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Abstract 

Purpose – The aim of this paper is to propose two simple tools for the kinematic characterization of hexapods. The paper 

also aims to share the authors’ experience with converting a popular commercial motion base (Stewart-Gough platform, hex-

apod) to an industrial robot for use in heavy duty aerospace manufacturing processes. 

Design/methodology/approach – The complete workspace of a hexapod is a six-dimensional entity that is impossible to 

visualize. Thus, nearly all hexapod manufacturers simply state the extrema of each of the six dimensions, which is very mis-

leading. As a compromise, we propose a special three-dimensional subset of the complete workspace, an approximation of 

which can be readily obtained using a CAD/CAM software suite, such as CATIA. 

While calibration techniques for serial robots are readily available, there is still no generally-agreed procedure for calibrating 

hexapods. We propose a simple calibration method that relies on the use of a laser tracker and requires no programming at 

all. Instead, the design parameters of the hexapod are directly and individually measured and the few computations involved 

are performed in a CAD/CAM software such as CATIA.   



Findings – The conventional octahedral hexapod design has a very limited workspace, though free of singularities. There 

are important deviations between the actual and the specified kinematic model in a commercial motion base. 

Practical implications – A commercial motion base can be used as a precision positioning device with its controller retrofit-

ted with state-of-the-art motion control technology with accurate workspace and geometric characteristics. 

Originality/value – A novel geometric approach for obtaining meaningful measures of the workspace is proposed. A novel, 

systematic procedure for the calibration of a hexapod is outlined. Finally, experimental results are presented and discussed. 
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Paper type Research paper 

1 Introduction 

The Stewart-Gough platform, also called hexapod, is the best-known and most commonly used parallel robot in industry. 

Hexapods have been used for several decades (Bonev, 2003), mainly for motion simulation (e.g., flight simulators). This 

type of product is designed to displace a load as heavy as several tons, and is typically referred to as a motion base or mo-

tion platform. 

In recent years, there has been a growing interest in the use of parallel robots in the aerospace sector for manufacturing 

aircraft structures. Their high stiffness, high accuracy and low inertia make them good candidates to replace the typical seri-

al structure of CNC machines, resulting in increased throughput and flexibility, and reduced production costs (Sàenz et al., 

2002). Examples of hybrid structures incorporating a tool head with parallel kinematics are DS Technologie’s ECOSPEED 

and ECOLINER (Hennes and Staimer, 2004) and Fatronik’s SPACE 5H (Collado and Herranz, 2004) machining centres. 

They all rely on the same arrangement where the parallel module, positioning a high speed milling head, is mounted on a 

translational two degree-of-freedom (DOF) unit in order to be able to work on large-scale aeronautic components.  

Another recent tendency in the aerospace sector is the use of dynamic modules with parallel kinematics in reconfigura-

ble tooling to replace dedicated tooling and/or specialized equipment for the assembly of aircraft structures (Kihlman et al., 

2002, 2004). In such applications, an external serial robotic system is used to sequentially reconfigure a set of passive tool-

ing modules, those with six DOFs consisting of standard hexapods.  

In this context, the Aerospace Manufacturing Technology Centre (AMTC) of the National Research Council Canada 

(NRC) is involved in a research initiative to investigate the industrialization of hexapods in heavy duty aerospace manufac-

turing processes such as drilling and milling of aerospace materials. An application with current particular emphasis is the 

positioning of heavy aeronautic components with very high accuracy using an active dynamically reconfigurable tooling 



using parallel kinematics. In each configuration of the tooling, precision machining operations can be applied to the struc-

tural component using an external serial robot.  

There exist a few commercial hexapods aimed for precise positioning, such as the F-200i, manufactured by Fanuc, but 

their payload is less than a hundred kilograms, unlike the payload of commercially available motion bases. On the other 

hand, although it might seem simple to manufacture a hexapod, companies such as Moog FCS, the leading manufacturer of 

motion systems, have decades of experience building hundreds of such motion systems. Even leading flight simulator man-

ufacturers such as CAE no longer build their own motion bases but purchase them from Moog FCS. Because high payload 

capability was one of the main requirements for AMTC researchers, it was decided to proceed with the procurement of a 

heavy payload commercial motion system rather than manufacture a hexapod from scratch. The system acquired by the 

AMTC (Fig. 1), a Moog FCS 5000E motion base, is equipped with electric actuators and can have a payload of 2500 kg.  

