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Extended-Kalman-Filter-like observers for continuous time systems with discrete time measurements

. The relationship between the Lipschitz constant and the measurement stepsize is exhibited. For second order system, we evaluate the authorized measurement stepsize.

Introduction

We consider a continuous time system of the form: ẋ = f (x, u) , x = (x 1 , . . . , x n ) [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] with the state x is in R n and the input u is in U ⊆ R. The solutions of this system are denoted as 1 x(t). The state of this system is accessible via a discrete time measure

y k = Cx(t k ), (2) 
where (t k ) k∈N is a sequence of positive real number defined as:

t k+1 = t k + δ
where δ is a positive real number.

The problem under consideration is an observer problem. How can we estimate the state of the system knowing only the measurements.

This problem has been addressed in [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] (see also [START_REF] Hammouri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF] and the related filtering problem in [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF]).

Following what has been done for continuous time measurement in [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF], we consider the case in which the system can be written (possibly after a change of coordinates) in the form:

ẋ = Ax + φ(x, u) (3) 
with Ax = (x 2 , . . . , x n-1 , 0),

y k = Cx(t k ) = x 1 (t k )
and where the function φ : R n × U → R n satisfies an upper triangular globally Lipschitz condition, i.e. is such that for i in {1, . . . , n} we have:

|φ i (x + e, u) -φ i (x, u)| ≤ c L i j=1 |e j | , ∀ (x, e) ∈ R n × R n , u ∈ U , (4) 
where c L is a positive real number named the Lipschitz constant of the nonlinear system.

Inspired by [START_REF] Deza | High gain estimation for nonlinear systems[END_REF] and [START_REF] Nadri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF], an estimate of the state can be given as any piecewise continuous function x : R + → R n solution of the following continuous-discrete system2 :

           ẋ = Ax + φ(x, u) Ṡ = -θS -A ′ S -SA , t ∈ [kδ, (k + 1)δ) x(t k ) = x(t - k ) -δS(t k ) -1 C ′ C x(t - k ) -y k S(t k ) = S(t - k ) + δC ′ C (5) 
with θ a positive real number. Note that compared to what has been done in [START_REF] Deza | High gain estimation for nonlinear systems[END_REF], the Matrix updated law is a Lyapunov like one instead of a a Riccati like one. This one has been used in [START_REF] Nadri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF] since it allows to study analytically its limit and to give a better approximation on the bound involved in the highgain approach. Compare to [START_REF] Nadri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF] the only difference is the fact that the gain matrix depends on S which is time varying.

Main Theorem

Inspired by the result of [START_REF] Nadri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF], the following theorem can be obtain.

Theorem 1 There exists a positive real number ζ (which depends only on the dimension of the system), such that, for all δ < ζ c L there exist two positive real numbers θ 1 < θ 2 such that for any θ in [θ 1 , θ 2 ], the estimate x converges asymptotically to the state of the system [START_REF] Hammouri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF].

Proof : Let E = Θ -1 (xx) where Θ = diag{1, . . . , θ n-1 } with θ a positive real number larger then 1 to be specified. The scaled error satisfies for t in [kδ, (k + 1)δ):

Ė = Θ -1 A[x -x] + Θ -1 [φ(x, u) -φ(x, u)] ,
and since Θ -1 A = θAΘ -1 , it yields for t in [kδ, (k + 1)δ):

Ė = θAE + ∆ θ φ(x, E) , with ∆ θ φ(x, E) = Θ -1 [φ(x, u) -φ(x, u)] such that |∆ θ φ i (x, E)| ≤ c L i j=1 |E j | since θ > 1.
Moreover, the scaled error satisfies:

E(t k ) = Θ -1 x(t - k ) -δS(t k ) -1 C ′ C x(t - k ) -y k -x(t k ) = I -δ S(t k ) -1 C ′ C E(t - k ) ,
where S(•) = ΘS(•)Θ. Note that S satisfies:

