
HAL Id: hal-00461647
https://hal.science/hal-00461647v1

Submitted on 5 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Method for Minimizing Buffer Sizes for
Cyclo-Static Dataflow Graphs.

Mohamed Benazouz, Olivier Marchetti, Alix Munier-Kordon, Thierry Michel

To cite this version:
Mohamed Benazouz, Olivier Marchetti, Alix Munier-Kordon, Thierry Michel. A New Method for
Minimizing Buffer Sizes for Cyclo-Static Dataflow Graphs.. ESTIMedia 2010 - 8th IEEE International
Workshop on Embedded Systems for Real-Time Multimedia, Oct 2010, Scottsdale, Arizona, United
States. pp.11-20, �10.1109/ESTMED.2010.5666980�. �hal-00461647�

https://hal.science/hal-00461647v1
https://hal.archives-ouvertes.fr


1

A New Method for Minimizing Buffer Sizes for
Cyclo-Static Dataflow Graphs

Mohamed Benazouz, Olivier Marchetti, Alix Munier-Kordon and Pascal Urard†

LIP6, Université Pierre et Marie Curie, Paris (France)
† Central R&D – STMicroelectronics, Crolles (France)

Email: {Mohamed.Benazouz, Olivier.Marchetti, Alix.Munier}@lip6.fr, Pascal.Urard@st.com

Abstract—Several optimizations must be considered for the
design of streaming applications (e.g. multimedia or network
packet processing). These applications can be modelled as a
set of processes that communicate using buffers. Cyclo-Static
Dataflow graphs, which are an extension of Synchronous
Dataflow graphs, allow to consider a large class of industrial
applications.

This paper presents an original methodology to minimize the
global surface of the buffers for a Cyclo-Static Dataflow graph
under a given throughput constraint. It is proved that, if th e
processes are periodic, each buffer introduces a linear constraint
described analytically. The optimization problem is then modelled
by an Integer Linear Program. A polynomial algorithm based
on its relaxation provides a quasi-optimal solution for real life
problems. The resolution of the optimization problem for a Reed-
Solomon Decoder application is then detailed.

Index Terms—Buffer minimization, Cyclo-Static Dataflow
graph, Periodic schedule, Linear Programing, Streaming appli-
cations.

I. I NTRODUCTION AND RELATED WORK

Embedded systems are becoming increasingly complex
because of the consumers expectations. As example, mobile
phones are now supposed to take and display photos,
download and play multimedia contents, and naturally allow
to hold a telephone conversation. Most of these applications
consists in data stream processing and can be splitted into
a set of processes performing specific treatments infinitely
often, and a set of buffers for data exchanges.

Synchronous Dataflow graphs (in short SDF), introduced
by Lee and Messerschmitt in [1] are widely used to model
communications between processes. An application is modeled
by a directed graph were nodes (resp. arcs) correspond to
processes (resp. buffers). Each process consumes (resp.
produces) data in its input (resp.output) buffer. Moreover, the
processes production/consumption rates are fixed at compile
time.

Cyclo-Static DataFlow graphs (in short CSDF) were
introduced by [2] to model more complex communication
scheme between two processes: each execution of a process
t is decomposed intoϕ(t) > 0 phases, each of them

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

sending/receiving a given number of data. A comparison
between SDF and CSDF can be found in [3]. More recently,
it is shown in [4] that CSDF can be even considered to model
another class of channels.

The aim of the paper is to prove that the methodology
developed in [5] to minimize the surface of the buffers for
a minimum fixed throughput for a SDF can be extended to
handle CSDF graphs. This problem was previously studied
by [6] using a model checking approach: an optimal solution
is sought, but the combinatorial explosion limits dramatically
the size of the instances considered.

Our approach is closely related to the results developed
in [7], [8]. The authors proved that, if a periodic schedule
of the processes is supposed, the constraints induced by a
buffer can be expressed linearly using the starting times of
the first execution of the adjacent processes. An algorithm
is developed to compute each equation. Linear Programming
is then considered to minimize a linear function of these
starting times.

In this paper, an original methodology using Linear
Programming to minimize the surface of the buffers for
a CSDF graph is developed. Buffers are supposed to be
homogeneous,i.e. each buffer stores data of the same
dimension. Their surface depends then linearly on the
dimension of the data and the size of the buffer. We show
mathematically for a periodic schedule of the phases that a
buffer induces a linear inequality between the starting times
of the first execution: equations are described analytically
and the problem is then modeled using an Integer Linear
Program. Its relaxation is solved using simplex algorithm
and a quasi-optimum solution is built in polynomial time.
A small practical example is then presented. Due to its low
time-complexity, this methodology may be extended to solve
problems with an important number of processes.

The paper is organized as follows: CSDF graphs and our
notations are presented in Section2. It is proved in Section
3 that each buffer induces a couple of linear inequalities
expressed using the starting times of the first execution of the
adjacent processes. Section4 is dedicated to the formulation of
the problem using Integer Linear Programming. The modeling
of a Reed-Solomon Decoder application using CSDF graph



2

and its minimum solution are lastly presented in Section5.
Section6 is our conclusion.