Although the hexapod’s electro-mechanical design makes it very suitable for aerospace manufacturing applications, its 

positioning precision and tracking performance as provided by the factory controller were far off from the tolerances re-

quired by aerospace manufacturing processes. Furthermore, as it was used primarily in playback mode, the user interface 

capabilities in terms of online monitoring and path planning were severely limited from a research and development stand-

point. For these reasons, it was decided at the time of procurement to also retrofit the factory controller with a commercial-

off-the-shelf high performance control platform. The selected motion controller was one developed by Delta Tau Data Sys-

tems. It had been previously implemented successfully for the motion control of the ALIO Industries 3- and 6-DOF parallel 

kinematic robotic micromanipulators designed for nanometer precision applications (Hennessey, 2004). 

Before integrating the advanced robot controller, however, the hexapod’s geometry needed to be fully characterized. No 

need to mention that the otherwise very complex six-dimensional hexapod workspace was succinctly described by the man-

ufacturer in a six rows by six columns table (as is the case with nearly all commercial parallel robots). Furthermore, proper 

kinematic calibration of the hexapod geometry was necessary for the sake of achieving better absolute accuracy.  

This paper first presents an original algorithm for computing a meaningful measure of the workspace of a hexapod using 

CATIA. the second part, a simple procedure for calibrating a hexapod using a laser tracker is proposed. While this proce-

dure is very intuitive, it has never been described before in the literature. Finally, the architecture of the retrofitted controller 

incorporating the determined workspace characteristics and calibration data is presented in the last section. 

 

 



2 A New Workspace Measure for 6-DOF Parallel Robots 

It is well known that hexapods (and parallel robots in general) have very limited workspace. Hence, it is extremely im-

portant to make optimal use of this small workspace, which requires a good knowledge of it. 

As the complete workspace of a hexapod is a highly-coupled entity in a six-dimensional space for which no human rep-

resentation exists, different types of subsets of the complete workspace are usually determined in the academic community. 

Hexapod manufacturers would, however, simply specify only the largest six one-dimensional subsets (e.g., from its home 

position, the hexapod can move up or down 25 cm, without changing the platform’s orientation). This information is obvi-

ously extremely insufficient and misleading. 

In the academic community, the most commonly determined subset of the complete workspace of parallel robots is the 

constant-orientation workspace, which is the three-dimensional volume that can be attained by the mobile platform’s centre 

while the mobile platform is kept at a constant orientation. Therefore, in order to get a good understanding of the hexapod’s 

complete workspace, one might represent a series of constant-orientation workspaces for various orientations. While this 

would be largely better than what hexapod manufacturers specify, such a representation is still of little practical value. 

Fortunately, in various applications the hexapod’s capability to rotate its platform about the platform’s z-axis (torsion) is 

not needed (e.g., in five-axis machining) or can be compensated otherwise. A common way of dealing with this redundancy 

is to use optimization methods in order to come up with the best configuration, given some criteria. However, as shown in 

(Bonev, 1999), if the torsion is kept at zero (i.e., the platform only tilts about horizontal axis), then the ranges for the re-

maining degrees of freedom are largely increased. While zero is not always the torsion angle value that maximized the 

workspace of a hexapod, it is a very good approximation and calls for no extra computations. 

Thus, we propose a new three-dimensional workspace subset that we name maximum tilt workspace. This workspace 

measure is defined as the set of positions that the centre of the mobile platform can attain with any direction of its z-axis 

making a tilt angle limited by a given value. 

Before detailing our algorithm, however, we will describe a not well-known set of three angles for representing orienta-

tion, which is the key for our algorithm. 

2.1 Tilt and Torsion Angles 

A peculiar three-angle orientation representation, later called Tilt-and-Torsion (T&T) angles, was proposed in (Bonev, 

1999), in conjunction with a new method for computing the orientation workspace of symmetric spatial parallel robots. It 

was shown that T&T angles take full advantage of a robot’s symmetry. These angles were also independently introduced in 



(Huang et al., 1999) and (Wang, 1999).  Later, it was found out that the angles had been proposed in (Korein, 1984) under 

the name halfplane-deviation-twist angles. Yet, again in 1999, these angles were proposed independently in (Crawford et al, 

1999) as a new standard in modeling angular joint motion, and particularly that of the spinal column’s vertebra. These an-

gles are also used for computer animation of articulated bodies, known as the swing-and-twist representation. 

