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L'heuristique de pente : vue d'ensemble et mise en pratique Résumé : La sélection de modèles est un paradigme général incluant de nombreux problèmes statistiques. Une des approches les plus connues est fondée sur la minimisation d'un critère pénalisé. Birgé et Massart (2006) ont proposé une méthode pour calibrer de tels critères pour des pénalités connues à une constante multiplicative près : l'heuristique de pente. Cette heuristique est validée par des travaux théoriques dans quelques situations et son bon comportement en pratique est validé dans une plus large variété de contextes. L'objectif de cet article est double. Nous proposons tout d'abord une synthèse des travaux théoriques et pratiques concernant cette méthode. Puis, nous nous intéressons aux difficultés rencontrées lors de la mise en pratique de cette heuristique. Nous proposons une nouvelle approche qui sera comparée à la méthode standard du "saut de dimension". Toutes les solutions pratiques discutées dans cet article dans différents contextes sont disponibles dans capushe, une interface graphique développée sous le logiciel Matlab.

Introduction

The model selection paradigm relies on the choice of a risk function, depending on the aim, to be minimized. Since its expected value is typically unknown (as the sample distribution), it is estimated through its empirical version. This is a generalization of popular estimation approaches such as maximum likelihood and least squares. Now, if a model collection is considered, the model minimizing the risk can be chosen based on the data. This model selection should not be based only on the empirical risk minimum value in each model since an optimistic bias for the evaluation of the expected risk would be introduced. Thus a feature of the models, called statistical complexity, has to be considered in order to enable the control of this bias. Typically the complexity corresponds to the model dimension when the model is a linear vector space but in some situations, the complexity choice is neither intuitive nor easy. The more complex the model, the larger the bias for the estimation of the expected risk: a popular solution is then to select the model minimizing the empirical risk minimum value penalized with an increasing function of the complexity. Thus the aim is to provide a sensible penalty function.

In this paper, we focus on the so-called slope heuristics method proposed by Birgé andMassart (2001, 2006). This procedure allows to calibrate penalty functions known up to a multiplicative constant. The purpose of this paper is twofold: providing an overview on the slope heuristics theoretical and practical available works and providing practical solutions for its implementation.

From a theoretical point of view, the principle of the slope heuristics is introduced and proved for the first time by [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF] in the context of Gaussian homoscedastic least squares regression with fixed design. They show that there exists a minimal penalty, namely such that the complexity and the risk of models selected with lighter penalties explode. Moreover, they prove that considering a penalty equal to twice this minimal penalty allows to select a model close to the oracle model in term of risk (see Section 2 for a reminder about the definition of the oracle). This rule of thumb is the main statement of the slope heuristics. [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF] then propose to estimate the minimal penalty in a datadriven manner, which enables us to overcome the difficulty that some constants needed to design the penalty are unknown and to deduce an optimal penalty from this estimate. In the framework they consider, the penalty shape they derive is proportional to the model dimension when the model family is not too large and involves an additional logarithmic term when the model family is huge. [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] extend these results to the heteroscedastic regression with random design framework without Gaussian assumption. They have to restrict the considered models to histograms but conjecture that this is only due to technical reasons and that the heuristics remains valid in other least squares regression frameworks. They consider the case of reasonably rich model families (namely the number of models grows as a power of n) and derive penalties depending of the dimension. In a density estimation framework, [START_REF] Lerasle | Rééchantillonnage et sélection de modèles optimale pour l'estimation de la densité[END_REF] validates the slope heuristics and proves oracle inequalities for both independent [START_REF] Lerasle | Optimal model selection in density estimation[END_REF] and mixing data (Lerasle, 2009a). Some theoretical results by [START_REF] Verzelen | Data-driven neighborhood selection of a Gaussian field[END_REF] partially validate the slope heuristics in a Gaussian Markov random field framework.

Moreover the conjecture that the slope heuristics may be valid in a wider range of model selection frameworks is supported by the results of several encouraging applications: estimation of oil reserves [START_REF] Lepez | Some estimation problems related to oil reserves[END_REF]; change-point detection in a Gaussian least squares framework [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF]; selection of the number of non-zero mean components in a Gaussian framework with application to genomics [START_REF] Villers | Tests et sélection de modèles pour l'analyse de données protéomiques et transcriptomiques[END_REF]; simultaneous variable selection and clustering in a Gaussian mixture models setting with applications to the study of oil production through curve clustering and to genomics [START_REF] Maugis | Data-driven penalty calibration: a case study for Gaussian mixture model selection[END_REF]; selection of the suitable neighborhood in a Gaussian Markov random field framework [START_REF] Verzelen | Data-driven neighborhood selection of a Gaussian field[END_REF]; estimation of the number of interior knots in a B-spline regression model [START_REF] Denis | Choix du nombre de noeuds en régression spline par l'heuristique des pentes[END_REF]; choice of a simplicial complex in the computational geometry field [START_REF] Caillerie | Model selection for simplicial approximation[END_REF] and simulations in both the frameworks of Gaussian mixture models likelihood and model-based clustering [START_REF] Inria Baudry | Sélection de modèle pour la classification non supervisée[END_REF]. This enumeration illustrates that the slope heuristics brings solution to real needs and the good results reported in those simulated and real data experiments contribute to confirm its usefulness. This is enthusiastic evidence on how fruitful are these efforts to fill the gap between the theory of non asymptotic model selection and the practical applications.

