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We consider the problem of aggregating the elements of a possibly infinite dictionary for building a
decision procedure that aims at minimizing a given criterion. Along with the dictionary, an independent
identically distributed training sample is available, on which the performance of a given procedure can
be tested. In a fairly general set-up, we establish an oracle inequality for the Mirror Averaging aggregate
with any prior distribution. By choosing an appropriate prior, we apply this oracle inequality in the
context of prediction under sparsity assumption for the problems of regression with random design,
density estimation and binary classification.
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1. Introduction

In recent years several methods of estimation and selection under the sparsity scenario have
been discussed in the literature. The ℓ1-penalized least squares (Lasso) is by far the most
studied one and its statistical properties are now well understood (cf., e.g., [6, 11, 12, 13,
38, 49, 54, 57, 58] and the references cited therein). Several other estimators are closely re-
lated to the Lasso, such as the Elastic net [59], the Dantzig selector [15], the adaptive Lasso
[60], the least squares with entropy or ℓ1+δ penalization [33, 34], etc. These estimators are
obtained as solutions of convex or linear programming problems and are attractive by their
low computational cost. However, they have good theoretical properties only under rather
restrictive assumptions, such as the mutual coherence assumption [24], the uniform uncer-
tainty/restricted isometry principle [15], the irrepresentable [58] or the restricted eigenvalue
[6] conditions. Roughly speaking, these conditions mean that, for example, in the linear re-
gression context one should assume that the Gram matrix of the predictors is not too far from
the identity matrix. Such type of assumption is natural if we want to identify the parameters
or to retrieve the sparsity pattern, but it is not necessary if we are interested only in the
prediction ability.

Indeed, at least in theory, there exist estimators attaining sufficiently good accuracy of pre-
diction under almost no assumption on the Gram matrix. This is, in particular, the case for
the ℓ0-penalized least squares estimator [10, Thm. 3.6], [12, Thm. 3.1]. However, in practice
this estimator can be unstable (cf. [8]). Furthermore, its computation is an NP-hard problem,
and there is a challenge to find a method realizing a compromise between the theoretical
optimality and computational efficiency. Motivated by this, we proposed in [20, 21, 22, 23]
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2 Dalalyan and Tsybakov

an approach to estimation under the sparsity scenario, which is quite different from the ℓ1
penalization techniques. The idea is to use an exponentially weighted aggregate (EWA) with a
properly chosen sparsity-favoring prior. Let us note that there exists an extensive literature on
EWA, which does not discuss the sparsity issue. Thus, procedures with exponential weighting
are quite common in the context of on-line learning with deterministic data, see [18, 32, 50],
the monograph [19] and the references cited therein. Statistical properties of various versions
of EWA are discussed in [2, 3, 9, 16, 17, 28, 30, 31, 39, 51, 52, 53, 56].

On the difference from these works, we focus in [20, 21, 22, 23] on the ability of EWA to deal
with the sparsity issue. Specifically, we prove that EWA with a properly chosen prior satis-
fies sparsity oracle inequalities (SOI), which are comparable with those for the ℓ0-penalized
techniques and are even better in some aspects. At the same time, on the difference from the
ℓ0-penalized methods, our method is computationally feasible for relatively large dimensions
of the problem, cf. [23]. Furthermore, our estimator has theoretical advantages as compared
to the ℓ1-penalized methods, since it satisfies oracle inequalities with leading constant 1 that
hold with almost no assumption on the dictionary/Gram matrix (cf. detailed comparison with
the ℓ1 based methods in Section 8 below).

The results of [20, 21, 22, 23] are established for the linear regression model with fixed design.
The aim of this paper is to show that similar ideas can be successfully implemented for a large
scope of statistical problems with i.i.d. data, in particular, for regression with random design,
density estimation and classification. The procedure that we propose is mirror averaging (MA)
with sparsity priors. The difference from the EWA considered in [20, 21, 22, 23] is that we
compute the exponential weights recursively and then average them out.

