Willis (1995) for the
effective behavior of the linear comparison composite.
The final model is based on morphological parameters
which have been identified with the help of three-dimen-
sional periodic numerical simulations.

The application of this model to highly irradiated Zirca-
loy-4 cladding tubes has proved that the experimentally
measured overall plastic anisotropy of this material can
only be obtained with a matrix having a degree of isotropy
higher than the one of the ‘fresh’ Zircaloy matrix. When ap-
plied to highly irradiated cladding tubes, assuming that
irradiation does not affect the initial mechanical properties
of the phases, the model exhibits a much more anisotropic
response than experimental results. However, comparisons
between model and experiments give better results when
the plastic anisotropy of the Zircaloy matrix is assumed
to decrease with irradiation. For 5 cycle rods, we found that
the Zircaloy-4 matrix phase should have lost about 90% of
its initial plastic anisotropy.
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