In practice, the penalty is known up to a multiplicative constant (e.g. proportional to the noise level) and the main issue is to estimate the minimal penalty. The most studied and applied approach is the so-called dimension jump. This method is based on a complexity jump and, in the first studied frameworks, the complexity was actually the model dimension. It consists of considering the complexity of the selected model as a function of the multiplicative constant in the penalty. Then increasing the constant value from 0, a nonincreasing and piecewise function is obtained. The minimal penalty is calibrated with the constant corresponding to the greatest jump of complexity or to the first jump greater than a chosen threshold. The choice of the threshold (or of the most complex models involved) is delicate and may be decisive for the final model selection. Another approach is based on the expectation that a linear relation exists between the penalty shape and the contrast value for the most complex models. This method called data-driven slope estimation in this paper consists of estimating the slope of this linear part for calibrating the minimal penalty. A new strategy based on graphical methods to apply this second approach is proposed in order to answer to practical difficulties. It notably has the advantage to validate that the slope heuristics can be applied. The dimension jump and the data-driven slope estimation approaches, presented in this paper, are implemented in a Matlab graphical user interface called capushe (CAlibrated Penalty Using Slope HEuristics). Hopefully it will contribute to a better understanding and a wider use of the slope heuristics.

In Section 2, principles for the contrast minimization and model selection paradigm are reminded, and the theoretical basis of the slope heuristics are presented. The dimension jump approach is presented in Section 3. Section 4 is devoted to the data-driven slope estimation approach and our strategy. Finally, Section 5 illustrates the results obtained by those approaches through the package capushe for various problems.

Contrast minimization and the slope heuristics

Before discussing the calibration issue of model selection via penalization, the estimation method by contrast minimization is briefly recalled.

Let X = (X 1 , . . . , X n ), X i ∈ R d , be an i.i.d sample from an unknown probability distribution. The quantity of interest, denoted as s, is related to the unknown sample distribution and belongs to a set S. The method is based on the existence

INRIA of a contrast function γ : S × R d → R fulfilling the fundamental property that s = argmin t∈S E X [γ(t, X)] ,
where the expectation is taken with respect to X distributed as the sample (the minimum is expected to be uniquely reached). The associated loss function, which enables us to evaluate each element of S, is defined by:

∀t ∈ S, l(s, t) = E X [γ(t, X)] -E X [γ(s, X)] .
The target s being a minimizer of the contrast over S, it is also a minimizer over S of the expectation of the empirical contrast defined by

∀t ∈ S, γ n (t) = 1 n n i=1 γ(t, X i ).
A minimizer of the empirical contrast over a model S, a subspace of S, is then considered and denoted as ŝ. Substituting the empirical contrast γ n to its expectation and minimizing γ n over S, it is expected that ŝ is a sensible estimator of s.

The quality of such an estimator can be measured by its risk

R(ŝ) = E X [l(s, ŝ)] .
For instance, in the density estimation framework, the popular maximum likelihood and least squares estimators are both minimum contrast estimators. Suppose that the sample has a density s with respect to a measure µ. Then the contrast

γ(t, x) = -ln[t(x)]
where t denotes another density is the maximum likelihood contrast. The corresponding loss function is the Kullback-Leibler divergence defined by KL(s, t) = s ln s t dµ.

If s is supposed to be in L 2 (µ) then the contrast

γ(t, x) = t 2 -2t(x)
where • denotes the norm in L 2 (µ) is the least squares contrast. The corresponding loss function is then given by

l(s, t) = s -t 2 .
Other examples of contrasts for regression, classification and Gaussian white noise can be found in the book of [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF].

Model selection via penalization

A countable collection of models (S m ) m∈M with the corresponding estimator collection (ŝ m ) m∈M is now considered. An important question is how to choose the "best" estimator among this collection? Let m be the model selected by a given model selection procedure. The selected estimator is then ŝ m, where both ŝm (for any m) and m are built from the same sample X. Such a procedure may be evaluated from either an asymptotic or a non asymptotic point of view.

The ideal model S m * for a given n and a given dataset is such that m * ∈ argmin m∈M l(s, ŝm ).

(1)

However the corresponding estimator ŝm * , called the oracle, depends on the unknown sample distribution. Nevertheless, this oracle is a benchmark while building a model selection procedure.

From a non asymptotic point of view, the model collection M may depend on n, and the aim is to build a model selection procedure such that the selected model m is optimal. More precisely, it fulfills an oracle inequality:

l(s, ŝ m) ≤ C n l(s, ŝm * ) + η n
with C n as close to 1 as possible and η n a remainder term negligible with respect to l(s, ŝm ). This inequality is expected to hold either with high probability or in expected value, or even, when such results are too difficult to be achieved, under a weaker form:

E X [l(s, ŝ m)] ≤ C n inf m∈M E X [l(s, ŝm )] + η n .
Let us stress that even if there exists m 0 such that s ∈ S m0 , there is no reason that m * = m 0 , since m * has to take the model complexity into account. The loss can be decomposed into an approximation and an estimation parts

l(s, ŝm ) = l(s, s m ) + E X [γ(s m , X) -γ(ŝ m , X)] ,
where s m , a minimizer of E X [γ(t, X)] over S m , is one of the best approximation of s in S m . This illustrates that a bias/variance trade-off has to be reached.

The main approaches to design such model selection procedures are hold-out and cross-validation procedures (see [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF], or penalized criteria. Nevertheless, cross-validation procedures are time consuming and thus penalization is preferable in many cases. Penalization consists of defining a proper penalty function pen : M -→ R + and of selecting m minimizing the associated penalized criterion ∀m ∈ M, crit(m) = γ n (ŝ m ) + pen(m).