II. CYCLO-STATIC DATAFLOW GRAPHS

A Cyclo-Static Dataflow graph (CSDF) is a directed graph
where nodes model macro-tasks and arcs correspond to
buffers. It is denoted byG = (T,A) where T (resp. A) is
the set of nodes (resp.arcs).

A. Macro-tasks

Every macro-taskt ∈ T is decomposed intoϕ(t) ∈ N−{0}
phases; for every valuek ∈ {1, · · · , ϕ(t)}, the kth phase
of t is denoted bytk and has a fixed durationℓt(k). One
execution of the macro-taskt ∈ T corresponds to the ordered
executions of the phasest1, · · · , tϕ(t) and has a duration

ℓt · 1 =
∑ϕ(t)

k=1 ℓt(k).

Moreover, every macro-taskt ∈ T is executed several
times: for every integern ∈ N − {0}, 〈t, n〉 denotes thenth
execution oft. Similarly, for every phasek ∈ {1, · · · , ϕ(t)},
〈tk, n〉 denotes thenth execution of thekth phase oft. It is
also supposed that two phases or two successive executions
of a macro-task cannot overlap.

For every couple(k, n) ∈ {1, · · · , ϕ(t)} × N − {0},
Pred〈tk, n〉 is the preceding execution phase of〈tk, n〉. More
formally,

Pred〈tk, n〉 =

{

〈tk−1, n〉 if k > 1
〈tϕ(t), n− 1〉 if k = 1

The execution〈tϕ(t), 0〉 is fictitious and is only introduced to
simplify the definition ofPred.

B. Buffers

Every arca = (t, t′) ∈ A represents a bufferb(a) of un-
bounded size from the macro-taskt to t′. ∀k ∈ {1, · · · , ϕ(t)},
it is supposed thatwk(a) data are produced inb(a) at the end
of an execution oftk. Similarly, ∀k′ ∈ {1, · · · , ϕ(t′)}, vk′ (a)
data are read fromb(a) before the execution oft′k′ . We set
wa · 1 =

∑ϕ(t)
k=1 wa(k) andva · 1 =

∑ϕ(t′)
k=1 va(k).

t1

ℓt1 = [1, 4, 1]

t2

ℓt2 = [2, 5]

0

[2, 3, 1] [2, 5]

Fig. 1. An unbounded bufferb(a), a = (t1, t2). ϕ(t1) = 3 andϕ(t2) = 2.
The arc is labeled by the two vectorswa = [2, 3, 1], va = [2, 5] and by the
initial number of dataM0(a) = 0.

Figure 1 shows an unbounded bufferb(a) from t1 to t2.
t1 (resp. t2) has three (resp. two) phasesi.e., ϕ(t1) = 3
(resp. ϕ(t2) = 2). The arc is labeled by vectors of
production/consumption rates,wa = [2, 3, 1] and va = [2, 5].
t1 (resp. t2) is associated with its durationℓt1 = [1, 4, 1]
(resp.ℓt2 = [2, 5]).

A path of G of length p ∈ N − {0} is defined by a list
of macro-tasksν = (t1, t2, · · · , tp) such that for anyk ∈
{1, · · · , p − 1}, (tk, tk+1) ∈ A. A circuit is a path such that
tp = t1. The weight of a pathν is the ratio

W (ν) =
∏

a∈ν

wa · 1

va · 1
.

Each bufferb(a) has an initial number of dataM0(a) ∈ N.
In the example of Figure 1, the buffer is initially empty,i.e.
M0(a) = 0.

C. Schedules

A feasible schedule associated with a CSDF graph is a
functions that associates, for every triple(t, k, n) with t ∈ T ,
k ∈ {1, · · · , ϕ(t)} andn ∈ N − {0} a starting times(tk, n)
for the nth execution oftk such that the number of data in
every buffera ∈ A remains non negative,i.e. no data is read
before it is produced. The starting times of a macro-task
coincide with those of its first phase,i.e. s(t, n) = s(t1, n).

We also consider the existence of a macro-taskt⋆ ∈ T for
which a throughput of valueδ⋆ is required. The throughput of
the system for a schedules is then defined as

δ(s) = lim
n→∞

n

s(t⋆, n)

and must verify δ(s) = δ⋆. This constraint comes from
streaming applications, for which an exact input or/and output
throughput is required.

A CSDF graph is said to be consistent if there exists a func-
tion M0 such that a feasible schedule exists. Next Theorem
proved in [9], [10], [11] expresses a necessary condition of
consistency that is assumed to be true throughout the present
paper:

Theorem 1. If G is consistent, then, for every circuitc of G,
W (c) ≥ 1.

Rougthly speaking, for any circuitc of G, W (c) can be
viewed as the production rate of data onc. So, if W (c) < 1,
the whole number of data stored in buffers ofc decreases after
a finite firing sequence and therefore it leads to a deadlock
situation.