S(t k ) = S(t - k ) + δC ′ C (6)
and for t in [t k , (k + 1)δ):

Ṡ = -θ S -ΘA ′ Θ -1 S -SΘ -1 AΘ , = -θ S -θA ′ S -θ SA . (7) 
Note that the sequence (s k ) k∈N such that s k = θ S(t k ) satisfies

s k+1 = exp(-ρ) exp(-A ′ ρ)s k exp(-Aρ) + ρ C ′ C ,
where ρ = θδ. Which gives,

s k = exp(-kρ) exp(-A ′ kρ)s 0 exp(-Akρ) + k-1 ℓ=0 exp(-ℓρ) exp(-A ′ ℓρ)ρ C ′ C exp(-Aℓρ) ,
Following what has been done in [START_REF] Nadri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF], the following Lemma can be shown (its proof is given in Section 3).

Lemma 1 There exist two continuous function α 1 and α 2 such that for all ρ > 0, the matrix series converges to a limit denoted s ∞ (ρ), formally defined as:

s ∞ = +∞ ℓ=0 exp(-ℓρ) exp(-A ′ ℓρ)ρ C ′ C exp(-Aℓρ) , such that α 1 (ρ)I ≤ s ∞ ≤ α 2 (ρ)I , (8) 
where α 1 and α 2 are two strictly positive continuous functions.

The proof is divided in three steps : Part 1: With this lemma in hand, we will first show that for all ρ > 0, there exists t 0 such that for all t > t 0 , the matrix S satisfies:

γ 1 (ρ)I < θ S(t) < γ 2 (ρ)I (9)
where γ 1 and γ 2 are two continuous positive function defined as,

γ 1 (ρ) = exp(-ρ)α 1 (ρ)c Int(ρ) 3 c 1 , γ 2 (ρ) = α 2 (ρ)c 2 c Int(ρ) 4 (10) 
where Int(•) denotes the integer part of a positive real number, c 1 and c 2 are two positive real numbers and (c 3 , c 4 ) are two positive real numbers such that c 3 < 1 and c 4 > 1.

Indeed, for k in N and s in [0, δ), S(k + s) is solution of (7), hence, θ S(k + s) = exp(-θs) exp(-A ′ θs)s k exp(-Aθs) .

With Lemma , for k sufficiently large, the matrix s k is definite positive, it yields that for all

v in R n , v ′ θ S(k + s)v = exp(-θs) s 1 2 k exp(-Aθs)v 2 .
Hence, we get for all v in R n :

v ′ θ S(k + s)v ≥ exp(-ρ) λ min s 1 2 k 2 |exp(-Aθs)v| 2 Note that |exp(-Aθs)v| 2 = |exp(-Aθs)v| 2 = |exp(-AInt(θs)) exp(-A[θs -Int(θs)])v| 2 ≥ (λ min {exp(-A) ′ exp(-A)}) Int(θs) |exp(-A[θs -Int(θs)])v| 2 ≥ (λ min {exp(-A) ′ exp(-A)}) Int(θs) c 1 |v| 2
where c 1 = min r≤1 {λ min {exp(-Ar) ′ exp(-Ar)}}. Furthermore, note that Det{exp(-A) ′ exp(-A)} = 1, hence

c 3 := λ min {exp(-A) ′ exp(-A)} < 1. Consequently, |exp(-Aθs)v| 2 ≥ c Int(ρ) 3 c 1
And since, λ min s