(2)

Choosing the penalty is tricky but obviously crucial. Some well-known penalized criteria with fixed penalties such as AIC [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] or BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF] have been widely studied [START_REF] Burnham | Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach[END_REF].The use of these penalties is mainly motivated by asymptotic arguments that may be wrong in a non asymptotic context. In the regression framework, other famous penalized criteria are Mallow's C p [START_REF] Mallows | Some comments on cp[END_REF] and GCV [START_REF] Craven | Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized crossvalidation[END_REF]. Nevertheless, Mallow's C p depends on the noise level σ 2 of the true regression model which is unknown (if it does exist) and σ 2 is thus difficult to estimate. Similarly, GCV depends on a tuning parameter which best value is actually σ 2 . The solution proposed by the GCV method is to choose this tuning parameter from the data via cross-validation, and once again an unknown parameter has to be estimated. More recent works based on concentration inequalities have led to optimal penalties which are known up to a multiplicative constant κ. In this framework, INRIA the penalty shape is then denoted as pen shape (•) and an unknown constant κ opt exists such that pen opt : m ∈ M → κ opt pen shape (m)

is an optimal penalty. Two different kinds of results usually lead to such a penalty shape:

Deterministic penalty shapes. Specific deterministic functions m → pen shape (m) can be used to define an optimal penalty (see [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] for some examples of such penalties). For instance, in a general maximum likelihood framework, Theorem 7.11 in [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] provides a solution to choose a penalty shape and insures the existence of a constant κ opt such that pen opt (.) = κ opt pen shape (•) follows an oracle inequality. The value of κ opt which can be derived from the theory is much too pessimistic and a reasonable value has to be guessed from the data.

Resampling penalty shapes. In a regression framework, [START_REF] Arlot | Model selection by resampling penalization[END_REF] uses resampling to design the penalty corresponding to each model and derives non asymptotic results for the corresponding procedures. These penalties actually have to be calibrated by a multiplicative constant. [START_REF] Lerasle | Optimal model selection in density estimation[END_REF] provides analogous results in a density estimation framework.

Remark 1. Note that such a situation where an optimal penalty is known up to a multiplicative constant also arises with usual asymptotic criteria. For example, Mallows' C p , known to be asymptotically optimal in a fixed design and homoscedastic regression framework, relies on the penalty 2σ 2 Dm n

, where D m is the dimension of the model S m . The variance being typically unknown, a value estimated from the data can be plugged in the penalty. Another possibility consists of considering 2Dm n as a penalty shape and of guessing a good multiplicative constant from the data.

Slope Heuristics

Recently, some efforts have been paid to overcome the difficulty of penalty calibration. [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF] propose a practical method based on theoretical and heuristic ideas for defining efficient penalty functions from the data. This socalled slope heuristics is validated in the framework of Gaussian regression with a homoscedastic fixed design [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF] and generalized in the heteroscedastic random-design case [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF]. It has also been validated for least squares density estimation [START_REF] Lerasle | Optimal model selection in density estimation[END_REF] and has been partially validated for the selection of a suitable neighborhood in a Gaussian Markov random field framework [START_REF] Verzelen | Data-driven neighborhood selection of a Gaussian field[END_REF]. Furthermore, its practical validity has been illustrated in many other different frameworks as cited in the introduction.

If the penalty is defined by the function m ∈ M → l(s, ŝm ) -γ n (ŝ m ), then according to (1) and ( 2), the oracle model is always selected. Such a penalty can be decomposed into

l(s, ŝm ) -γ n (ŝ m ) = E X [γ(ŝ m , X)] -E X [γ(s m , X)] +E X [γ(s m , X)] -E X [γ(s, X)] +γ n (s m ) -γ n (ŝ m ) +γ n (s) -γ n (s m ) -γ n (s). (4) 
Since -γ n (s) does not depend on m, the ideal penalty can be defined as

pen * (m) = v m + vm + ∆ n (s m )
where

v m = E X [γ(ŝ m , X) -γ(s m , X)] is a "variance" term, vm = γ n (s m )-γ n (ŝ m ) is an empirical "variance" term and ∆ n (s m ) = {E X [γ(s m , X)] -E X [γ(s, X)]} + {γ n (s) -γ n (s m )
} is the difference between a "bias" term and the associated empirical "bias" term. Now the main idea is to estimate this ideal penalty from the data so as to build an optimal penalty function. For all m ∈ M,

l(s, ŝm ) + γ n (s) = γ n (ŝ m ) + pen * (m)
according to the expression of the ideal penalty (4). Moreover for any penalty function pen(•),

∀m ∈ M, γ n (ŝ m) + pen( m) ≤ γ n (ŝ m ) + pen(m)
according to the definition of m and (2). This leads to

l(s, ŝ m) + [pen( m) -pen * ( m)] ≤ inf m∈M {l(s, ŝm ) + [pen(m) -pen * (m)]} . ( 5 
)
Thus it is relevant to look for a penalty close to the ideal penalty for any m in order to derive an oracle inequality. To this aim, the slope heuristics relies on the two following points [SH1] and [SH2].

[SH1] Minimal penalty. If the chosen penalty function is pen(m) = vm , the penalized criterion is

crit(m) = γ n (ŝ m ) + vm = γ n (s m ),
which concentrates around its expectation E X [γ(s m , X)] for large n. Hence, this procedure selects a model minimizing the bias. The variance is not taken into account: such a criterion has high probability of selecting a too complex model. If the chosen penalty is pen(m) = κv m , the criterion can be written as

crit(m) = (1 -κ)γ n (ŝ m ) + κγ n (s m ).
Therefore two main cases occur: if κ < 1 then the criterion decreases as the complexity increases (the two terms being decreasing): the selected model is for sure one of the most complex ones, if κ > 1, for the most complex models, the criterion increases with the complexity since these models have almost the same bias, and thus they are ruled out.