D. Precedence constraint

The set of constraints induced by an arca = (t, t′)
on executions of macro-taskst and t′ may be expressed
as classical precedence constraints. More formally, it is
said that a induces a precedence constraint from〈tk, n〉
to 〈t′k′ , n′〉 with k ∈ {1, · · · , ϕ(t)}, k′ ∈ {1, · · · , ϕ(t′)}
and(n, n′) ∈ (N−{0})2 if the two following conditions hold:

1) 〈t′k′ , n′〉 may be executed at the completion of〈tk, n〉;
2) Pred〈t′k′ , n′〉 may be executed before the end of〈tk, n〉

but not〈t′k′ , n′〉.



3

Let us defineD+
a 〈tk, n〉 as the total number of data produces

by t in the bufferb(a) at the completion of〈tk, n〉. Then, it
verifies the sequence

D+
a 〈tk, n〉 = D+

a Pred〈tk, n〉+ wa(k)

with the initializationD+
a 〈tϕ(t), 0〉 = 0. Similarly, the number

of data consumed byt′ in the bufferb(a) at the completion
of 〈t′k′ , n′〉 is defined by the sequence

D−

a 〈t
′

k′ , n
′〉 = D−

a Pred〈t′k′ , n
′〉+ va(k

′)

with the initializationD−

a 〈t
′

ϕ(t′), 0〉 = 0.

Functions D+
a and D−

a may be used to build a
precedence constraint between the executions of the
macro-tasks. For bufferb(a) in Figure 1, we have
D+

a 〈t
1
1, 3〉 = 13, D+

a 〈t
1
2, 3〉 = 16, D−

a 〈t
2
1, 2〉 = 9

and D−

a 〈t
2
2, 2〉 = 14. Since, D+

a 〈t
1
2, 3〉 ≥ D−

a 〈t
2
2, 2〉,

〈t22, 2〉 can be executed at the completion of〈t12, 3〉. As,
D−

a 〈t
2
2, 2〉 > D+

a 〈t
1
1, 3〉 ≥ D−

a 〈t
2
1, 2〉, 〈t

2
1, 2〉 can be executed

after 〈t11, 3〉 but not 〈t22, 2〉. Thus, there exists a precedence
constraint from〈t12, 3〉 to 〈t22, 2〉.

The following lemma provides a mathematical criterion that
catches this intuitive definition of a precedence constraint
between two executions.

Lemma 1. Let a = (t, t′) ∈ A. There exists a precedence
constraint from〈tk, n〉 to 〈t′k′ , n′〉 with k ∈ {1, · · · , ϕ(t)},
k′ ∈ {1, · · · , ϕ(t′)} and (n, n′) ∈ (N− {0})2 iff :

wa(k) > M0(a) +D+
a 〈tk, n〉 −D−

a 〈t
′

k′ , n′〉 ≥

max{0, wa(k)−va(k
′)}.

Proof: According to the definition of a precedence con-
straint, the first condition implies

M0(a) +D+
a 〈tk, n〉 −D−

a 〈t
′

k′ , n′〉 ≥ 0.

Since Pred〈t′k′ , n′〉 may be executed before the end of
〈tk, n〉,

M0(a) +D+
a Pred〈tk, n〉 −D−

a Pred〈t′k′ , n′〉 ≥ 0

and thus

M0(a) +D+
a 〈tk, n〉 −D−

a 〈t
′

k′ , n′〉 ≥ wa(k)− va(k
′).

Lastly, once〈tk, n〉 and 〈t′k′ , n′〉 are executed, the number
of remaining data ina is less thanwa(k), otherwise〈t′k′ , n′〉
can be executed before the completion of〈tk, n〉. Thus,

wa(k) > M0(a) +D+
a 〈tk, n〉 −D−

a 〈t
′

k′ , n′〉

which concludes the proof.

For the example pictured by Figure 1, we getD+
a 〈t

1
2, 3〉 =

16 andD−

a 〈t
2
2, 2〉 = 14. Sincewa(2) = 3 andva(2) = 5, the

following inequality is true:

3 > D+
a 〈t

1
2, 3〉 −D−

a 〈t
2
2, 2〉 ≥ max{0, 3− 5}.

By Lemma 1, there exists a precedence constraint from〈t12, 3〉
to 〈t22, 2〉.

Now, let us note for every arca = (t, t′) ∈ A,

gcda = gcd(wa · 1, va(1), · · · , va(ϕ(t
′))),

where gcd is the greatest common divisor of a given list
of non negative integers. For every integerα, we also set
⌊α⌋

gcda =
⌊

α
gcda

⌋

· gcda. The following lemma refines the
upper bound from Lemma 1.

