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Extended-Kalman-Filter-like observers for continuous

time systems with discrete time measurements

Vincent Andrieu ∗

March 5, 2010

Abstract

In this short note is studied the observer introduced in [1] and [5]. The relationship
between the Lipschitz constant and the measurement stepsize is exhibited. For second
order system, we evaluate the authorized measurement stepsize.

1 Introduction

We consider a continuous time system of the form:

ẋ = f(x, u) , x = (x1, . . . , xn) (1)

with the state x is in R
n and the input u is in U ⊆ R. The solutions of this system are denoted

as1 x(t). The state of this system is accessible via a discrete time measure

yk = Cx(tk), (2)

where (tk)k∈N is a sequence of positive real number defined as:

tk+1 = tk + δ

where δ is a positive real number.

∗Vincent Andrieu is with Université de Lyon, F-69622, Lyon, France; Université Lyon 1,
Villeurbanne; CNRS, UMR 5007, LAGEP. 43 bd du 11 novembre, 69100 Villeurbanne, France
vincent.andrieu@gmail.com

1Solution should be written x(x0, t, u(·)) but to simplify the presentation we prefer this notation.
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The problem under consideration is an observer problem. How can we estimate the state
of the system knowing only the measurements.

This problem has been addressed in [1] (see also [3] and the related filtering problem in
[4]).

Following what has been done for continuous time measurement in [2], we consider the
case in which the system can be written (possibly after a change of coordinates) in the form:

ẋ = Ax+ φ(x, u) (3)

with Ax = (x2, . . . , xn−1, 0),
yk = Cx(tk) = x1(tk)

and where the function φ : Rn × U → R
n satisfies an upper triangular globally Lipschitz

condition, i.e. is such that for i in {1, . . . , n} we have:

|φi(x+ e, u)− φi(x, u)| ≤ cL

i
∑

j=1

|ej| , ∀ (x, e) ∈ R
n × R

n , u ∈ U , (4)

where cL is a positive real number named the Lipschitz constant of the nonlinear system.
Inspired by [1] and [5], an estimate of the state can be given as any piecewise continuous

function x̂ : R+ → R
n solution of the following continuous-discrete system2:






















˙̂x = Ax̂+ φ(x̂, u)

Ṡ = −θS − A′S − SA
, t ∈ [kδ, (k + 1)δ)

x̂(tk) = x̂(t−k )− δS(tk)
−1C ′

(

Cx̂(t−k )− yk

)

S(tk) = S(t−k ) + δC ′C

(5)

with θ a positive real number.
Note that compared to what has been done in [1], the Matrix updated law is a Lyapunov

like one instead of a a Riccati like one. This one has been used in [5] since it allows to study
analytically its limit and to give a better approximation on the bound involved in the high-
gain approach. Compare to [5] the only difference is the fact that the gain matrix depends on
S which is time varying.

2 Main Theorem

Inspired by the result of [5], the following theorem can be obtain.

2 For a time function x(·) the notation x(t−k ) means (when it exists) limt→tk,t<tk x(t)
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Theorem 1 There exists a positive real number ζ (which depends only on the dimension of
the system), such that, for all δ < ζ

cL
there exist two positive real numbers θ1 < θ2 such that

for any θ in [θ1, θ2], the estimate x̂ converges asymptotically to the state of the system (3).

Proof : Let E = Θ−1(x̂ − x) where Θ = diag{1, . . . , θn−1} with θ a positive real number
larger then 1 to be specified. The scaled error satisfies for t in [kδ, (k + 1)δ):

Ė = Θ−1A[x̂− x] + Θ−1[φ(x̂, u)− φ(x, u)] ,

and since Θ−1A = θAΘ−1, it yields for t in [kδ, (k + 1)δ):

Ė = θAE +∆θφ(x, E) ,

with ∆θφ(x, E) = Θ−1[φ(x̂, u) − φ(x, u)] such that |∆θφi(x, E)| ≤ cL
∑i

j=1 |Ej | since θ > 1.
Moreover, the scaled error satisfies:

E(tk) = Θ−1
[

x̂(t−k )− δS(tk)
−1C ′

(

Cx̂(t−k )− yk

)

− x(tk)
]

