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Abstract

In this paper, we study grid job submission latencies. The latency highly
impacts performances on production grids, due to its high values and vari-
ations as well as the presence of outliers. It is particularly prejudicial for
determining the status and expected duration of jobs.

In [1], a probabilistic model of the latency is presented that allows to esti-
mate the best timeout value considering a given distribution of jobs latencies.
This timeout value is then used in a job resubmission strategy.

The purpose of this paper is to evaluate to what extent updating this
model with relevant contextual parameters can help to refine the latency
estimation. Experiments on the EGEE grid show that the choice of the
resource broker or the computing site has a statistically significant influence
on the jobs latency. We exploit this contextual information to propose a
reliable job submission strategy.

1 Motivations

Production grids are characterized by permanent but non-stationary load and a large
geographical extension. As a consequence, latency, measured as the time between
the submission time of a computation job and the beginning of its execution, can
be very high and experience large variations. As an example, on the EGEE grid®
(Enabling Grid for E-sciencE), the average latency is in the order of 5 minutes with
standard deviation also in the order of 5 minutes. This variability is known to highly
impact application performances and thus has to be taken into account [2].

The main motivation for modeling the latency is to evaluate it precisely, hence
giving a reliable estimation of the expected job completion time. On an unreliable
grid infrastructure where a significant fraction of jobs is lost, this information is
valuable to set up an efficient resubmission strategy minimizing the impact of faults.
It can be exploited either at the workload management system level or at the user
level. Too long running jobs are canceled and resubmitted before becoming too
penalizing.

LEGEE, http://www.eu-egee.org/
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2 2 RELATED WORKS

In [1], a probabilistic model of the latency is presented that allows to estimate the
best timeout value considering a given distribution of jobs latencies. This timeout
value is then used for job resubmission.

In a previous work [3], we have shown that some parameters from the execution
context have an influence on the cumulative density function of latency. In this pa-
per, we quantify their influence on the timeout values and the expected execution
time (including resubmissions). We aim at refining our model by taking into ac-
count most relevant contextual parameters in order to optimize our job resubmission
strategy.

2 Related works

Several initiatives aim at modeling grid infrastructure Workload Management Sys-
tems (WMS). In [4], correlations between job execution properties (job size or
number of processors requested, job run time and memory used) are studied on a
multi-cluster supercomputer in order to build models of workloads, enabling com-
parative study on system design and scheduling strategies. In [5], authors make
predictions of batch queue waiting time which improves the total execution time.

Taking into account contextual information has been reported to help in esti-
mating single jobs and workflows execution time by rescheduling. Feitelson [6] has
observed correlations between run time and job size, number of cluster and time of
the day.

In [7], the influence of changes in transmission speed, in both executable code
and data size, and in failure likelihood are analysed for a better estimation of end
time of sub-workflows. This is used for re-scheduling jobs after fault or overrun.

Authors of [8] analyze job inter-arrival times, waiting times at the queues, exe-
cution times and data exchanged sizes. They made experiments on the EGEE grid
on several VOs (Virtual Organizations) and studied the influence of the day of the
week and the time of the day. Their conclusion on these influences is that there
is an increase of the load at the end of the day and that it is difficult to extract a
precise model of the behavior with respect of the day or the time.

To refine the grid monitoring, [9] presents a model of the influence between the
grid components and their execution context (system and network levels), experi-
mented on Grid'5000.

In this paper, we aim at refining our grid model with more local and dynamic
parameters. Each job can be characterized by its execution context that depends
on the grid status and may evolve during the job life-cycle. The context of a job
depends both on parameters internal and external to the grid infrastructure. The
internal context corresponds to parameters such as the computer(s) involved in the
WMS of a specific job. It may not be completely known at the job submission time.
The external context is related to parameters such as the day of the week that may
be correlated to the grid workload.
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Figure 1: EGEE job life cycle

3 Experimental platform

Our experiments are based on the EGEE production grid infrastructure. With 35000
CPUs dispatched world-wide in more than 240 computing centers, EGEE represents
an interesting case of study as it exhibits highly variable and quickly evolving load
patterns that depend on the concurrent activity of thousands of potential users. The
infrastructure is relatively homogeneous though as all computer hosting middleware
services are state of the art PC-compatible computers running the same Operating
System distribution (Scientific Linux v3) and hosted in computing centers with very
high speed connections to the Internet.