Lemma 2. Let a = (t, t′) ∈ A and the couple of exe-
cutions 〈tk, n〉 and 〈t′k′ , n′〉 with k ∈ {1, · · · , ϕ(t)}, k′ ∈
{1, · · · , ϕ(t′)} and (n, n′) ∈ (N− {0})2. We setHmax(k) =

−⌊M0(a)⌋
gcda − ⌊D+

a Pred〈tk, 1〉⌋
gcda − gcda + D+

a 〈tk, 1〉
andHmin(k, k

′) = max{0, wa(k)− va(k
′)} −M0(a).

Then, there exists a precedence constraint from〈tk, n〉 to
〈t′k′ , n′〉, iff :

Hmax(k) ≥ D+
a 〈tk, n〉 −D−

a 〈t
′

k′ , n′〉 ≥ Hmin(k, k
′).

Proof: By definition ofD+
a , ∀n ∈ N− {0}

D+
a 〈tk, n〉 = D+

a 〈tϕ(t), n− 1〉+D+
a 〈tk, 1〉

and
D+

a 〈tk, 1〉 = D+
a Pred〈tk, 1〉+ wa(k).

The left inequality of Lemma 1 becomes

−(M0(a)+D+
a Pred〈tk, 1〉) > D+

a 〈tϕ(t), n−1〉−D−

a 〈t
′

k′ , n
′〉.

SinceD+
a 〈tϕ(t), n− 1〉−D−

a 〈t
′

k′ , n′〉 is divisible bygcda, the
strict inequality may be replaced by:

−(⌊M0(a)⌋
gcda+

⌊

D+
a Pred〈tk, 1〉

⌋gcda

+gcda) ≥

D+
a 〈tϕ(t), n− 1〉 −D−

a 〈t
′

k′ , n′〉.

The left inequality of the lemma is obtained by adding
D+

a 〈tk, 1〉. The right part of the inequality is a consequence
of Lemma 1, which concludes the proof.

E. Bounded buffers

In a CSDF graph, an arca is associated with a bufferb(a)
with a non-limited size,i.e. the number of data stored simul-
taneously inb(a) may be infinite. However, this hypothesis is
unacceptable for real-life systems. Stuijket al. [6] noticed that
a bufferb(a) with a bounded size fromt to t′ may be modeled
by adding a reverse arca′ = (t′, t) in the associated CSDF
graph with, for everyk ∈ {1, · · · , ϕ(t)}, va′(k) = wa′ (k)
and for everyk′ ∈ {1, · · · , ϕ(t′)}, wk′ (a′) = vk′ (a) (see
Figure 2). The size of the bufferb(a) is then equal to the sum
M0(a) +M0(a

′).

t1 t2[2, 3, 1]

0

[2, 5]

M0(a
′)

Fig. 2. A bounded bufferb(a).



4

Without loss of generality, it is assumed that the application
is modelled using a connected CSDF graph. Now, if all buffers
have a bounded size, the graph obtained by adding reverse
arcs is strongly connected (i.e. for every couple of macro-tasks
(t′, t′) ∈ T 2, there exists a path fromt to t′) and is said
symmetrical.

The following theorem holds for symmetrical graphs:

Theorem 2. If G is consistent and symmetrical, then, for every
circuit c of G, W (c) = 1.

Proof: Let us consider a circuitc of G. Since G is
symmetrical, the pathc′ constructed using reverse arcs ofc

is also a circuit. By Theorem 1, sinceG is consistent, we get
W (c) ≥ 1. Now, if W (c) > 1 thenW (c′) = 1

W (c) < 1 and
thusG is inconsistent.

The following corollary is used to derive the minimum
throughput of macro-tasks.

Corollary 1. Let (t, t′) ∈ T 2. If G is consistent and symmet-
rical, then, all paths betweent and t′ have the same weight.

Proof: Let us suppose that there exists two disjoint paths,
ν1 andν2, from t to t′ with two different weightsW (ν1) 6=
W (ν2). Since the graph is symmetrical, we may construct a
circuit c by concatenating the pathν1 with the reverse path of
ν2. So,W (c) = W (ν1)

W (ν2)
. By Theorem 2,G is consistent implies

W (c) = 1 which leads to a contradiction because this involves
W (ν1) = W (ν2).

In the following, it is supposed that the graph is symmetri-
cal.

III. PERIODIC SCHEDULES

Our study is limited to periodic schedules as defined by
Wiggerset al.[8]. An execution of a macro-taskt is scheduled
periodically everyµt time units. Starting times of phases
t1, · · · , tϕ(t) are spread overµt using their time execution.

More formally,s is a periodic schedule if every taskt ∈ T

is associated with a periodµt such that:
1) ∀n > 0, s(t, n) = s(t, 1)+(n−1)µt = s(t1, 1)+(n−1)µt,

2) ∀k ∈ {2, · · · , ϕ(t)}, s(tk, n) = s(tk−1, n) +
ℓt(k − 1)

ℓt · 1
µt.

This definition ensures that two successive phases do not
overlap. Note that the throughput of a periodic schedule is

exactly
1

µt⋆
.