=
(

I − δS̃(tk)
−1C ′C

)

E(t−k ) ,

where S̃(·) = ΘS(·)Θ. Note that S̃ satisfies:

S̃(tk) = S̃(t−k ) + δC ′C (6)

and for t in [tk, (k + 1)δ):

˙̃
S = −θS̃ −ΘA′Θ−1S̃ − S̃Θ−1AΘ ,

= −θS̃ − θA′S̃ − θS̃A . (7)

Note that the sequence (sk)k∈N such that sk = θS̃(tk) satisfies

sk+1 = exp(−ρ) exp(−A′ρ)sk exp(−Aρ) + ρC ′C ,

where ρ = θδ. Which gives,

sk = exp(−kρ) exp(−A′kρ)s0 exp(−Akρ) +
k−1
∑

ℓ=0

exp(−ℓρ) exp(−A′ℓρ)ρC ′C exp(−Aℓρ) ,

Following what has been done in [5], the following Lemma can be shown (its proof is given in
Section 3).
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Lemma 1 There exist two continuous function α1 and α2 such that for all ρ > 0, the matrix
series converges to a limit denoted s∞(ρ), formally defined as:

s∞ =

+∞
∑

ℓ=0

exp(−ℓρ) exp(−A′ℓρ)ρC ′C exp(−Aℓρ) ,

such that
α1(ρ)I ≤ s∞ ≤ α2(ρ)I , (8)

where α1 and α2 are two strictly positive continuous functions.

The proof is divided in three steps :
Part 1: With this lemma in hand, we will first show that for all ρ > 0, there exists t0 such
that for all t > t0, the matrix S̃ satisfies:

γ1(ρ)I < θS̃(t) < γ2(ρ)I (9)

where γ1 and γ2 are two continuous positive function defined as,

γ1(ρ) = exp(−ρ)α1(ρ)c
Int(ρ)
3 c1 , γ2(ρ) = α2(ρ)c2c

Int(ρ)
4 (10)

where Int(·) denotes the integer part of a positive real number, c1 and c2 are two positive real
numbers and (c3, c4) are two positive real numbers such that c3 < 1 and c4 > 1.

Indeed, for k in N and s in [0, δ), S̃(k + s) is solution of (7), hence,

θS̃(k + s) = exp(−θs) exp(−A′θs)sk exp(−Aθs) .

With Lemma , for k sufficiently large, the matrix sk is definite positive, it yields that for all
v in R

n,

v′θS̃(k + s)v = exp(−θs)
∣

∣

∣
s

1

2

k exp(−Aθs)v
∣

∣

∣

2

.

Hence, we get for all v in R
n:

v′θS̃(k + s)v ≥ exp(−ρ)
(

λmin

{

s
1

2

k

})2

|exp(−Aθs)v|2

Note that

|exp(−Aθs)v|2 = |exp(−Aθs)v|2

= |exp(−AInt(θs)) exp(−A[θs− Int(θs)])v|2

≥ (λmin {exp(−A)′ exp(−A)})Int(θs) |exp(−A[θs− Int(θs)])v|2

≥ (λmin {exp(−A)′ exp(−A)})Int(θs) c1|v|2
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where c1 = minr≤1 {λmin {exp(−Ar)′ exp(−Ar)}}. Furthermore, note that Det{exp(−A)′ exp(−A)} =
1, hence c3 := λmin{exp(−A)′ exp(−A)} < 1. Consequently,

|exp(−Aθs)v|2 ≥ c
Int(ρ)
3 c1

And since,
(

λmin

{

s
1

2

k

})2

≥ λmin {sk}, it yields for all k sufficiently large and all v in R
n

v′θS̃(k + s)v ≥ exp(−ρ)λmin {sk} cInt(ρ)3 c1|v|2

In a same way,

v′θS̃(k + s)v ≤
(

λmax

{

s
1

2

k

})2

| exp(−Aθs)v|2

and,

|exp(−Aθs)v|2 ≤ (λmax {exp(−A)′ exp(−A)})Int(θs) c2|v|2

where c2 = maxr≤1 λmax {exp(−Ar)′ exp(−Ar)}. Hence we get

v′θS̃(k + s)v ≤ λmax {sk} c2 (λmax {exp(−A)′ exp(−A)})Int(θs) |v|2

Due to the fact that c4 := λmax {exp(−A)′ exp(−A)} > 1, we get

v′θS̃(k + s)v ≤ λmax {sk} c2cInt(ρ)4 |v|2

which, with Lemma 2 implies that equation (9) holds and finishes the first part of the proof.
Part 2: Let now V (E) = E ′S̃E. We will now show that it is strictly decreasing providing θ

and ρ satisfy an inequality constraint depending on cL the Lipschitz constant of the nonlinear
system. The function V satisfies along the trajectories of the system for t in [kδ, (k + 1)δ):