For the following discussion, the main components of the batch-oriented EGEE
grid infrastructure are introduced in figure 1.

When a user want to submit a job from her workstation, she connects to an
EGEE client known as a User Interface (Ul). A Resource Broker (RB) queues the
user requests and dispatches them to the different computing centers available. The
gateway to each computing center is one or more Computing Element (CE). A CE
hosts a batch manager that will distribute the workload over the center Worker
Nodes (WN), using different batch queues. Different queues are handling jobs with
different wall clock time. However the policies for deciding of the number of queues
and the maximal time assigned to each of them are site-specific.

During its life-cycle, a job is characterized by its evolving status. Received by
the RB it is initially waiting, then queued at the CE and running on the WN. If
everything went right, the job is then completed. Otherwise, it is aborted, timed-out
or in an error status depending on the type of failure. As shown in figure 1, Uls can
connect to different RBs, and RBs may be connected to overlapping sets of CEs.
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4 Modelisation of the grid

Models of the grid latency enable the optimization of job submission parameters
such as jobs granularity or the timeout value needed to make the WMS robust
against system faults and outliers. Properly modeling a large scale infrastructure
is a challenging problem given its heterogeneity and its dynamic behavior. In a
previous work, we adopted a probabilistic approach [10] which proved to improve
application performances while decreasing the load applied on the grid middleware
by optimizing jobs granularities. Similar probabilistic models have been proposed to
estimate timeouts in other complex systems [11, 12].

In [1], we show how the distribution of the grid latency impacts the choice of
a timeout value for the jobs. We model the grid latency as a random variable R
with probability density function (pdf) fr and cumulative density function (cdf)
Fr. The optimal timeout value can be obtained by minimizing the expectation of
the job execution time J which can be expressed as a function of R, the timeout
t and the proportion of outliers p:

Ey(to) = = / T ufplw)dut (1)

Fr(ts) (1= p)Fr(tso)

Taking into account contextual information has recently been reported to help
in estimating single jobs and workflows execution time by rescheduling [7]. We aim
at refining our grid model with more local and dynamic parameters. Each job can
be characterized by its execution context that depends on the grid status and may
evolve during the job life-cycle. The context of a job depends both on parameters
internal and external to the grid infrastructure. The internal context corresponds
to parameters such as the computer(s) involved in the WMS of a specific job. It
may not be completely known at the job submission time. The external context is
related to parameters such as the day of the week and may have an impact on the
load imposed to the grid.

Our final goal is to improve job execution performance on grids. This requires
taking into account contextual information and its frequent update. In this paper,
we are studying some parameters among the broad range of contextual informa-
tion that could be envisaged and we discuss their relevance with regard to grid
infrastructures.

5 Experimental data and experiences plan

To study the grid latency, measures were collected by submitting a very large num-
ber of probe jobs. These jobs, only consisting in the execution of an almost null
duration /bin/hostname command, are only impacted by the grid latency. In the
reminder we make the hypothesis that the users job execution time is known and
that therefore only the grid latency varies significantly between different runs of the
same computation task. To avoid variations of the system load, a constant number
of probes was executing inside the system at any time of the data collection: a
new probe was submitted each time another one completed. For each probe job,



we logged the job submission date, the Ul used, the Ul load at submission time,
the RB used, the CE used and the jobs status duration (total duration ¢t and
partial durations tgup, tb, tq and tyyy, as illustrated in figure 1). The probe jobs
were assigned a fixed 10000 seconds timeout beyond which they were considered as
outliers and canceled. This value is far greater than the average latency observed.
In average in our measurements we observed a p = 3% ratio of outliers. We have
observed that this ratio can increase significantly sometimes due to system faults
though.
Three measure Data Sets are considered in this paper:

DS1. 5800 probe jobs acquired during 10 days in September 2006 over 3 RBs and
92 CEs.