A. A sufficient condition of existence for a periodic schedule

The following theorem characterizes a periodic schedule
such that all precedence constraints as defined in Section
II-D are fulfilled. Every arca = (t, t′) induces a relationship
between the couple of periods(µt, µt′). A minimum delay
between the first phases starting timess(t′, 1) − s(t, 1) such
that no data is consumed byt′ before it is produced byt is
also expressed. Our equations are similar to [8]. However, our
valuesβa may be smaller and are evaluated analytically on a
smallest set of relevant values. Our values are minimum and

computed faster, leading to a better computation of buffers
sizes.

Theorem 3. There exists a set of rationals{βa, a ∈ A} such
that, every periodic schedule which verifies:

1) µt⋆ = 1
δ⋆

and ∀t ∈ T − {t⋆}, µt = µt⋆ .W (νtt⋆) where
νtt⋆ is a path ofG from t to t⋆.

2) ∀a = (t, t′) ∈ A,

s(t′, 1)− s(t, 1) ≥ −
µt

wa · 1
⌊M0(a)⌋

gcda + βa

is feasible.

Proof: Let us suppose thata = (t, t′) induces a
precedence constraint from〈tk, n〉 to 〈t′k′ , n′〉 with k ∈
{1, · · · , ϕ(t)}, k′ ∈ {1, · · · , ϕ(t′)} and(n, n′) ∈ (N− {0})2.
By definition,

s(tk, n) + ℓt(k) ≤ s(t′k′ , n′).

Sinces is periodic, this equation becomes

s(t′, 1)− s(t, 1) ≥ f(k, k′) + (n− 1)µt − (n′ − 1)µt′

with

f(k, k′) =

∑k−1
l=1 ℓt(l)

ℓt · 1
µt + ℓt(k)−

∑k′
−1

l=1 ℓt′(l)

ℓt′ · 1
µt′ .

Let us define now

H(〈k, n〉, 〈k′, n′〉) = D+
a 〈tk, n〉−D−

a 〈t
′

k′ , n′〉 .

By definition ofD+
a andD−

a

H(〈k, n〉, 〈k′, n′〉) = (n− 1)wa · 1− (n′ − 1)va ·1+ g(k, k′)

with g(k, k′) = D+
a 〈tk, 1〉 −D−

a 〈t
′

k′ , 1〉. It is deduced that

n−1 =
1

wa · 1
(H(〈k, n〉, 〈k′, n′〉) + (n′ − 1)va · 1− g(k, k′))

and thus,

s(t′, 1)− s(t, 1) ≥ f(k, k′)− (n′ − 1)

(

µt′ −
µt

wa · 1
va · 1

)

+
µt

wa · 1
(H(〈k, n〉, 〈k′, n′〉)− g(k, k′)).

According to Lemma 2, for any couple(n, n′) and for every
k′, H(〈k, n〉, 〈k′, n′〉) ≤ Hmax(k), and then the right part of
the previous inequality is less or equal to

r(k, k′, n′) = f(k, k′)− (n′ − 1)

(

µt′ −
µt

wa · 1
va · 1

)

+
µt

wa · 1
(Hmax(k)− g(k, k′)).

Thus, to preserve the minimum delay betweens(t′, 1) and
s(t, 1), it is sufficient to consider the delayr(k, k′, n′). Then,
the new considered inequality is

s(t′, 1)− s(t, 1) ≥ r(k, k′, n′).

This inequality must be true for any valuen′, so µt′ −
µt

wa·1
va · 1 ≥ 0 and then µ

t′

va·1
≥ µt

wa·1
. Since the graph

is symmetrical, there exists a circuitc that includesa. By



5

Theorem 2, sinceG is consistent,W (c) = 1, and then
µ
t′

va·1
= µt

wa·1
. Thusµt =

wa·1

va·1
µt′ . So,

∀a = (t, t′), µt =
wa · 1

va · 1
µt′ ,

and then, for a pathνtt⋆ , we get

µt = W (νtt⋆)µt⋆ .

Now, by Corollary 1, all paths fromt to t⋆ have the same
weight W (νtt⋆), thus the previous equality always holds. So
the first part of the theorrem is proved.

Now, by replacingr(k, k′, n′) andHmax(k) by their values
in the precedent inequality we get

s(t′, 1)−s(t, 1) ≥ −
µt

wa · 1
⌊M0(a)⌋

gcda+f(k, k′)+

µt

wa · 1

(

−(
⌊

D+
a 〈tk−1, 1〉

⌋gcda

− gcda +D+
a 〈tk, 1〉 − g(k, k′)

)

and thus

s(t′, 1)−s(t, 1) ≥ −
µt

wa · 1
⌊M0(a)⌋

gcda+f(k, k′)+

µt

wa · 1

(

−
⌊

D+
a 〈tk−1, 1〉

⌋gcda

+D−

a 〈t
′

k′ , 1〉 − gcda

)

.