This suggests that pen min (m) = vm is a minimal penalty, namely that lighter penalties give rise to a selection of the most complex models, whereas higher penalties should select models with "reasonable" complexity. This phenomenon corresponds to the first point of the slope heuristics.
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[SH2] Ideal penalty: twice minimal penalty. The first point of the slope heuristics is to assume that v m ≈ vm . One reason to believe in such an assumption is that vm is the empirical counterpart of v m . Then, since it is expected that the fluctuations of ∆ n (s m ) around its zero expectation can be controlled through concentration results, the ideal penalty may be approximated as follows:

pen

* (m) ≈ v m + vm ≈ 2v m .
Hence the ideal penalty is about twice the minimal penalty, which is the second point of the slope heuristics.

In practice, this heuristics is useful when an optimal penalty pen opt (•) = κ opt pen shape (•) is known up to a multiplicative factor. Note that the slope heuristics is derived by considering the ideal penalty, whereas it is applied to a particular penalty shape chosen by the user. Thus, it is not necessarily guaranteed that the ideal penalty itself is of the shape κ * pen shape (•). This is a further assumption that a given optimal penalty fulfills the same properties as the ideal penalty, namely that half this optimal penalty is a minimal penalty. This relies on the assumption that the chosen penalty shape is fine enough so that the derived optimal penalty is close to the ideal penalty. Thus the keystone of the slope heuristics is that κopt 2 pen shape (m) is a good estimate of vm and provides a minimal penalty.

For the two application methods of the slope heuristics presented in Sections 3 and 4, it is assumed that a complexity measure C m of the models is given. This complexity measure, depending on the framework, is typically the model dimension or the number of free parameters in parametric frameworks. Mostly the penalty shape can be written as a function of C m . When its definition is no obvious a priori, the complexity measure can be chosen as the penalty shape itself (as in [START_REF] Caillerie | Model selection for simplicial approximation[END_REF]. The penalty shape can also be guessed itself from the data, for example with resampling penalties. Table 1 gives complexities C m and pen shape for a large list of model selection works.

For the two application methods of the slope heuristics presented in Sections 3 and 4, it is assumed that: (C1) The empirical contrast γ n (ŝ m ) decreases with the complexity C m .

(C2) The penalty shape pen shape (•) increases with the complexity C m .

The two methods differ by the way the minimal penalty involved in point [SH1] is estimated. The first one is the so-called dimension jump method introduced in Birgé and [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF]. The second one consists of directly estimating the "slope" κ opt in a data-driven fashion. Remark 2. Besides numerical issues while computing ŝm , condition (C1) is satisfied for instance with nested models along which the complexity increases.

Dimension jump

Principle

The so-called dimension jump is a method for penalty calibration which takes advantage of [SH1] and [SH2] to efficiently determine the unknown penalty constant κ opt in (3). Let m(κ) be the model selected by the penalized criterion • Dm : number of variables

• Dm 1 + 2[1 + ln(2N/Dm)] 2
where N is the total number of variables

• change-point detection • Lebarbier (2005) • Dm : partition size • Dm {1 + c ln(n/Dm)}
Histogram density estimation:

• regular histograms [START_REF] Castellan | Sélection d'histogrammes à l'aide d'un critère de type Akaike[END_REF] or Massart (2007, chap 7.3) Dm : number of bins minus one

• Dm

• complete family of irregular histograms INRIA m → γ n (ŝ m ) + κ pen shape (m). Under (C1) and (C2), κ → C m(κ) is a nonincreasing and piecewise constant function. According to the minimal penalty definition, it is expected that the selected model m(κ) has a large complexity when κ pen shape (•) < pen min (•) and a reasonably large complexity if κ pen shape (•) > pen min (•). Thus, κ → C m(κ) should present an abrupt jump around a value κ (see Figure 1). The penalty κ pen shape (•) is then expected to be close to the minimal penalty and according to [SH2], the penalty 2κ pen shape (•) is expected to be an optimal penalty (κ opt ≈ 2κ).

• Dm [1 + c ln(N/Dm)]
As a matter of course, the choice of complexity measure is crucial for this method (see Section 5.3). If several complexity measures seem relevant for the user, they can all be tested to find the one that shows the clearest jump. 

The dimension jump method in practice

In order to apply the dimension jump method, the following steps have to be proceeded:

1. Compute ∀κ > 0, m(κ) ∈ argmin m∈M γ n (ŝ m ) + κ pen shape (m) ;
2. Find κ such that C m(κ) is large if κ < κ and has a "reasonable" order otherwise.

3. Select m = m(2κ).

RR n°7223

For the first step, the algorithm proposed by [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] is implemented in our graphical interface capushe. This algorithm makes this first step computationally tractable since it only requires at most card(M) -1 steps, and actually probably much less. This provides the location of jumps, namely an increasing sequence (κ i ) 0≤i≤imax with κ 0 = 0, κ imax = +∞, the number of jumps i max ∈ {1, . . . , card(M) -1}, and the associated selected model sequence (m i ) 0≤i≤imax where m i = m(κ i ) for all κ in [κ i , κ i+1 ) and for all i < i max .