1 2 k 2
≥ λ min {s k }, it yields for all k sufficiently large and all

v in R n v ′ θ S(k + s)v ≥ exp(-ρ)λ min {s k } c Int(ρ) 3 c 1 |v| 2
In a same way,

v ′ θ S(k + s)v ≤ λ max s 1 2 k 2 | exp(-Aθs)v| 2
and,

|exp(-Aθs)v| 2 ≤ (λ max {exp(-A) ′ exp(-A)}) Int(θs) c 2 |v| 2
where c 2 = max r≤1 λ max {exp(-Ar) ′ exp(-Ar)}. Hence we get

v ′ θ S(k + s)v ≤ λ max {s k } c 2 (λ max {exp(-A) ′ exp(-A)}) Int(θs) |v| 2
Due to the fact that

c 4 := λ max {exp(-A) ′ exp(-A)} > 1, we get v ′ θ S(k + s)v ≤ λ max {s k } c 2 c Int(ρ) 4 |v| 2
which, with Lemma 2 implies that equation (9) holds and finishes the first part of the proof. Part 2: Let now V (E) = E ′ SE. We will now show that it is strictly decreasing providing θ and ρ satisfy an inequality constraint depending on c L the Lipschitz constant of the nonlinear system. The function V satisfies along the trajectories of the system for t in [kδ, (k + 1)δ):

V (E) = E ′ θA ′ S(t) + θ S(t)A + Ṡ E + 2E ′ S∆ θ φ(x, E) (11) = -θE ′ S(t)E + 2E ′ S(t)∆ θ φ(x, E) . (12) 
With Schwarz inequality, we have for all t > 0

E ′ S(t)∆ θ φ(x, E) ≤ |E| | S(t)∆ θ φ(x, E)| ≤ λ max { S(t)}|E| |∆ θ φ(x, E)| , (13) 
and we have 3

3 Here we have used the inequality:

(a 1 + . . . a n ) 2 ≤ n a 2 1 + . . . + a 2 n |∆ θ φ(x, E)| 2 = n i=1 |∆ θ φ i (x, E)| 2 (14) ≤ n i=1 c 2 L i j=1 |E j | 2 ≤ nc 2 L n j=1 |E j | 2 ≤ n 2 c 2 L |E| 2
Consequently, we get:

V (E) ≤ λ max { S(t)}2nc L -θλ min { S(t)} |E| 2 . ( 15 
)
Note that, due to equation ( 9), we get that if we can select θ and δ such that

θ > 2γ 2 (ρ)nc L γ 1 (ρ) (16) 
with ρ = δθ we would get

λ max { S(t)}2nc L -θλ min { S(t)} < 0 ,
for all t sufficiently large. Hence we get V (E) < 0 for all t in [kδ, (k + 1)δ), with k sufficiently large. Moreover, we have

V (E)(t k ) = E(t - k ) ′ I -δ S-1 C ′ C ′ S(t k ) I -δ S-1 C ′ C E(t - k ) = E(t - k ) ′ S(t k ) -2δC ′ C + δ 2 C ′ C S(t k ) -1 C ′ C E(t - k ) = E(t - k ) ′ S(t - k ) -δC ′ C + δ 2 C ′ C S(t - k ) + δC ′ C -1 C ′ C E(t - k ) = V (E)(t - k ) -E(t - k ) ′ C ′ pCE(t - k ) where, p = δ -δ 2 C S(t - k ) + δC ′ C -1 C ′ .
Following [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF] (see also [START_REF] Deza | High gain estimation for nonlinear systems[END_REF]), note that if we note q = C S(t - k ) -1 C ′ + 1 δ , we have,

pq = δ -δ 2 C S(t - k ) -1 I + δC ′ C S(t - k ) -1 -1 C ′ C S(t - k ) -1 C ′ + 1 δ = 1
Hence, we get :

V (E)(t k ) = V (E)(t - k ) -E(t - k ) ′ C ′ q -1 CE(t - k )
with q > 0. Consequently the function V is decreasing along the trajectories of the system for t sufficiently large. Its eigenvalues being lower and upper bounded as shown in the first part of the proof, we get convergence of the estimation error to the origin. Part 3: We now show that the constraint we have on θ and ρ can be given in terms of an upper bound on δ depending on c L .