This inequality must be true∀k ∈ {1, · · · , ϕ(t)} and∀k′ ∈
{1, · · · , ϕ(t′)}. Thus, it must be true for the right term equal
to − µt

wa·1
⌊M0(a)⌋

gcda + βa with

βa = max
k,k′

{

∑k−1
l=1 ℓt(l)

ℓt · 1
µt + ℓt(k)−

∑k′
−1

l=1 ℓt′(l)

ℓt′ · 1
µt′+

µt

wa · 1

(

−
⌊

D+
a 〈tk−1, 1〉

⌋gcda

+D−

a 〈t
′

k′ , 1〉 − gcda

)

}

.

B. Computation of the sufficient condition

In this subsection, we evaluate the time complexity of
the computation of periods and equations as defined in the
previous subsection for a given graphG = (A, T ).

Computation of βa: Let a = (t, t′) an arc of
G and let βa be the value as defined in the proof
of Theorem 3. We observe that terms depending
respectively of k and k′ can be splitted to obtain:

βa = max
k

{

∑k−1

l=1
ℓt(l)

ℓt · 1
µt + ℓt(k)−

µt

wa · 1

⌊

D
+
a 〈tk−1, 1〉

⌋gcda

}

+max
k′

{

−

∑k′
−1

l=1
ℓt′(l)

ℓt′ · 1
µt′ +

µt

wa · 1

(

D
−

a 〈t′k′ , 1〉 − gcda
)

}

and thus, onlyϕ(t) + ϕ(t′) steps are needed to evaluateβa.

Computation ofµt, t ∈ T : As seen in the proof of Theorem
3, periods of two adjacent macro-taskst and t′ with a =
(t, t′) ∈ A verify µt = wa·1

va·1
µt′ . Starting fromt⋆ for which

the periodµt⋆ is set, the period of every macro-taskt can
be computed by a Depth-First Search algorithm [12]. Let us
considerdeg(t), the degree oft ∈ T . The computation of
periods may takeO(

∑

t∈T deg(t)) time units which is linear
in the size of the graph.

IV. PROBLEM FORMULATION AND RESOLUTION

Let us suppose a symmetrical CSDF graphG = (T,A) in
which every bufferb(a) is modeled using a couple of arcs
(a, a′). The size ofb(a) equals toM0(a)+M0(a

′) as seen in
Section II-E. This size can be set or not by the designer. In
the first case, valuesM0(a) andM0(a

′) can be unknown. A
buffer b(a) is initialized if its initial number of dataM0(a)
is set.

A consequence of Theorem 3 is that, for any arca ∈ A,
M0(a) is a multiple ofgcda. Thus, ifM0(a) is set, it can be
replaced by⌊M0(a)⌋

gcda . Otherwise, only multiples ofgcda
are sought forM0(a). Let us denote byA1 (resp.A2) the set
of arcs for which the value ofM0 is known (resp.unknown).

Moreover, buffers are homogeneous,i.e. data stored in any
buffer b(a) have all the same dimensionθ(a).

For a given throughput, our problem may be formulated by
the following Integer Linear Program:

min
(
∑

a∈A θ(a)M0(a)
)

subject to






































∀a = (t, t′) ∈ A1,

s(t′, 1)− s(t, 1) ≥ βa −
µt

wa·1
⌊M0(a)⌋

gcda

∀a = (t, t′) ∈ A2,

s(t′, 1)− s(t, 1) ≥ βa −
µt

wa·1
M0(a)

∀a = (t, t′) ∈ A2,M0(a) = m0(a) · gcda
∀a = (t, t′) ∈ A2,m0(a) ∈ N

∀t ∈ T, s(t, 1) ≥ 0

The first (resp. second) inequality expresses the sufficient
condition associated with an initialized (resp. uninitialized)
arc a ∈ A1 (resp.a ∈ A2) following Theorem 3. The other
constraints restrict the values thatM0(a), a ∈ A2, can take
to multiples ofgcda.

This problem is a generalization of an NP-Hard problem
[13]. In order to compute a good solution efficiently, we first
solve the linear program relaxation by removing the integrity
constraints on the values ofM0(a), a ∈ A2. Then, to get a
feasible solution, for every arca ∈ A2, we roundM0(a) to
the next greater multiple ofgcda.

V. EXPERIMENTAL RESULTS

Our method was tested on two particular industrial ap-
plications. The first one concerns a Reed Solomon Decoder
application (RSD). The second one is an MP3 Playback model
extracted from [8].

A. RSD application

It is used to detect and correct errors that may occur during
wireless communications. The input of our application is a
frame of 896 bytes, composed of 864 data bytes and 32 parity
bytes. The output is 4 frames of 216 bytes called codewords.
Each codeword is associated with the number of errors that
were detected in it and whether they were all corrected or not.
This determines the status of the frame received (accepted or
rejected).