In (Bonev et al., 2002), the advantages of T&T angles in the study of spatial parallel robots were further demonstrated. It 

was shown that there is a class of 3-DOF parallel robots that have always a zero torsion, that we now call zero-torsion paral-

lel robots. 

T&T angles are defined in two stages—a tilt and a torsion. This does not, however, mean that only two angles define the 

T&T angles but simply that the axis of tilt is variable and is defined by another angle. In the first stage, illustrated in 

Fig. 2(a), the body frame is tilted about a horizontal axis, a, at an angle , referred to as the tilt. The axis a is defined by an 

angle , called the azimuth, which is the angle between the projection of the body z0 axis onto the fixed xy plane and the 

fixed x axis. In the second stage, illustrated in Fig. 2(b), the body frame is rotated about the body z0 axis at an angle , called 

the torsion. 

For space limitations, we will omit the details of the derivation process, and write directly the resulting rotation matrix 

of T&T angles, which is 
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where cosc  , sins  , cosc  , sins  , cos( )c      , and sin( )s      . 

Observing the above rotation matrix, many will argue that these so-called T&T angles are in fact ZYZ Euler angles, 

where the spin angle   has been replaced with   . To some extent, this is true. So one can think of T&T angles as a 

slight modification of ZYZ Euler angles. This modification is not absolutely necessary but it leads to significant simplifica-

tions. 

One of the properties of any three-angle orientation representation is that a given orientation can be represented by at 

least two triplets of angles. In our case, the triplets {, , } and {  180, −, } are equivalent. To avoid this and the rep-

resentational singularity at   = 180 (which is hardly achieved by any parallel robot), we set the ranges of the azimuth, tilt, 

and torsion as, respectively, ( 180 ,180 ]     , [0,180 )    and ( 180 ,180 ]     . 

 



2.2 Nominal Hexapod’s Geometry 

Before computing the workspace, we need to define the geometric parameters of the mechanism. Let us denote as Ai (in the 

following of this paper, i = 1 to 6) the passive joint centres of the Cardan joints attached to the base corresponding to actua-

tor i, and as Bi the passive joint centres of the Cardan joints attached to the moving platform. All joint centres Ai (resp. Bi), 

are located in a plane. The origin of the base frame B, is located at the barycentre of all points Ai, and the origin of the 

moving platform frame PL  is at point P, the barycentre of all points Bi. The positions of points Ai (resp. Bi) with respect to 

the origin O (resp. P) are given in Table 1. Moreover, the displacements of the actuators are comprised between AiBi = 1143 

mm and AiBi = 1651 mm. All this information can be found in the manufacturer’s specifications of the hexapod. 

 

Joint 
Coordinates along 

x-axis (mm) y-axis (mm) z-axis (mm) 

A1 -1066.8 127 0 

A2 423.418 987.298 0 

A3 643.382 860.298 0 

A4 643.382 -860.298 0 

A5 423.418 -987.298 0 

A6 -1066.8 -127 0 

B1 516.382 640.334 0 

B2 -296.418 767.334 0 

B3 812.8 127 0 

B4 812.8 -127 0 

B5 -296.418 -767.334 0 

B6 516.382 -640.334 0 

Table 1 Nominal coordinates of the joint centres.  

 

2.3 Constant-Orientation Workspace in CATIA 

Many parameters influence the size of the workspace of a parallel robot. Among the main ones, we can mention: 

- ranges of the joints (passive or active); 

- shapes of the base and mobile platform; 

- mechanical interferences; 

- singular configurations. 

Several methods can be used in order to find the shape of the workspace of a manipulator (Merlet, 2006). As numerical 

methods give only an approximation of the shape of the workspace, which depends on the discretization step, it is preferable 

to use geometrical approaches which will give the exact form of the workspace. However, such methods are difficult to pro-



gram as standalone programs and do not allow creating a representation with a good quality. For this reason, it has been 

proposed in (Bonev, 2001) to use CAD software such as CATIA to draw the shape of a workspace. 