V̇ (E) = E ′
[

θA′S̃(t) + θS̃(t)A+ Ṡ
]

E + 2E ′S̃∆θφ(x, E) (11)

= −θE ′S̃(t)E + 2E ′S̃(t)∆θφ(x, E) . (12)

With Schwarz inequality, we have for all t > 0

E ′S̃(t)∆θφ(x, E) ≤ |E| |S̃(t)∆θφ(x, E)| ≤ λmax {S̃(t)}|E| |∆θφ(x, E)| , (13)

and we have3

3Here we have used the inequality:

(a1 + . . . an)
2 ≤ n

(

a21 + . . .+ a2n
)
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|∆θφ(x, E)|2 =
n
∑

i=1

|∆θφi(x, E)|2 (14)

≤
n
∑

i=1

c2L

(

i
∑

j=1

|Ej|
)2

≤ nc2L

(

n
∑

j=1

|Ej |
)2

≤ n2c2L|E|2

Consequently, we get:

V̇ (E) ≤
[

λmax {S̃(t)}2ncL − θλmin {S̃(t)}
]

|E|2 . (15)

Note that, due to equation (9), we get that if we can select θ and δ such that

θ >
2γ2(ρ)ncL

γ1(ρ)
(16)

with ρ = δθ we would get

λmax {S̃(t)}2ncL − θλmin {S̃(t)} < 0 ,

for all t sufficiently large. Hence we get V̇ (E) < 0 for all t in [kδ, (k + 1)δ), with k sufficiently
large. Moreover, we have

V (E)(tk) = E(t−k )
′
(

I − δS̃−1C ′C
)′

S̃(tk)
(

I − δS̃−1C ′C
)

E(t−k )

= E(t−k )
′

[

S̃(tk)− 2δC ′C + δ2C ′CS̃(tk)
−1C ′C

]

E(t−k )

= E(t−k )
′

[

S̃(t−k )− δC ′C + δ2C ′C
(

S̃(t−k ) + δC ′C
)−1

C ′C

]

E(t−k )

= V (E)(t−k )−E(t−k )
′C ′pCE(t−k )

where,

p = δ − δ2C
(

S̃(t−k ) + δC ′C
)−1

C ′.

Following [4] (see also [1]), note that if we note q =
[

CS̃(t−k )
−1C ′ + 1

δ

]

, we have,

pq =

[

δ − δ2CS̃(t−k )
−1
(

I + δC ′CS̃(t−k )
−1
)−1

C ′

] [

CS̃(t−k )
−1C ′ +

1

δ

]

= 1

Hence, we get :

V (E)(tk) = V (E)(t−k )− E(t−k )
′C ′q−1CE(t−k )
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with q > 0. Consequently the function V is decreasing along the trajectories of the system for
t sufficiently large. Its eigenvalues being lower and upper bounded as shown in the first part
of the proof, we get convergence of the estimation error to the origin.
Part 3: We now show that the constraint we have on θ and ρ can be given in terms of an
upper bound on δ depending on cL.

To obtain estimation, we have to find δ and θ such that (16) is satisfied and θ > 1. Note
that (16) is equivalent with :

δ <
ϕ(ρ)

cL
,

with ϕ(ρ) = ργ1(ρ)
2nγ2(ρ)

where γ1 and γ2 are defined in (10). Hence, we get:

ϕ(ρ) = ρ exp(−ρ)
α1(ρ)

2nα2(ρ)

c1

c2

(

c3

c4

)Int(ρ)

(17)

Note that since α1(ρ) ≤ α2(ρ) and c3 < 1 and c4 > 1 we get:

lim
ρ→0

ϕ(ρ) = 0 , lim
ρ→+∞

ϕ(ρ) = 0 .