To obtain estimation, we have to find δ and θ such that ( 16) is satisfied and θ > 1. Note that ( 16) is equivalent with :

δ < ϕ(ρ) c L , with ϕ(ρ) = ργ 1 (ρ) 2nγ 2 (ρ)
where γ 1 and γ 2 are defined in (10). Hence, we get:

ϕ(ρ) = ρ exp(-ρ) α 1 (ρ) 2nα 2 (ρ) c 1 c 2 c 3 c 4 Int(ρ) (17) 
Note that since α 1 (ρ) ≤ α 2 (ρ) and c 3 < 1 and c 4 > 1 we get:

lim ρ→0 ϕ(ρ) = 0 , lim ρ→+∞ ϕ(ρ) = 0 .
Hence we can define the positive real number κ as :

κ = max ρ>0 {ϕ(ρ)} ,
This function being continuous, we get that for all c L δ < κ, there exists ρ1 (δ) and ρ2 (δ) such that ϕ(ρ) > c L δ , ∀ρ ∈ (ρ 1 (δ), ρ2 (δ)) , and,

ϕ(ρ 2 (δ)) = ϕ(ρ 1 (δ)) = c L δ .
The function ϕ being definite positive, we get that lim δ→0 ρ2 (δ) = +∞. This implies that there exists 0 < c L ζ ≤ κ such that for all 0 < δ < ζ there exist ρ 1 (δ) and ρ 2 (δ) such that we have

δ < ρ 1 (δ) < ρ 2 (δ) , ϕ(ρ) > c L δ , ∀ρ ∈ [ρ 1 (δ), ρ 2 (δ)] .
Hence, this implies

ϕ(ρ) c L > δ , ∀θ ∈ [θ 1 , θ 2 ] , 1 < θ 1 < θ 2 ,
where

θ 1 = ρ 1 (δ) δ and θ 2 = ρ 2 (δ)
δ which concludes the proof.

3 Proof of Lemma 2

We want to show that the sequence

s k = k ℓ=0 exp(-ℓρ) exp(-A ′ ℓρ)ρ C ′ C exp(-Aℓρ) , k ∈ N ,
converges to a limit as k goes to infinity denoted s ∞ and such that

α 1 (ρ)I ≤ s ∞ ≤ α 2 (ρ)I . (18) 
First, note that A being nilpotent, it yields 4

C exp(-Aℓρ) = n-1 j=0 C(-Aℓρ) j = r ℓρ S n ,
where S n = diag 1, . . . , 1

(n-1)! and, r ℓρ is a vector defined as :

r l = 1, (-ρℓ), . . . , (-ρℓ) n-1 .
Consequently, we get

s k = ρS n M k (ρ)S n ,
where M k is the symetric positive (at least) semi-definite matrix defined as

M k (ρ) = k ℓ=0
exp(-ℓρ)r ′ ℓρ r ℓρ .

Hence to get the result it is sufficient to work on the sequence M k since we have for all k in N where M k is definite positive:

v ′ s k v = ρ M 1 2 k (ρ)S n v 2 4 In fact we have C exp(-Aℓρ) = r ρℓ S n O
where O is the observability matrix associated to the couple (A, C), i.e.,

O =      C CA . . . CA n-1      = I .
It yields,

ρ λ min {M 1 2 k (ρ)}λ min {S n } 2 I ≤ s k ≤ ρ λ max {M 1 2 k (ρ)}λ max {S n } 2 I or, ρλ min {M k (ρ)} (λ min {S n }) 2 I ≤ s k ≤ ρλ max {M k (ρ)}λ max ({S n }) 2 I Consequently ρ (n -1)! λ min {M k (ρ)}I ≤ s k ≤ ρλ max {M k (ρ)}I
So, provided its limit exists, (18) is satisfied with:

α 1 (ρ) = ρ (n -1)! λ min {M ∞ (ρ)} , α 2 (ρ) = ρλ max {M ∞ (ρ)} (19)
where,

M ∞ (ρ) = lim k→+∞ M k (ρ)
1. We first show that the for all k sufficiently large, the matrix M k is definite positive. First note that:

M k (ρ) ≥ exp(-(n -1)ρ) n-1 ℓ=0 r ′ ℓρ r ℓρ , ∀k ≥ n .
Note that for all v in R n ,

v ′ n-1 ℓ=0 r ′ ℓρ r ℓρ v = n-1 ℓ=0 |r ℓρ v| 2 = |R(ρ)v| 2 ≥ λ min {R(ρ) ′ R(ρ)} |v| 2 ,
where R is a Vandermonde matrix5 R = (r 0 , . . . , r n-1 ) ′ . Hence, we get

M k (ρ) ≥ λ min {R(ρ) ′ R(ρ)} exp(-(n -1)ρ)I , ∀k ≥ n .
which shows that M k is definite positive for all k ≥ n.

2. We now show that M ∞ exists and is a continuous matrix function of ρ. Note that

(M k (ρ)) i,j = k ℓ=0 exp(-ℓρ)(-ℓρ) i+j-2 = (-ρ) i+j-2 ∂ i+j-2 π k ∂ρ i+j-2 (ρ) ,
where π k (φ) = k ℓ=0 exp(-ℓρ). Note that we have

π ∞ (ρ) = lim k→+∞ π k (ρ) = 1 1 -exp(-ρ) Consequently, (M ∞ (ρ)) i,j = (-ρ) i+j-2 ∂ i+j-2 π ∞ ∂ρ i+j-2 (ρ) ,
Note that this function is continuous 6 for all ρ > 0.

Numerical evaluation of ζ

In this paragraph, we try to give the value of ζ in the simple case where the dimension of the system is n = 2.

Computation of M ∞ , α 1 and α 2 : We have, 

M ∞ (ρ) =     1 1 -exp(-ρ) -ρ exp(-ρ) (1 -exp(-ρ)) 2 -ρ exp(-ρ) (1 -exp(-ρ)) 2

Conclusion

In this short note, the continuous discrete observer presented in [START_REF] Nadri | Constant gain observer for continuous-discrete time uniformly observable systems[END_REF] has been studied. The maximal time between two measurement has been exhibited as a function of the Lipschitz constant. Even for small dimension, the obtained value seems to be small.

ρ 2 [

 2 exp(-ρ) + exp(-2ρ)] (1exp(-ρ))Note that when n = 2, we have,α 1 (ρ) = λ min {M ∞ (ρ)} , α 2 (ρ) = λ max {M ∞ (ρ)}Employing WolframAlpha website, we are able to give explicitly this eigenvalues as a function of ρ. Computation of c 1 , c 2 , c 3 and c 4 : We have also,exp(-A ′ r) exp(Ar) = 1 -r -r 1 + r 2 , 6 Moreover, it satisfies: lim ρ→0 [ρ(M ∞ (ρ)) i,j ] = (-1) (i+j-2) (i + j -2)! ,Hence, we have: lim ρ→0 α 1 (ρ) > 0

For a time function x(•) the notation x(t - k ) means (when it exists) lim t→t k ,t<t k x(t)

This implies that it is a full rank matrix.

consequently,

and,

Note that r → λ min {exp(-A ′ r) exp(Ar)} is a strictly decreasing function on R + and that r → λ max {exp(-A ′ r) exp(Ar)} is a strictly increasing function on R + . Consequently, we obtain

Note that with these data, the function ϕ defined in (17) can be computed threw matlab. Its maximal value is reached for

Consequently, in this case, ζ = 0.0022. Better approximation of γ 1 and γ 2 : In the particular case of n = 2 a better approximation can be given. Indeed, we have

Hence, we can take:

The function ϕ(ρ) = ργ 1 (ρ) 2nγ 2 (ρ) can be computed threw matlab. Its maximal value is reached for κ = max ρ>0 {ϕ(ρ)} = 0.0148 , ρ opt = Argmax ρ>0 {ϕ(ρ)} = 0.5313 > κ .

Consequently, in this case, ζ = 0.0148. This implies that given the Lipschitz constant of the system c L , the observer which maximizes the time between two measures can be tuned with δ = 0.0148 c L , θ = 35.9 c L .