As explained in (Merlet 2006), the constant orientation workspace can be found as the intersection of six so-called ver-

tex spaces. Analyzing the vertex space of a leg, and assuming that the only limitation is the stroke of the linear actuators, it 

may be represented by a hollow sphere, or a half hollow sphere, if we only consider the portion superior to the plane of the 

base (Fig. 3). Thus, the constant-orientation workspace, for a given orientation of the mobile platform, is obtained by the 

intersection of the six vertex spaces, which can easily be programmed in CATIA (Fig. 4). 

2.4 Maximum Tilt Workspace in CATIA 

The maximum tilt workspace may be defined as the total reachable volume, for any angle  of the mobile platform for a 

given maximum tilt angle max. In other words, the maximum tilt workspace is the set of all positions that the centre of the 

mobile platform can attain, with any tilt angle between 0 and max, and any azimuth (any angle Therefore, this workspace 

may be found as the intersection of all constant-orientation workspaces for any angle , and any tilt angle between 0 and 

max, and any angle  between −180° and 180°. In (Bonev, 1999), it was shown through examples that for a given azimuth 

() and tilt angle (), the workspace is nearly largest for  = 0. Therefore, we can approximate the maximum tilt workspace 

as the intersection of all constant-orientation workspaces for any angle , any tilt angle between 0 and max, and  = 0. 

Of course, there is no analytic method for finding this workspace, so we would rather use some discretization here. First 

of all, we have to fix the value of the maximal tilt angle  for which the workspace should be defined. Then, for several dis-

crete values of  and  in the studied orientation intervals ( ( 180 ,180 ]     ,  max,0   ), we plot all constant-

orientation workspaces of the robot (Fig. 5a). Finally, using CATIA, we intersect all these volumes in order to obtain the 

maximal tilt workspace (Fig. 5b). 

Note that the result is an approximation but is the good thing is that all points from this approximation are inside the ac-

tual maximum tilt workspace. In other words, we claim that the maximum tilt workspace is at least the one that we can ob-

tain with our method. Also note that it takes about several seconds to obtain the approximation shown in Fig. 5b. 

 

 

 

 

 

 



2.5 Inscribed Spheres and Cylinders 

Obviously, the previously presented representations of the maximum tilt workspace are inadequate for an industrial use of 

robots, because the shape is still too much complicated to analyze. Therefore, it is preferable to define a workspace with a 

simpler form inscribed in the maximum tilt workspace, such as a sphere or a cylinder. 

2.5.1 Maximal Inscribed Spheres 

The problem remains to find the radius and the position of the centre of the largest possible sphere inscribed in the work-

space (Fig. 6). Such a problem cannot be solved analytically. Therefore, we propose to treat it numerically. 

First, we chose the coordinates of the centre of gravity of the analyzed volume as the departure point. We define a verti-

cal line L passing through this point. For any point Q along this line, we will create a sphere S centred in Q of an arbitrary 

radius r. Then, using CATIA, we make the intersection between S and the analyzed workspace. We compare the volume of 

S and of the intersection. If these volumes are equal, so the sphere is inscribed in the workspace and we enlarge the radius r; 

if not, the radius of the sphere is larger and we decrease it. Thus, incrementally, it is possible to find the largest radius of the 

sphere centred in Q and inscribed in the workspace, and retain it. Doing it for any point Q of the vertical line, and compar-

ing all maximal radii, we can find the maximal inscribed sphere (Fig. 6). 

The results, for the Stewart-Gough platform under study, are presented in Fig. 7. It is interesting to note that the radius 

of the maximal inscribed sphere is linearly proportional to the tilt angle and its center is almost constant. 

2.5.2 Maximal Inscribed Cylinders 

Defining the maximal inscribed cylinder is a more complicated task, because a cylinder, contrary to a sphere, is defined by 

two parameters: its radius and its height. However, the task globally remains the same: finding the cylinder inscribed in the 

workspace which has the greatest volume (Fig. 8). 