For the second step, two different strategies are available in capushe:

Maximal dimension jump

This first method is the most popular. It consists of choosing the constant, denoted as κdj , corresponding to the greatest jump of complexity:

κdj = κ i dj where i dj ∈ argmax 0≤i≤imax-1 C mi+1 -C mi .
If several values of κ reach the maximum value, [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] suggests to choose the largest κ in order to select the less complex model.

Threshold complexity

The second method, proposed by [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF], consists of choosing a threshold complexity C thresh such that complexities smaller than C thresh are reasonable but larger ones are not. Then the chosen constant denoted as κthresh is the smallest value of κ for which the corresponding penalty selects a complexity smaller than C thresh : κthresh = inf{κ > 0 : C m(κ) ≤ C thresh }.

In the regression framework, these authors suggest to choose C thresh of order

n log n or n (log n) 2 .
Those alternative methods are not equivalent. [START_REF] Arlot | Data-driven calibration of penalties for leastsquares regression[END_REF] expect that they should yield the same selection as the dimension jump is clear or as there are several dimension jumps close to each other, but might not otherwise. They report simulations according to which it could happen quite seldom. When the selected models differ, they recommend that the user looks at the graphic himself.

4 Data-driven slope estimation method

Principle

This alternative method consists of directly estimating the constant κ opt by the "slope" of the expected linear relation of -γ n (ŝ m ) with respect to the penalty shape values pen shape (m). Currently, this second method is less employed than the dimension jump procedure. This might be due to some difficulties related to its implementation: [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] partly presents this method and discusses it, but chooses the dimension jump approach notably because of the lack of stability she encountered when trying to estimate the slope. It is also presented and studied in [START_REF] Baudry | Selecting models focussing on the modeller's purpose[END_REF] and [START_REF] Maugis | Data-driven penalty calibration: a case study for Gaussian mixture model selection[END_REF]. In this section, we propose some solutions so as to make possible and reliable the application of the slope heuristics thanks to a stability study of the selected model.
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We recall that the optimal penalty pen opt (m) = κ opt pen shape (m) is expected to be close to

2v m = 2[γ n (s m ) -γ n (ŝ m )] = 2[γ n (s m ) -γ n (s)] + 2[γ n (s) -γ n (ŝ m )].
The empirical bias term γ n (s m )-γ n (s) gets stable for the most complex models for which the approximation of the target s cannot be appreciably improved. Hence the behavior of κ opt pen shape (m) is known through -2γ n (ŝ m ) for models of large complexities, and thus of large penalty shape values according to (C2). Thus -γ n (ŝ m ) is expected to behave linearly with respect to pen shape (m) with a slope around κopt 2 , as shown in the left graph of Figure 2. Finally, if κ denotes an estimation of the slope of the linear regression of -γ n (ŝ m ) on pen shape (m), the optimal penalty is estimated by 2κ pen shape (•). 

Practice of the data-driven slope estimation method

The main issue about this method is how to choose a subset of points (pen shape (m), -γ n (ŝ m )) corresponding to large values of pen shape (m) where the slope can be estimated. In practice, it is usually chosen at sight. The method proposed in this paper to answer this problem is based on the model selection stabilization. More precisely, the slope is sequentially estimated from the couples (pen shape (m), -γ n (ŝ m )) where the couple with the smallest penalty shape value is removed at each step. An area where the slope estimation is stable has to be observed according to Section 4.1. The slope estimation in this area corresponds to an estimation of κ opt /2 and thus the same model is selected. Denoting P = {pen shape (m), m ∈ M}, the corresponding algorithm is decomposed as follows:

Step 1 If several models in the collection have the same penalty shape value, only the model having the smallest contrast value γ n (ŝ m ) is kept according to (2). To make easier the reading of this algorithm, the model indexation is not modified.

Step 2 For p ∈ P, the slope κ(p) of the linear regression on the couples of points (pen shape (m), -γ n (ŝ m )); pen shape (m) ≥ p is computed using a robust regression method.

Step 3 For p ∈ P, the model fulfilling the following condition is selected:

m(p) = argmin m∈M {γ n (ŝ m ) + 2κ(p) pen shape (m)}.
We obtain an increasing sequence of change-points (p i ) 1≤i≤I+1 such that

-∀1 ≤ i ≤ I -1, m(p i ) = m(p i+1 ) ; -∀1 ≤ i ≤ I, ∀p ∈ [p i , p i+1 ), m(p) = m(p i ) ; -m(p I+1 ) = m(p I ).
We observe a "plateau" sequence and compute the plateau sizes (N i ) 1≤i≤I defined by

-∀1 ≤ i ≤ I -1, N i = card{[p i , p i+1 ) ∩ P} ; -N I = card{[p I , p I+1 ] ∩ P}.
Step 4 For a given value of pct (see hereafter) the model m(p î) such that î = max i ∈ {1, . . . , I}; N i ≥ pct I l=1 N l is selected. We also return the interval of slope values [p î, p î+1 ) and the proportion N î/ I l=1 N l . Graphically, this corresponds to selecting the "most to the right" plateau whose length is greater than the threshold (see the bottom-right graph in Figure 2). This algorithm requires a tuning parameter pct in Step 4 in order to determine which plateau corresponds to a stabilization of the model selection. By default, this threshold pct is fixed to 15% in capushe. This is rather an arbitrary choice, which should be reconsidered with respect to the application at hand. Remark that whatever the choice at this step, the reported actual proportion N î/ I-1 l=1 N l measures the stability of the method.
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Remark 3. For the successive slope estimations in Step 2, a robust regression [START_REF] Huber | Robust Statistics[END_REF] is advised in order to attenuate the influence of possible estimation errors of the sequel (ŝ m ) m∈M . As shown on Figure 3, with the robust regression, the successive estimation of the slopes are more stable and the length of the selected plateau is larger than with classical regression. This method is based on a linear relation between -γ n (ŝ m ) and pen shape (m) for the largest values of the penalty shape. Non evidence of such linear relation should warn the user that the slope heuristics should probably not be applied. It should then be verified that enough complex models have been involved in the study and the penalty shape should be questioned. To help the user to validate the linear behavior assumption, some graphical tools are proposed in capushe.