DS2. 7233 probe jobs acquired during 1 week in April 2007 over 1 RB and 3 CEs.
DS3. 4173 probe jobs acquired during 1 week in May 2007 over 1 RB and 3 CEs.

These data sets were acquired randomly at very different times of the year to avoid
unexpected correlation with external events. They cover all days of the week.

As an example, the cdf of the DS1 data set is plotted in figure 2. Its median
is 363 seconds, its expectation is 570 seconds and its standard deviation is 886
seconds, which quantifies the highly variable behavior of the EGEE grid. The first
part of this experimental distribution is close to a log-normal distribution and its tail
can be modeled by a Pareto distribution [1]. This heavy tailed distribution shows
that the EGEE grid exhibits non-negligible probabilities for long latencies.

In the remainder of the paper these measurements are exploited to quantify the
jobs latency and to evaluate the impact of various internal and external context
parameters. A context-dependent optimal timeout value is thus computed. It is
the basis of an optimal resubmission strategy that aims at minimizing the expected
execution time of jobs submitted to the grid infrastructure. In particular, we consider
in the following sections the impact of the target RB and the target CE which
are expected to have an influence on the latency due to variable computing sites
performance and variable load conditions. In addition, the correlation between time
of the day and latency is studied since external parameters such as working and
week-end days are expected to be correlated to different system loads as well.

6 Influence of the Resource Broker (RB).

In this experiment, three different Resource Brokers were considered: a french one
(grid09.1al.in2p3.fr), a spanish one (egeerb.ifca.org.es) and a russian
one (lcgl6.sinp.msu.ru). Their cdfs are shown in figure 3. The optimal timeout
values computed and the resulting expected execution time are reported below. The
table displays:

e the optimal timeout value estimated and the difference between this value
and the global reference value obtained using all measurements without dis-
tinction;
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Figure 2: Top: cumulative density function of the whole experimental data. Botton:
expectation of the job execution time (in seconds), including resubmission, with
respect to the timeout value to, (in seconds). The minimum of this curve gives the
best timeout value. Here, the best timeout is o, = 556s giving E; = 479s.
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Figure 3: Cumulative density function for the different Resource Brokers: France
(fr), Spain (es) and Russia (ru).
e the minimal expected execution time;

e the expected execution time if the timeout is set to the global reference value
and the difference with the optimum.

all RBs RB fr RB es RB ru
optimal too | tooret = 5565 | 729 s 546 s 506 s
Aty 0% 31% 2% 9%
best E; 479.125 s 483.7s | 4452 s | 476.2 s
Ej(tooref) 479.125 s 488.8s | 4459s | 4779 s
AE; 0% 1% 0.2% 0.4%

The optimal timeout values obtained differ significantly and the most distinct is
the one associated to the Spanish RB (variation of 31%). However, the expected
execution time varies by a much smaller amount (1% maximum). This is related
to the fact that in this case (relatively low outliers ratio and rather homogeneous
infrastructure), slightly overestimating the timeout has little impact on the execution
time. It should be noted that an underestimation is impacting the execution time
much more though as can be seen in figure 4.
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To simulate a more variable infrastructure, we applied the model considering a
variable level of outliers between the different RBs (p = 20%, 3% and 0% respec-
tively). These errors are realistic as error conditions regularly lead to outliers ratios
as high as 20%. The results are summarized in the following table:

all RBs RB fr RB es RB ru
p 7.7% 20% 3% 0%
optimal too | tooret =868 s | 551l s 546 s 865 s
best E 4523 s 639.8s | 445.2s | 451.7 s
Ej(tooret) 4523 s 691.7s | 456.2s | 451.7 s
AE; 0% 8% 2.5% 0%

In this case, the model consistently reports growing execution time disruptions with
the increase of the number of outliers. The resubmission strategy still rather effi-
ciently cope with the errors as the execution time variation does not exceed 8%.
Taking into account the submission RB can help in adapting the optimal timeout
choice. The more variable the infrastructure, the more valuable the optimization.