For finding this cylinder, we propose to proceed as follows. For a point Q belonging to the vertical axis L, we first fix a 

small radius of the cylinder and find the maximal admissible height which allows the cylinder C to be inscribed in the work-

space (following a procedure equivalent to that used in the case of the sphere). We retain the volume of this cylinder and re-

begin this algorithm for a larger value of the radius, until we find the cylinder with the maximal volume. Once it is found, 

then we achieve another time this procedure for another point of the axis L. Doing it for any point Q of the vertical line L, 

and comparing all maximal volumes, we can find the maximal inscribed cylinder (Fig. 8).  



The results, for the Stewart-Gough platform under study, are presented in Fig. 9. It is interesting to note that, once again, 

the radius and the height of the maximal inscribed cylinder are almost linearly proportional to the tilt angle and its center is 

nearly constant for any tilt angle. 

2.5.3 Singularities 

Now that the workspace of the manipulator is defined, the most important step is to verify that there are no singularities in 

it. Analyzing the singularities of a hexapod is not a simple task and is still an open problem (Li, 2006; Li, 2007; Merlet, 

2006; St-Onge, 2000). Singularities can be divided into the two main groups: 

- serial singularities for which the manipulator loses one (or more) degree of freedom. For the hexapod, they only ap-

pear if the length of one actuator is null, which is practically impossible; 

- parallel singularities for which the manipulators gains at least one degree of freedom. A parallel robot cannot cross 

such singularities (unless some complex tricks are performed, such as using gravity or inertia) and can even break up 

in their vicinity. The problem is that near such singularities, the motors are required to exert huge forces or torques. 

It is very difficult to analyse the singularities of a hexapod analytically, therefore a numerical method is preferred. The 

first step is to discretize the workspace of the robot, and for each point at a given orientation, to look at the sign of the de-

terminant of the Jacobian matrix. If between two discrete points, the sign changes, we have crossed a singular configuration. 

Of course, the accuracy of these results depends on the step used in the discretization. But for rather small steps, there are 

few chances that the program does not detect a singularity. 

So we ran such an algorithm using Matlab for a wide range of constant-orientation workspaces and did not detect a sin-

gularity. Therefore, it is clear that the robot was well designed by its manufacturer. 

The next part of our work will present the calibration of the hexapod. 

3 Calibration 

A great deal of work has been done on the calibration of parallel robots (e.g., Andreff et al., 2004; Chai et al., 2002; Daney, 

2003), but, owing to the large variety of parallel architectures, no generalized method exists. Nearly all these calibration 

methods are based on purely kinematic models (i.e., only geometrical errors are assumed). Obviously, every model is com-

pletely different from one architecture to another, but, typically, universal and spherical joints are assumed to be perfect. 



Generally, the calibration of parallel robots is performed using either built-in extra sensors (Daney, 2003) or using ex-

ternal metrology equipment measuring (possibly only partially) the pose of the mobile platform (Andreff et al., 2004; Chai 

et al., 2002). Clearly, only the second method is suitable for calibrating an existing robot, such as our hexapod. 

After a series of measurements has been conducted, an optimization procedure is used to estimate the set of model pa-

rameters that best approximates the output of the kinematic model to the output of the actual robot. In other words, the ob-

jective is not necessarily to correctly identify each individual parameter, but to obtain a model that best approximates the 

input-output relationship of the robot at the poses measured.  

The vast majority of authors claim that calibration should not be time-consuming, should ideally be automated and pref-

erably rely on low-cost measurement devices. In the aerospace context, however, (highly expensive) laser metrology sys-

tems and qualified personnel who know how to use them are currently available at all aircraft manufacturers and systems 

integrators for a family of applications requiring micrometer accuracy. Such applications range from the construction and 

certification of tooling equipments to mating and assembly of aircrafts components.  

A commercial laser tracker system capable of achieving measurement accuracy of a few micrometers was available at 

the AMTC facility (Leica’s LTD500). Naturally, our research team decided to take full advantage of this metrology equip-

ment for the calibration of the 5000E motion platform (Fig. 10). 

Furthermore, since spending a few extra hours on measurements that will eventually improve the accuracy of an existing 

robot that costs more than a hundred thousand dollars was not a problem, we decided to follow a completely different cali-

bration procedure. Indeed, instead of the standard calibration approach, we measured directly each geometric characteristic 

of the hexapod. While this might seem to be the most natural (though most time consuming) approach, there is no literature 

on it, let alone experimental results. While we believe that our direct approach gives better results, we made no performance 

comparison with the typical indirect calibration approach. 