Hence we can define the positive real number κ as :

κ = max
ρ>0

{ϕ(ρ)} ,

This function being continuous, we get that for all cLδ < κ, there exists ρ̃1(δ) and ρ̃2(δ) such
that

ϕ(ρ) > cLδ , ∀ρ ∈ (ρ̃1(δ), ρ̃2(δ)) ,

and,
ϕ(ρ̃2(δ)) = ϕ(ρ̃1(δ)) = cLδ .

The function ϕ being definite positive, we get that limδ→0 ρ̃2(δ) = +∞. This implies that
there exists 0 < cLζ ≤ κ such that for all 0 < δ < ζ there exist ρ1(δ) and ρ2(δ) such that we
have

δ < ρ1(δ) < ρ2(δ) , ϕ(ρ) > cLδ , ∀ρ ∈ [ρ1(δ), ρ2(δ)] .

Hence, this implies
ϕ(ρ)

cL
> δ , ∀θ ∈ [θ1, θ2] , 1 < θ1 < θ2 ,

where θ1 =
ρ1(δ)
δ

and θ2 =
ρ2(δ)
δ

which concludes the proof.

2
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3 Proof of Lemma 2

We want to show that the sequence

sk =
k
∑

ℓ=0

exp(−ℓρ) exp(−A′ℓρ)ρC ′C exp(−Aℓρ) , k ∈ N ,

converges to a limit as k goes to infinity denoted s∞ and such that

α1(ρ)I ≤ s∞ ≤ α2(ρ)I . (18)

First, note that A being nilpotent, it yields4

C exp(−Aℓρ) =

n−1
∑

j=0

C(−Aℓρ)j = rℓρSn ,

where Sn = diag

(

1, . . . , 1
(n−1)!

)

and, rℓρ is a vector defined as :

rl =
(

1, (−ρℓ), . . . , (−ρℓ)n−1
)

.

Consequently, we get
sk = ρSnMk(ρ)Sn ,

where Mk is the symetric positive (at least) semi-definite matrix defined as

Mk(ρ) =

(

k
∑

ℓ=0

exp(−ℓρ)r′ℓρ rℓρ

)

.

Hence to get the result it is sufficient to work on the sequence Mk since we have for all k in N

where Mk is definite positive:

v′skv = ρ
∣

∣

∣
M

1

2

k (ρ)Snv
∣

∣

∣

2

4In fact we have
C exp(−Aℓρ) = rρℓSnO

where O is the observability matrix associated to the couple (A,C), i.e.,

O =











C

CA
...

CAn−1











= I .
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It yields,

ρ
(

λmin{M
1

2

k (ρ)}λmin {Sn}
)2

I ≤ sk ≤ ρ
(

λmax {M
1

2

k (ρ)}λmax {Sn}
)2

I

or,
ρλmin {Mk(ρ)} (λmin{Sn})2 I ≤ sk ≤ ρλmax {Mk(ρ)}λmax ({Sn})2 I

Consequently
ρ

(n− 1)!
λmin {Mk(ρ)}I ≤ sk ≤ ρλmax {Mk(ρ)}I

So, provided its limit exists, (18) is satisfied with:

α1(ρ) =
ρ

(n− 1)!
λmin{M∞(ρ)} , α2(ρ) = ρλmax {M∞(ρ)} (19)

where,
M∞(ρ) = lim

k→+∞
Mk(ρ)

1. We first show that the for all k sufficiently large, the matrix Mk is definite positive. First
note that:

Mk(ρ) ≥ exp(−(n− 1)ρ)

(

n−1
∑

ℓ=0

r′ℓρ rℓρ

)

, ∀k ≥ n .

Note that for all v in R
n,

v′

(

n−1
∑

ℓ=0

r′ℓρ rℓρ

)

v =
n−1
∑

ℓ=0

|rℓρv|2 = |R(ρ)v|2 ≥ λmin {R(ρ)′R(ρ)} |v|2 ,

where R is a Vandermonde matrix5 R = (r0, . . . , rn−1)
′. Hence, we get

Mk(ρ) ≥ λmin {R(ρ)′R(ρ)} exp(−(n− 1)ρ)I , ∀k ≥ n .

which shows that Mk is definite positive for all k ≥ n.