7 Influence of the Computing center

In a computing center, the batch submission system is usually configured with several
queues. The influence of the Computing Element (CE) and the associated queues,
later abbreviated as CE-queue, is considered in this section. The same methodology
than with RBs in section 6 could be envisaged but a significant difference is that the
number of CE-queues is much larger than the number of RBs: in our experiment,
we had 92 CEs and queues and 3 RBs. It might thus be relevant to group similar
CE-queues to obtain fewer classes. As can be seen in figure 4 many of the 92
CE-queues have similar cdfs while others are more singular.

The idea we promote here is to group CEs and queues that have similar properties
into different classes.

7.1 Classification of the CE and queues

Different aggregations of CE-queues were tested based on their cdf using the k-
means classification algorithm with k£ = 2 to 10 classes. For each CE-queue entity,
the cdf has been computed. From this cdf the optimal timeout value is computed ,
by minimizing equation 1. Figures 5 and 6 show the repartition of the timeout values
in the classes. The depth of each box is proportional to the number of CE-queues
in the class.

In order to measure if the classes are statistically discriminant, we have tested
the hypothesis Hy (all set have equal mean and equal variance) using ANOVA
(ANalysis Of VAriance). The results are reported in the following table (*** means
rejection of hypothesis Hy with high confidence):
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nb. of classes || Df | Sum Sq | Mean Sq | F value Pr(>F) | Hy rejection
2 1 | 1304048 | 1304048 | 13.895 | 0.0003643 *oxk
3 2 | 1777728 888864 | 9.9968 | 0.0001381 *oxk
4 3| 3078172 | 1026057 | 14.061 | 2.221e-07 *xk
5 4 | 3061326 765331 | 10.318 | 1.035e-06 *xk
6 5 | 3133050 626610 | 8.4443 | 2.324e-06 *okk
7 6 | 4083366 680561 | 10.941 | 1.165e-08 *oxk
8 7 | 4161760 594537 | 9.5927 2.29e-08 *oAk
9 8 | 4464774 558097 | 9.5265 | 7.536e-09 ol
10 9 | 4450327 494481 | 8.2929 2.73e-08 *xk

The result of the ANOVA test shows that these means differ significantly with a
probability lower than 0.1% in all cases. The best result is obtained for 9 classes but
the gain is not so high. Note that the ANOVA test only show that the hypothesis
Hy is rejected: this does not necessary imply that all classes differ from each other.

In the case of 2 classes, these classes are statistically discriminant. But for all
other cases, further tests must be done in order to determine how many classes are
independent.

7.2 Refining the ANOVA analysis

Let us look, for example, at the case of classification into 3 different classes (classes
0, 1 and 2). Using ANOVA, if we test classes 1 and 2, we observe that they do
not differ significantly: F' = 0.2334 (p < 0.6338). Building a new class, class 1+2,
from classes 1 and 2, we now test class 0 against class 142 and obtain that they
differ significantly: F' = 19.651 (p < 3.003e — 05). We observe that grouping two
classes after the classification & = 3 gives a similar although slightly better result
than the classification k = 2.

The optimal timeout for the 2 populations (classes 0 and 3) are toog = 779s
and to.3 = 881s respectively (see figure 8).

Figure 9 shows the errors computed between the best E; and E(to), where
to if computed from the whole class.