3.1 Calibration of the Cardan Joints Positions 

The first step of our calibration method consists in finding the geometric characteristics of the hexapod, i.e., the exact posi-

tions of the centres of its Cardan joints (which are assumed to be perfect). The main principle is based on the fact that it is 

possible to determine the centre of a sphere, and its radius, knowing the positions of at least four (non coplanar) points lo-

cated at its surface. 

Thus, for finding the coordinates of the centres of the Cardan joints, it is desirable to measure the position of some 

points fixed on the legs for at least four configurations of the manipulator (Fig. 11). These configurations have to be chosen 



carefully, in order to guaranty the best results. This can be done by choosing four distinct hexapod configurations (i.e., four 

distinct platform poses), in which a leg is displaced as far as possible in four normal directions. 

There still remains one problem: which configurations should be taken? For the base joints, by simulation, it has been 

found that these configurations appear for the extreme points A, B, C, D of a workspace defined by  =  =  = 0° and z = 

307.9 mm (Fig. 12). For the mobile platform joints, by simulation, these configurations appear for the extreme points A, B, 

C, D of a workspace defined by  =  =  = 0° and z = 450 mm. 

Once these points are found, the centres of the Cardan joints can be found by solving the following equation: 
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where x, y and z are the coordinates of the joint centre and xQ, yQ and zQ are the coordinates of a point Q. It should be men-

tioned that, for having the best accuracy on the position of the joint centres, it is preferable to measure the position of more 

than four points, and to find the centre of joints through an optimization method. This can be done readily using any metrol-

ogy software. 

However, the obtained positions of the joint centres are given with respect to the laser tracker frame LT which is not 

fixed with respect to the hexapod base, since we have to displace the laser tracker often (Fig. 10). Therefore, we need to de-

fine a global reference frame B fixed on the hexapod base that will be independent of the position of the laser tracker. In 

order to define the location of the reference frame B, three reflectors are positioned on the base of the hexapod (Fig. 13) 

and their coordinates are measured each time that the laser tracker is displaced. Another frame P, fixed in the moving plat-

form, is added in order to help us define the coordinates of the centres of the platform joints. 

Obviously, there this change of reference frames leads to a slight accumulation of errors that is different from one meas-

urement configuration to another. However, this effect is minor compared to the large errors that we find with respect to the 

hexapod nominal geometry. Therefore, we do not take it into account. 

Once the coordinates of the base joint centres are found, we need to fit the real base hexagon (which is non planar) to the 

real base hexagon, and define a new base frame. This can be done using CATIA. The first step is to define the optimal plane 

Popt that minimizes the sum of the squared distances between the real six base joint centres and the plane. Next, we can de-

fine the barycentre G of all real base joint centres. Then, using CATIA, we draw the optimal plane Popt (with the real posi-



tion of the base joint centres) and make it coincide with the theoretical plane of the fixed base of the robot. We also make 

the real and nominal barycentres coincide. There still remains one free degree of rotation between the two planes: a rotation 

around the z axis. In order to fix this rotation, many solutions are possible. We propose here the following approach. First, 

trace a point at the middle of the segment between two real base joint centres. Then, project it on the plane Popt and trace a 

line between G and this point. Make the same operation with two theoretical base joint centres, and make the two lines co-

incide. Thus, the last degree of freedom is fixed. 

We can follow the exact same procedure for the mobile platform. The results are presented in Tables 2 and 3. They dis-

tances between the coordinates of the nominal and real base or platform centres vary from less than 0.6 mm to more than 

2.3 mm, which is significant for any positioning device. 

Joint 
Errors Error norm 

(mm) x-axis (mm) y-axis (mm) z-axis (mm) 

A1 0.279 0.158 0.465 0.565 

A2 1.327 0.969 0.071 1.645 

A3 0.381 1.032 0.36 1.157 

A4 0.834 1.264 1.79 2.345 

A5 0.699 0.736 1.711 1.989 

A6 0.308 0.158 0.254 0.429 

Table 2 Errors between the nominal and real values of the base joint centres. 