6

896
/
8

in
Syndrome

864
/
8

α

1
/
64γ1

1
/
64γ2

1
/
64γ3

1
/
64γ4

D
e

in
te

rl
e

a
ve

r

216
/
8

β1

216
/
8

β2

216
/
8

β3

216
/
8

β4

Euclid1

errors1

status1

out1

Euclid2

errors2

status2

out2

Euclid3

errors3

status3

out3

Euclid4

errors4

status4

out4

Fig. 3. Block diagram of a Reed-Solomon Decoder. Each arca represents a
buffer and is labeled by the dimensionθ(a) expressed in bits and the number
of data transferred during the treatment of one frame.

A block diagram of this application is shown in Figure 3.
To decode Reed-Solomon codes, an Euclidean decoding

algorithm is used and it is implemented by anEuclid block.
TheSyndromeblock performs the syndrome calculation using
32 parity bytes.

To enhance the throughput, fourEuclid blocks are used in
parallel to decode an interlaced data frame. TheDeinterleaver
block is used to deinterlace a frame of864 bytes (bufferα) into
4 codewords of216 bytes (buffersβ1 to β4). Each codeword
is treated by a separateEuclid block able to detect 7 errors and
to correct at most 3. To perform its task, anEuclid block needs
a syndrome of8x8 bits which is delivered by theSyndrome
block (buffersγ1 to γ4).

The period of the system is needed to be 1152 cycle time.
The duration of one cycle depends on the technology used.

Figure 4 shows a cyclo static modelling of this application.
Because of symmetry only the firstEuclidblock is represented.
Also, due to space constraints, several macro-tasks have been
merged.

The Syndromeblock is composed of two macro-tasksS1

and S2. S1 reads a frame of864 data bytes and32 parity
bytes. It writes data bytes one by one (cycle by cycle) on
the buffer α. Once all parity bytes are read,S2 computes
the syndrome and writes it on bufferγ1, which takes7
cycles time. Then,ϕ(S1) = 896, wα = [864x1, 32x0] and
∀k ∈ {1, · · · , 896}, ℓS1(k) = 1. ϕ(S2) = 1 andℓS2(1) = 7.

The unique macro-task of theDeinterleaverblock has4
phases (as many as the number ofEuclid blocks). Every
phase takes1 cycle time i.e. , ∀k ∈ {1, · · · , 4}, ℓD1(k) = 1.
During the phasei, it writes the data just read from bufferα
on the bufferβi and nothing on the three others.

The Euclid block is composed of three macro-tasks. They
all have one phasei.e. , ϕ(E1) = ϕ(E2) = ϕ(E3) = 1.
ℓE1(1) = 89, ℓE2(1) = 1 andℓE3(1) = 3.

in S1 wα

8
9
6
x1

8
9
6

S21

α

γ1

D11

β1

wβ1

E11

2
1
6

1

outE21

1
2
1
6

E3

errors1
+

status1

Fig. 4. The CSDF graph modelling the 3 blocks (Syndrome, Deinterleaver
and Euclid) and the channels between these blocks.wα = [864x1, 32x0] and
wβ1

= [1, 0, 0, 0].

MP3

ℓMP3

SRC

ℓSRC

µMP3 480

B1

APP

22µs

441 1

B2

DAC

22µs

1 1

B3

Fig. 5. MP3 Playback,µMP3 = [0, 0, 18x32, 0, 18x32]. Durations:
ℓMP3 = [670, 2700, 18x40, 2700, 18x40]µs, ℓSRC ∈ {2.5, 5, 7.5, 10}ms.

Our algorithm runs on a2.3Ghz AMD processor and
Linux based system. The solver used to resolve the linear
program relaxation isGLPK [14].

The algorithm computes several solutions of the same
minimum cost1001 bytes. Two of them are shown in Table
I. The first solution sets the size of bufferα to its minimum
which is 33 bytes, and sizes of buffersβi, i ∈ {1, · · · , 4}
are set to234 bytes. The second solution does the opposite
and reduces the amount of buffers between theDeinterleaver
block andEuclid blocks to its minimum4x1 bytes. In this
case, the minimum size ofα is 965 bytes. Adopting a solution
rather than the other depends on architectural choices. Our
designers preferred merging memory so they opted for the
second solution.

TABLE I
BUFFER SIZES FOR THERSDAPPLICATION.

Cost(bytes) = α+ (β1 + β2 + β3 + β4) + 8(γ1 + γ2 + γ3 + γ4).

Solution α βi, i ∈ {1 · · · 4} γi, i ∈ {1 · · · 4} Cost
1 33 234 1 1001
2 965 1 1 1001

B. MP3 Playback application

The MP3 playback model presented in [8] allows us to
compare our results with [6], [8].

We obtain the same buffer sizes as in [8] for different
execution time of the converter SRC (See Table II). This
artefact is due to the application structure (a chain). Their



7

objective function minimizes the sum of the first starting
times of macro-tasks which does not coincide with the sum
of buffer sizes for general graphs.

However our algorithm is faster (10−5s vs 10−2s) due to
the analytical technique presented here for the computation
of βa. This speed factor is to be appreciated in large systems
with hundreds or thousands of processes and also when several
iterations have to be performed, as in Parameterized CSDF
[15].