8 Influence of the days of the week combined with
RBs

The day of the week potentially can influence the optimal timeout value since the
activity is likely to be maximal during the week days (thus increasing the system
load) and minimal during week-ends. Conversely, system maintenance is expected
to be better during week days than during week-ends.

It this experiment, the day of the week information is correlated with the Re-
source Broker to evaluate the mutual influence of both parameters. All measure-
ments from DS1, DS2 and DS3 were gathered to avoid a bias due to a particular
activity at a given week of the year. The optimal timeout values are reported in the
following table for each day of the week, the week only and the week-end considering
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either all measurements or per-RB measures. The minimum optimal timeout value
is 436 seconds while the maximum is 1105 seconds. The difference is about 11
minutes. Taking into account both RB and day values can thus drastically improve
the total job execution time.

Mon

/seconds Tue | Wed | Thu Fri | Sat | Sun || week | week- all

only end || days
nb. data || 1223 | 1782 | 547 | 299 | 1120 | 487 | 382 || 4971 869 || 5840
all RBs 716 | 880 | 1075 | 538 | 855 | 715 | 551 868 551 868
RB fr 715 | 879 | 1066 | 762 | 1105 | 881 | 579 864 886 | 866
RB es 566 | 880 | 930 | 538 | 479 | 726 | 521 562 703 || 546
RB ru 699 | 879 | 1075 | 640 | 849 | 495 | 436 864 495 865

Figure 10 shows the different cdfs with respect to the day of the week. We
observe that the curves corresponding to Saturday and Sunday are slightly below
the other curves, meaning that the latency is higher on week-end. Figure 11 shows
the corresponding optimal timeout values computed by minimizing equation 1.

The timeout for all these weeks and for all days of the week are plotted in
figure 12. It can be noted that surprisingly, the optimal timeout values are much
lower than reported in the previous experiments: in the order of 30 seconds. Other
independent studies confirmed this phenomenon: about 25% of the probe jobs in
DS2 and DS3 finish their execution in less than 50 seconds while the remaining
75% take much longer to complete (in the order of 300s). This behavior could not
be statistically correlated to a specific computing site, queue, nor resource broker.
It might depend on other non-trivial factors such as the workload management
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system strategy or some sites scheduling policy. Figure 13 shows the variations of
the expectation of the job execution time with respect to the timeout.

Using the low timeout is probably a safe and efficient strategy as long as the
infrastructure is not overloaded (i.e. as long as few users do that): it causes massive
resubmission of jobs after a short time knowing that a significant fraction of jobs
finishes early. However, there is a risk of overload due to this aggressive strategy.
To avoid that, we also computed a second optimal value that corresponds to the
optimal among values greater than 200 seconds with values closer to the results
reported on DS1 (figure 14).

However, some behaviors are common to the different sets of data: increase
of timeout values in the beginning of the week, short decrease and increase in the
middle of the week and finally, decrease during the week-end (from Saturday to
Sunday).

This experiment show the high variability of the grid infrastructure load condi-
tions and the need to acquire data for long periods of time (several months) in order
to observe the variable load patterns. Further work will be invested in estimating
the required frequencies of updates of the statistics collection over the grid.

9 Conclusions

In this paper, we have shown that day of the week, Resource Brokers and CE-queues
have an influence on the expected job execution time. Moreover, we have shown
that we can group CE-queues into classes that are statistically different, reducing
the number of data to be analyzed. The statistics collected can be used to estimate
the jobs execution time and optimize the job submission procedure.

The methodology used could be applied to other grids by replacing CEs and RBs
by the equivalent workload management services. In the DIET middleware [13] for
instance, it could correspond to Master Agents (MA) and Local Agents (LA).

However, the study on the influence of the day of the week need to be continued
by collecting more data (acquisition of logs during several months) to determine (i)
if there are global trends observable during several weeks and (ii) how frequently
the experimental models need to be updated.
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Figure 14: Expectation of job execution time with respect to the timeout value
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