Joint 
Errors Error norm 

(mm) x-axis (mm) y-axis (mm) z-axis (mm) 

B1 0.584 0.531 1.382 1.591 

B2 0.653 1.576 1.385 2.198 

B3 0.703 0.223 1.407 1.588 

B4 0.207 1.192 1.459 1.896 

B5 0.88 1.065 1.464 2.012 

B6 0.321 0.075 1.389 1.428 

Table 3 Errors between the nominal and real values of the mobile platform joint centres. 

Now that the errors on the positions of the joint centres are known, the last part of our calibration method is to define the 

errors on the actuators’ length that are due to the control system. 

3.2 Calibration of Actuators’ Lengths 

The aim of this calibration is to assess the performance of the factory control system. To perform this evaluation, the errors 

between the desired, or theoretical, and measured actuators’ lengths are evaluated and analysed. 

In order to determine these errors, we will proceed with the following approach. We enter in the control system the de-

sired values for the actuators. Then, using the laser tracker, we can define the positions and orientations of frames B and 

P, and also the real coordinates of all twelve joint centres. Let us denote as xAi, yAi and zAi the coordinates of the base joint 



centre of actuator i along the x, y and z axes, respectively, and as xBi, yBi and zBi the coordinates of the platform joint centre 

of actuator i along x, y and z axes, respectively. Thus, the length i of actuator i can be found through the following relation: 

      222
AiBiAiBiAiBii zzyyxx  . (3) 

Thus, we measure the positions of the joint centres and then compute the values of i for three configurations of the plat-

form which correspond to the following lengths for each actuator: (a) 8% of the total actuators strut elongation, (b) 50% and 

(c) 92%, i.e., 1183.64 mm, 1397 mm and 1610.36 mm, respectively. The errors on the lengths are given in Table 4. They 

vary from 0.1% to 0.9%. It will be shown next that this induces large errors to the position of the mobile platform.  

Actuator 

Errors 

configuration (a) configuration (b) configuration (c) 

mm % mm % mm % 

1 1.12 0.10 2.08 0.15 2.13 0.13 

2 3.68 0.31 3.87 0.28 3.10 0.19 

3 1.41 0.12 1.56 0.11 1.71 0.11 

4 -3.06 0.26 -3.21 0.23 -3.33 0.21 

5 -10.68 0.90 -10.58 0.76 -10.81 0.67 

6 -7.39 0.62 -8.40 0.60 -9.69 0.61 

Table 4 Errors on the actuators’ lengths.  

3.3 Improvement of the Robot Accuracy 

In the nominal model, since the base and the mobile platform are assumed symmetrical and, for the above three tested con-

figurations of the robot ((a), (b), and (c)), all actuators have the same length, the position along the x and y axes should be 

equal to zero.  But, as there are some errors on the positions on the joint centres and as the controller does not control pre-

cisely the length of the actuators, there are deviations from the positions along the x and y axes of the centre of the mobile 

platform and of the platform’s orientation. These deviations were measured and are given in Table 5.They vary from less 

than 0.1 mm to more than 2 mm. 

These results clearly confirm the fact that, in addition to using a calibrated geometric model of the robot, the retrofit of 

the factory control system of the manipulator is also mandatory to improve the accuracy of the robot. The architecture of the 

controller, retrofitted using a commercial high performance motion control platform, is briefly presented in the next section.  

Reflector 

Errors 

configuration (a) configuration (b) configuration (c) 

x axis (mm) y axis (mm) x axis (mm) y axis (mm) x axis (mm) y axis (mm) 

1 -0.069 -0.358 -0.707 -1.162 -1.645 -2.197 

2 -0.199 -1.162 -0.814 -1.104 -1.696 -2.229 

3 -0.2 -2.197 -0.81 -1.138 -1.78 -2.241 

Table 5 Errors on the position of the reflectors of the mobile platform. 



4 Controller Retrofit 

This section is provided purely for information purposes, so that this paper may also be viewed as a case study. 

4.1 Requirements  

As mentioned in the introduction, the motion platform acquired by the AMTC was originally designed for positioning ap-

plications involving the playback of pre-recorded trajectories. The positioning and tracking performance were well outside 

aerospace manufacturing precision requirements, which are in the range of 0.3 mm to 0.02 mm. In order to achieve this lev-

el of precision, it was found that the factory controller had both an insufficient update rate and imprecise kinematics model. 