In particular, the use of the "Validation Step" option is illustrated in an example in Section 5.1.2.

Applications

The aim of this section is to illustrate how the slope heuristics can be proceeded using the Matlab interface capushe. The practical difficulties encountered and the differences between the dimension jump and our data-driven slope estimation method are highlighted on simulated and real datasets.

Number of Gaussian mixture components

In the model-based clustering framework, assessing the number of components of Gaussian mixtures is a crucial question. In this framework, S m is the set of Gaussian mixtures with m components:

S m = m k=1 p k Φ(•|µ k , Σ k ); (p 1 , . . . , p m ) ∈ [0, 1] m , m k=1 p k = 1 µ k ∈ R d , Σ k ∈ D +
where Φ(•|µ, Σ) corresponds to the density of the d-dimensional Gaussian distribution with mean vector µ ∈ R d and covariance matrix Σ belonging to a subset D + of d × d positive definite matrices. The maximum likelihood estimators ŝm are computed with the EM algorithm using mixmod software [START_REF] Biernacki | Model-based cluster and discriminant analysis with the mixmod software[END_REF] or mclust [START_REF] Fraley | Enhanced software for model-based clustering, density estimation, and discriminant analysis: mclust[END_REF] for instance. Following [START_REF] Maugis | A non asymptotic penalized criterion for Gaussian mixture model selection[END_REF], we consider a penalized loglikelihood criterion with a penalty proportional to pen shape (m) = D m , the number of free parameters for a mixture with m components. Note that this last quantity D m is a natural complexity measure of S m . In practice, the maximum number of components M max of the mixture models has to be chosen first. The model collection is then restricted to (S m ) 1≤m≤Mmax .

Bubbles experiment

This simulated dataset, plotted in Figure 4, is composed of n = 1000 observations in R 3 . It consists of an equiprobable mixture of three large "bubble" groups centered at ν 1 = (0, 0, 0), ν 2 = (6, 0, 0) and ν 3 = (0, 6, 0) respectively. Each bubble group j is simulated from a mixture of seven components according to the following density distribution:

x ∈ R 3 → 0.4Φ(x|µ 1 + ν j , I 3 ) + 7 k=2 0.1Φ(x|µ k + ν j , 0.1I 3 )
with µ 1 = (0, 0, 0), µ 2 = (0, 0, 1.5), µ 3 = (0, 1.5, 0), µ 4 = (1.5, 0, 0), µ 5 = (0, 0, -1.5), µ 6 = (0, -1.5, 0) and µ 7 = (-1.5, 0, 0). Thus the distribution of this dataset is actually a 21-component Gaussian mixture. The reader is referred to Baudry (2009, Chapter 5) for more details. A model collection (S m ) 1≤m≤Mmax of spherical Gaussian mixtures is considered with covariance matrices

Σ k = λ k I 3 with λ k ∈ R + .
The outputs of capushe are explained with this simulated example. Figure 5 gives the graphical outputs obtained by the data-driven slope estimation method for the model collection with M max = 50. In this example, the linear behavior for the most complex models is clearly observed. Using the robust regression, the true Gaussian mixture distribution with 21 components is selected in 89.6% of the successive slope estimations. The choice of a multiplicative constant 2κ in the penalized criterion with κ ∈ [1.1783.10 -3 ; 2.611.10 -3 ] leads to select m = 21. In the same way, there is no ambiguity for the result with the dimension jump since the maximal complexity jump is really clear (see Figure 6).

In order to compare the two slope heuristics methods with the classical criteria BIC and AIC, an experiment is conducted with 100 simulations of the bubbles dataset. Model collections with M max = 40 and M max = 50 are successively considered. For the data-driven slope estimation method, the default parameter value Table 2: Number of times a model m is selected among the 100 simulations by AIC, BIC, the data-driven slope estimation method (DDSE) and the dimension jump method (DJ). The last column is the ratio between the risk of the selected estimator by each method and the oracle risk. 2 gives the number of times a model is selected by each criterion over the 100 simulations. It also provides the ratio between the risk of the selected estimator by each method and the oracle risk. For each simulation, the oracle model is defined as the model which estimator minimizes the Kullback-Leibler divergence to the true density distribution.

Mostly, the oracle is close to the true distribution. As usual in a mixture framework, AIC obviously underpenalizes the model complexity. BIC mostly recovers the true number of components which is not surprising according to [START_REF] Keribin | Consistent estimation of the order of mixture models[END_REF]: in this experiment the true distribution belongs to the model collection and n is quite large. For the model collection with M max = 50, the dimension jump approach yields the same selection as the data-driven slope estimation approach, but in 6% of the datasets. As compared to the oracle risk, the slope heuristics applied with the data-driven slope estimation approach gives the best risk results (ratio close to 1), closely followed by BIC. The dimension jump method has a larger risk because it selects sometimes small models.