2. We now show that M∞ exists and is a continuous matrix function of ρ. Note that

(Mk(ρ))i,j =
k
∑

ℓ=0

exp(−ℓρ)(−ℓρ)i+j−2 = (−ρ)i+j−2∂
i+j−2πk

∂ρi+j−2
(ρ) ,

5This implies that it is a full rank matrix.
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where πk(φ) =
∑k

ℓ=0 exp(−ℓρ). Note that we have

π∞(ρ) = lim
k→+∞

πk(ρ) =
1

1− exp(−ρ)

Consequently,

(M∞(ρ))i,j = (−ρ)i+j−2∂
i+j−2π∞

∂ρi+j−2
(ρ) ,

Note that this function is continuous6 for all ρ > 0.

4 Numerical evaluation of ζ

In this paragraph, we try to give the value of ζ in the simple case where the dimension of the
system is n = 2.
Computation of M∞, α1 and α2: We have,

M∞(ρ) =









1

1− exp(−ρ)

−ρ exp(−ρ)

(1− exp(−ρ))2

−ρ exp(−ρ)

(1− exp(−ρ))2
ρ2 [exp(−ρ) + exp(−2ρ)]

(1− exp(−ρ))3









Note that when n = 2, we have,

α1(ρ) = λmin {M∞(ρ)} , α2(ρ) = λmax {M∞(ρ)}

Employing WolframAlpha website, we are able to give explicitly this eigenvalues as a function
of ρ.
Computation of c1, c2, c3 and c4: We have also,

exp(−A′r) exp(Ar) =

(

1 −r

−r 1 + r2

)

,

6Moreover, it satisfies:
lim
ρ→0

[ρ(M∞(ρ))i,j ] = (−1)(i+j−2)(i + j − 2)! ,

Hence, we have:
lim
ρ→0

α1(ρ) > 0
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consequently,

λmin {exp(−A′r) exp(Ar)} =
2 + r2 − r

√
r2 + 4

2
,

and,

λmax {exp(−A′r) exp(Ar)} =
2 + r2 + r

√
r2 + 4

2
.

Note that r 7→ λmin{exp(−A′r) exp(Ar)} is a strictly decreasing function on R+ and that
r 7→ λmax {exp(−A′r) exp(Ar)} is a strictly increasing function on R+. Consequently, we
obtain

c1 = c2 =
3−

√
5

2
, c3 = c4 =

3 +
√
5

2

Note that with these data, the function ϕ defined in (17) can be computed threw matlab.
Its maximal value is reached for

κ = max
ρ>0

{ϕ(ρ)} = 0.0022 , ρopt = Argmaxρ>0{ϕ(ρ)} = 0.5327 > κ .

Consequently, in this case, ζ = 0.0022.
Better approximation of γ1 and γ2: In the particular case of n = 2 a better approximation
can be given. Indeed, we have

min
s<δ

{λmin{exp(−Aθs)′ exp(−Aθs)}} =
2 + ρ2 −

√

(2 + ρ2)2 − 4

2
, ρ = θδ .

Hence, we can take:

γ1(ρ) = exp(−ρ)α1(ρ)
2 + ρ2 −

√

(2 + ρ2)2 − 4

2
, γ2(ρ) = α2(ρ)

2 + ρ2 +
√

(2 + ρ2)2 − 4

2
.

The function ϕ(ρ) = ργ1(ρ)
2nγ2(ρ)

can be computed threw matlab. Its maximal value is reached
for

κ = max
ρ>0

{ϕ(ρ)} = 0.0148 , ρopt = Argmaxρ>0{ϕ(ρ)} = 0.5313 > κ .

Consequently, in this case, ζ = 0.0148. This implies that given the Lipschitz constant of the
system cL, the observer which maximizes the time between two measures can be tuned with

δ =
0.0148

cL
, θ = 35.9 cL .
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5 Conclusion

In this short note, the continuous discrete observer presented in [5] has been studied. The
maximal time between two measurement has been exhibited as a function of the Lipschitz
constant. Even for small dimension, the obtained value seems to be small.
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