Also, due to the research-oriented nature of the projects that were carried out on the platform, openness of the controller was 

necessary. The level of openness and reconfigurability needs to be such that different industrial applications involving this 

type of parallel architecture can be investigated. The requirements for the upgrade were formulated as follows: 

 

- Cartesian path planning capability; 

- full access to the kinematic model in the controller; 

- CPU processing power allowing for fast controller update rates; 

- control of actuator torques; 

- user interface allowing for online monitoring and data acquisition; 

- access to controller gains; 

- possibility of performing model-based control; 

- data acquisition and monitoring of control signals. 

 

As the original power supply and amplification system was deemed capable of meeting the requirements, the controller 

retrofit had to interface with the existing electrical layout. 

4.2 New Controller Configuration and Features  

The original configuration comprised of an industrial PC hosting the controller running under DOS, responsible for sending 

out joint-level commands. A PLC was also present to provide braking, security and other supervisory functions. Command 

signals were acquired and sent to the motor drives through a custom-made interface board. Access to the controller via the 

graphical interface was done using a standard screen and keyboard configuration. 



The main component of the new controller architecture is a Delta Tau UMAC system. The system incorporates a DSP 

based motion controller capable of handling up to 32 axes as well as the analog and digital inputs/outputs required to control 

and monitor the system, thereby fulfilling the role of the old control computer and PLC combined. The communication 

channels directly interface with the motor drives, from which resolver signals are read and resulting commands sent to. Fig-

ure 14 illustrates the system architecture before and after the controller upgrade. 

The motion controller holds all the necessary algorithms to perform advanced monitoring and control functions. Some of 

the features of the motion controller are listed below: 

- trajectories programmable using linear interpolation, circular interpolation or B-splines; 

- Cartesian-level path-planning via user-programmable inverse kinematics; 

- self-tunable PID loops with variable gains; 

- S-curve acceleration profile; 

- ability to include look-up tables; 

- look-ahead filter based on velocity and acceleration limitations on the trajectory. 

The user interface, as shown in Fig. 15, was programmed in Visual Basic and allows for real-time monitoring and data 

acquisition of controller signals. The kinematic parameters resulting from the above-described calibration procedure were 

included in the model used by the motion controller. Also, Cartesian workspace limitations as a function of platform orien-

tation were also implemented for path-planning considerations.  

5 Conclusions 

This paper is the result of a collaborative research project aimed at converting a popular commercial motion base to an in-

dustrial robot for use in heavy duty aerospace manufacturing processes. A kinematic analysis of the workspace characteris-

tics showed that the conventional octahedral hexapod design has a very limited workspace, though free of singularities. A 

novel three-dimensional measure of workspace and a simple method for its computation were presented. In addition, a sim-

ple and intuitive calibration procedure was proposed for directly measuring the geometry of the hexapod using a laser track-

er. It was shown that important deviations exist between the actual and the factory kinematic models. Finally, we presented 

some information regarding the retrofit of the existing hexapod controller using a high performance off-the-shelf motion 

controller incorporating the previously determined workspace characteristics and calibration data. Upcoming work includes 

system performance benchmarks in positioning precision. 
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List of Figure 

 

Figure 1 Photo of the 5000E motion base located at the NRC Aerospace Manufacturing Technology Centre. 

Figure 2 The successive rotations of the T&T angles: (a) tilt, (b) torsion. 

Figure 3 Vertex space of a leg – CAD representation. 

Figure 4 Intersection of the 6 vertex spaces for a given orientation of the platform: (a) top view, (b) bottom view. 

Figure 5 (a) All constant-orientation workspaces of which the intersection gives (b) the maximal tilt workspace. 

Figure 6 Maximal inscribed sphere. 

Figure 7 Maximal inscribed spheres in the maximal tilt workspaces.  

Figure 8 Maximal inscribed cylinder. 

Figure 9 Maximal inscribed cylinders in the maximal tilt workspaces. 

Figure 10 The laser tracker calibrating the hexapod. 

Figure 11 A tooling ball fixed on the extremity of a leg. 

Figure 12 Measurement positions for the identification of the base joint centres. 

Figure 13 The three magnetic nests used for identifying the global reference frame. 

Figure 14 Schematic of the factory controller retrofit. 

Figure 15 User interface for manual jogging mode. 

 

 