When M max = 40, the results illustrate a difficulty which can be encountered while applying the dimension jump. This approach selects 28 times the model m = 3 in the simulation study, which is a poor result. The reason of this difficulty is illustrated in Figure 7: there seemingly occurs a dimension jump for the most complex models, but it occurs in several steps. Therefore the largest of those "sub-jumps" is still smaller than the jump leading to select m = 3, which is quite large because of the data structure. This shows the sensibility of the dimension jump approach to the choice of the most complex models involved in the study. The data-driven slope estimation results are only worsened a little if M max = 40 instead of M max = 50.

Transcriptome dataset

The following transcriptome dataset was studied by Maugis et al. (2009). It consists of 1020 genes of Arabidopsis thaliana described in 20 experiments. We consider a collection of Gaussian mixtures where the covariance matrices are assumed to be equal: ∀k ∈ {1, . . . , m}, Σ k = Σ. In practice, the choice of M max is crucial since the linear behavior of the contrast can be observed for the most complex models. If we consider M max = 20 in this example, the linear part is not observed and the selection with the data-driven slope estimation method is not satisfying because there is no long and clear plateau (see the top of Figure 8). In order to find a trade-off between the global estimation time and the observation of the linear area, the option "Validation Step" is proposed. This option allows us to graphically test whereas the considered model collection is large enough for applying the data-driven slope estimation method. The slope, estimated on the subset of couples {(pen shape (m), -γ n (ŝ m )); m ∈ {1, . . . , M max }}, is plotted and the user can graphically test whereas other such couples for larger complex models are in this linear regression line or not. For our transcriptome data example, the points corresponding to mixtures with 40, 50 and 60 components are tested in the bottom of Figure 8. This three points are below and away from the estimated linear line, showing that the choice M max = 20 is not large enough. For M max = 60, the linear area is then clearly observed and the data-driven slope estimation method can be correctly applied according to the graphical outputs given in Figure 2.

Change-point detection

Change-point detection is studied in [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] with a model selection point of view. This section gets back on a simulation given in [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] to illustrate the slope heuristics with capushe in this context.

Let us consider the fixed design regression model

y i = s(u i ) + ε i (6)
where the y i 's are observed at regular points u i = i n , i = 1, . . . , n. The errors ε i are assumed to be i.i.d. centered random variables with variance σ 2 . Let M be the set of all the partitions of the grid {u 1 , . . . , u n }. The model S m corresponding to the partition m = {I k } 1≤k≤|m| is defined by

S m =    |m| k=1 β k 1 I k ; (β k ) 1≤k≤|m| ∈ R |m|    .
A natural measure of the model complexity is the dimension D m = |m|, namely the partition size. For each model, a least squares estimator of s can be defined by minimizing the contrast: γ(t, (y, u)) = (y-t(u)) 2 over S m . The aim is to determine the best estimator for the 2 risk. [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] shows that a convenient penalty shape for this problem is

pen shape (m) = D m n 2.5 + ln n D m .
Case (b) of the simulations proposed in [START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF] simulated according to (6), s being a piecewise constant function with six pieces and σ = 1. Figure 9 shows the results for the two methods on this sample. A long plateau corresponding to |m| = 6 can be observed on the top graph. The greatest jump also leads to the selection of this model on the bottom graph. Note that on this example, one could think that for the dimension jump method, the greatest jump is actually between |m| = 12 and |m| = 22. By aggregating the sequence of small and close jumps in this interval, this would yield a different model selection.

As for the Bubbles experiment, the data-driven slope estimation method gives a clearer answer to the model selection problem.

Graph selection

In practice, choosing a convenient penalty can be a real issue if no theoretical results are available for the considered problem. In particular, the user may need to choose between several possible penalties. This section illustrates on a geometrical example how bad penalties can be detected thanks to capushe.

In [START_REF] Caillerie | Model selection for simplicial approximation[END_REF], a penalized least squares criterion is proposed for fitting simplicial complexes on a cloud of points. A simplicial complex is a collection of simplices such that any two simplices of the collection intersect along a common face if at all, and all the faces of a simplex of the collection belongs to the complex too. Simplicial complexes allow dimension estimation procedures and topological inference methods, see the cited paper for references. For one dimensional complexes, namely for graphs, it is shown in [START_REF] Caillerie | Model selection for simplicial approximation[END_REF] that the penalty has to be chosen proportional to the logarithm of the graph length. Without knowing these theoretical results, it is not obvious which penalty can be chosen to select a convenient graph in a given collection. We take up the example of the Lissajous curve simulation proposed in Section 5.1 of [START_REF] Caillerie | Model selection for simplicial approximation[END_REF]. Let X 1 , . . . , X n be some points in R 2 sampled in the neighborhood of a Lissajous curve (Figure 10). A nested collection of graphs (S m ) m∈M is defined on a set of fixed landmark points belonging to the Lissajous curve. For each m, the following Gaussian model is considered ∀i = 1, . . . , n X i = xi + ε i where the unknown xi 's belong to S m and the ε i 's are i.i.d centered Gaussian variables with level noise σ. The example consists of n = 5000 observed points and σ = 0.005. For each i and each m, the least squares estimator xi,m of xi is the closest point to X i belonging to the graph S m . This leads to consider the following penalized criterion to be minimized (2) shape (m) = ln l(m) (as in [START_REF] Caillerie | Model selection for simplicial approximation[END_REF].

In Figure 11, a large jump can be observed for pen

(2) shape (•) whereas it is not the case for pen (1) shape (•). As shown in Figure 12, the second penalty leads to a better linear behavior of SS(•) than with the first one and there is no clear stability of the selected model with pen satisfying results (see Figure 13). These last remarks show that in this context the second penalty should be preferred to select a convenient graph. 