TABLE II
BUFFER SIZES FOR THEMP3 PLAYERBACK.

ℓ(SRC) = 10 7.5 5 2.5
B1 1376 1280 1152 1024
B2 882 772 662 552
B3 2 2 2 2
Sum 2260 2054 1816 1578

Model checking approach computes optimal buffer sizes
using earliest schedule. Numerical values obtained by [6] are
about23% to 59% better. The flaw of this last technique is
its scalability. An improvedMP3 playback is presented to
highlight this point: the application presented in Figure 6is
able to read and mix two independentMP3 input streams.
Sizes of buffersB4 andB5 are obviously the same as buffers
B1 and B2. Model checking technique failed to solve this
new instance. This proves that exact techniques based on
state-space exploration can not deal with this combinatorial
optimization problem even for small applications.

MP3 SRCµMP3 480

B1

APP441 1

B2

DAC1 1

B3

MP32 SRC2µMP3 480

B4

441

1

B5

Fig. 6. The mix of two streams.MP3 ≡ MP32 andSRC ≡ SRC2.

VI. CONCLUSION

It is proved in this paper that our methodology developed
in [5] may be extended to CSDF graphs. Moreover, a small
real-life problem and its resolution are presented, showing
that several minimum solutions can be computed. All our
results are mathematically proved, and general heterogeneous
buffers may be considered.

However, we are convinced that our results may be im-
proved if the starting times of the phases are not supposed
to be periodic. If an analytical expression of the equation is
possible in this case, the experimental results should be greatly
improved.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” IEEE
Proceedings of the IEEE, vol. 75, no. 9, 1987.

[2] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
data flow,” IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 5, pp. 3255–3258, 1995.

[3] T. M. Parks, J. L. Pino, and E. A. Lee, “A comparison of synchronous
and cycle-static dataflow,” inASILOMAR ’95: Proceedings of the 29th
Asilomar Conference on Signals, Systems and Computers (2-Volume
Set). Washington, DC, USA: IEEE Computer Society, 1995, p. 204.

[4] K. Denolf, M. Bekooij, J. Cockx, D. Verkest, and H. Corporaal,
“Exploiting the expressiveness of cyclo-static dataflow tomodel
multimedia implementations,”EURASIP Journal on Advances in Signal
Processing, no. Article ID 84078, p. 14 pages, 2007. [Online].
Available: http://dx.doi.org/10.1155/2007/84078

[5] M. Benazouz, O. Marchetti, A. Munier-Kordon, and U. Pascal, “A new
approach for minimizing buffer capacities with throughputconstraint for
embedded system design,”AICCSA ’10, International Conference on
Computer Systems and Applications, http://hal.archives-ouvertes.fr/hal-
00368648/fr/, 2010.

[6] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-off
exploration for cyclo-static and synchronous dataflow graphs,” IEEE
Trans. Comput., vol. 57, no. 10, pp. 1331–1345, 2008.

[7] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Efficient compu-
tation of buffer capacities for cyclo-static dataflow graphs,” in DAC ’07:
Proceedings of the 44th annual Design Automation Conference. New
York, NY, USA: ACM, 2007, pp. 658–663.

[8] M. H. Wiggers, M. J. G. Bekooij, P. G. Jansen, and G. J. M. Smit,
“Efficient computation of buffer capacities for cyclo-static real-time
systems with back-pressure,” inRTAS ’07: Proceedings of the 13th IEEE
Real Time and Embedded Technology and Applications Symposium.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 281–292.

[9] R. M. Karp and R. E. Miller, “Properties of a model for parallel
computations: Determinacy, termination, queueing,”SIAM, vol. 14,
no. 63, pp. 1390 – 1411, 1966.

[10] A. Munier, “Régime asymptotique optimal d’un graphe d’événements
temporisé généralisé: application à un problème d’assemblage,”RAIRO-
Automatique Productique Informatique Industrielle, vol. 27, no. 5, pp.
487–513, 1993.

[11] E. Teruel, P. Chrzastowski-Wachtel, J. M. Colom, and M.Silva, “On
weighted T-systems,” inProocedings of the 13th Internationnal Con-
ference on Application and Theory of Petri Nets 1992, Lecture Notes in
Computer Science, vol. 616. Springer, 1992.

[12] T. H. Cormen, C. E. Leiseerson, R. Rivest, and C. Stein,Introduction
to Algorithms. MIT Press, 1990.

[13] O. Marchetti, “Dimensionnement des mémoires pour systèmes embar-
qués,” Ph.D. dissertation, Université Pierre et Marie Curie, 2006.

[14] “GLPK – GNU Linear Programming Kit,
http://www.gnu.org/software/glpk/.”

[15] S. Sriram and S. S. Bhattacharyya,Embedded Multiprocessors: Schedul-
ing and Synchronization. New York, NY, USA: Marcel Dekker, Inc.,
2000.