Discussion

The slope heuristics is a promising approach for calibrating penalized criteria in model selection contexts. The available theoretical and practical justifications for its use in various frameworks increasing, this paper aims at providing an overview of those theoretical and experimental results.

Although efforts have been paid to fill the gap between the theoretical results on the slope heuristics and its application, the dimension jump method and the datadriven slope estimation method are not totally justified. Regarding the dimension jump, the theory does not say if the dimension jump occurs in one single jump or several successive jumps. Thus, aggregating successive jumps could be an option for future works. Concerning the data-driven slope estimation, note that the linear relation between -γ n (ŝ m ) and pen shape (m) for the largest values of the penalty shape is actually only valid in expectation.

The encountered practical difficulties for applying this heuristics are highlighted and different solutions are compared. We also propose a new method based on data-driven slope estimation which is implemented in the Matlab graphical interface capushe. Thanks to this graphical tool, it is possible to check that the slope heuristics is valid for a given penalty shape. Moreover it allows the user to compare this method with the more popular dimension jump method. The data-driven slope estimation is easier to calibrate: if both methods involve tuning parameters (choice of the method and parameter to define a "plateau" for the data-driven slope estimation; choice of the most complex involved model or of the complexity threshold for the dimension jump), the choice can be made on a more universal ground in the case of the data-driven slope estimation (for example as a percentage of the total number of involved models). The "Bubbles" experiment moreover illustrates that the data-driven slope estimation may behave better than the dimension jump, notably as the estimation in complex models is expensive. (bottom). The second penalty shape leads to a better linear behavior than with the first one and there is no clear stability of the selected model with pen But this comparison study has to be continued and deepened, both theoretically and practically.
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The capushe interface makes the slope heuristics easy to apply for any statistician who would like to try it without having to care much about the practical difficulties it involves. Hopefully it shall contribute to a more widespread use of the slope heuristics. As it shall be more used, there will be an increasing quantity of available material to pursue the study and understanding of this approach. Moreover the package is a convenient tool to directly study some questions raised by the slope heuristics study. It may be useful for example in order to compare the two available strategies for the application of the dimension jump: the maximal dimension jump versus the threshold complexity.

The slope heuristics are being studied in new situations, which may uncover new difficulties and solutions. For example [START_REF] Arlot | Data-driven calibration of linear estimators with minimal penalties[END_REF] propose an oracle procedure to select among linear estimators, where the minimal penalty shape is different from the optimal penalty shape. By the way, this is an instance of a situation where the minimal penalty shape is not proportional to the model dimension. Selecting the estimator based on twice the minimal penalty leads to overpenalizing in this case. This suggests that future versions of the package may have to involve new functionalities: the current one does not enable to handle such a situation.

Figure 1 :

 1 Figure 1: Representation of the nonincreasing and piecewise constant function κ → C m(κ) .

Figure 2 :

 2 Figure 2: An example of the results given by capushe. The left graph represents -γ n (ŝ m ) with respect to pen shape (m) allowing to check the linear behavior assumption. The top-right graph gives the successive estimated slope as a function of the number of couples (pen shape (m), -γ n (ŝ m )) used for the linear regression coefficient estimation. The bottom-right graph represents the selected models as a function of the number of points used for the linear regression coefficient estimation. The last plateau for which the length N î is greater than pct I l=1 N l is then detected and the corresponding model m(p î) is selected. The "Corresponding slope interval" given on bottom right is the interval [p î, p î+1 ) leading to select this model.

Figure 3 :

 3 Figure 3: Comparison of the model selection method using the robust regression and the classical linear regression with capushe. See the description of the right graphs of Figure 2 for more details.

Figure 4 :

 4 Figure 4: Representation of a bubbles dataset composed of 1000 observations.

Figure 5 :

 5 Figure 5: Graphical output obtained by the data-driven slope estimation method for the bubbles experiment with M max = 50.

Figure 6 :Figure 7 :

 67 Figure 6: Graphical output obtained by the dimension jump method for the bubbles experiment with M max = 50.

Figure 8 :

 8 Figure8: Selection with the data-driven slope estimation method when M max = 20 for the transcriptome dataset study (top). On the bottom plot, the Validation option is used with three points corresponding to m ∈ {40, 50, 60} in order to graphically test whether the linear area is reached or not.

  crit(m) = SS(m) + pen(m) where SS(m) := n i=1 xi,m -X i 2 . Let l(m) be the length of S m . Two different kinds of penalties are considered: pen (1) shape (m) = l(m) and pen

  (•). Using the Validation Step option with the last eight points, we can also check that only the regression with pen

Figure 9 :

 9 Figure 9: Data-driven slope estimation method (top) and dimension jump (bottom) for the change-point detection problem. The two methods select the same model | m| = 6.

Figure 10 :

 10 Figure 10: Lissajous curve simulation. Red points are landmarks and black one are observed points.

Figure 11 :

 11 Figure 11: Dimension jump method for pen

  Many jumps can be observed with the first penalty shape whereas there is only one large single jump for the second penalty shape.

Figure 12 :

 12 Figure 12: Data-driven slope estimation method for pen

Figure 13 :

 13 Figure 13: Validation for pen

  (•) (top) and for pen

  (•) (bottom): only the second penalty shape gives satisfying results.

  

  

  

Table 1 :

 1 Model complexities C m and penalty shape functions pen shape (•) for a non exhaustive list of model selection works.

	where N
	is the maximum number of bins

  is considered (see Section 4.1.2 in[START_REF] Lebarbier | Detecting multiple change-points in the mean of Gaussian process by model selection[END_REF], for more details). A sample of 300 observations is
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