This paper is organized as follows. In Section 2 we introduce some notation and formulate
main assumptions. Section 3 contains the definition of the MA estimator and a general PAC-
Bayesian risk bound in expectation. In Section 4 we introduce our sparsity prior and obtain our
main SOI as a corollary of the PAC-Bayesian bound. Sections 5, 6 and 7 consider applications
of this result to specific models, namely, to nonparametric regression with random design,
density estimation and classification. In Section 8 we briefly discuss computational aspects
of the MA aggregate and compare it to other methods of sparse estimation. Technical proofs
are given in the appendix.

2. Notation and assumptions

Let (Z,F) be a measurable space and let
{
Pf , f ∈ F

}
be a collection of probability measures

on (Z,F) indexed by some set F. We are interested the estimation of f based on an i.i.d.
sample Z1, . . . , Zn drawn from the probability distribution Pf . We will assume that f is a
“functional” parameter, that is F is a subset of a vector space E =

{
f : X → R

d
}
for some

set X and for some positive integer d. From now on, we denote by Ef the expectation w.r.t.
Pf and by Z the random vector (Z1, . . . , Zn) ∈ Z

n.

To further specify the settings, let ℓ : E × F → R+ be a general loss function. An estimator
of f is any mapping f̃ : Zn → E such that the mapping z 7→ ℓ(f̃(z), f), defined on (Zn,Fn)
and with values in R+, is measurable for every f ∈ F. The performance of an estimator f̃ is
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Mirror averaging with sparsity priors 3

quantified by the risk

Ef [ℓ(f̃(Z), f)] :=

∫

Zn

ℓ(f̃(z), f)Pn
f (dz).

Here Pn
f stands for the product measure Pf⊗. . .⊗Pf on (Zn,Fn). We will assume the following.

Assumption Q1: There exists a mapping Q : Z× E → R such that, for every f ∈ F,

- the mapping z 7→ Q(z, g) is measurable and Pf -integrable for every g ∈ E,
- ∆(f) ,

∫
Z
Q(z, g)Pf (dz) − ℓ(g, f) is independent of g and finite for any f ∈ F.

Assumption Q1 is fulfilled in a number of settings; detailed discussion is given in Sections
5-7. For example, in the case of regression with squared loss, one has z = (x, y) ∈ Z = X×R

and ℓ(g, f) =
∫
X
(g − f)2dPX , where PX stands for the distribution of the design and f is

the regression function. Assumption Q1 is then fulfilled with Q(z, g) = (y − g(x))2. In simple
words, assumption Q1 requires the existence of an unbiased estimator of the risk ℓ(g, f),
up to a summand depending excusively on f , where f is the unknwon parameter and g is
a known function. It is worth noting that under assumption Q1 the minimizer of the loss
function g 7→ ℓ(g, f) coincides with the minimizer of the expectation g 7→

∫
Q(Z, g)Pf (dZ).

This property is crucial in what follows.

Since, in general, there is no estimator having the smallest possible risk among all possible
estimators, we will pursue a more realistic goal, which consists in finding an estimator whose
risk, for every f , is nearly as small as the minimal risk ming∈FΛ

ℓ(g, f) over a pre-specified
subset FΛ of E, i.e., we will follow the oracle approach. To make this approach sensible, the
subfamily FΛ should not be too large. On the other hand, it should be chosen large enough
to contain a good approximation to the (unknown) “true” function f .

The set FΛ is indexed by the elements of some measurable space (Λ,L). More precisely, we
define FΛ =

{
fλ,λ ∈ Λ

}
⊂ E as a collection of functions (dictionary) such that, for every

x ∈ X and z ∈ Z, the mappings λ 7→ fλ(x), λ 7→ Q(z, fλ) and λ 7→ ℓ(fλ, f) from Λ to R are
measurable. The elements of the dictionary FΛ can be interpreted as candidate estimators
of f . Define PΛ as the set of all probability measures on (Λ,L) and P1(FΛ) as the set of
all measures µ ∈ PΛ such that

∫
Λ |fλ(x)|µ(dλ) < ∞ for every x ∈ X. We define for every

µ ∈ P1(FΛ),

fµ =

∫

Λ
fλµ(dλ)

(
fµ(x) =

∫

Λ
fλ(x)µ(dλ), ∀x ∈ X

)
.

We say that fµ is a convex aggregate of functions fλ with µ being the mixing measure or the
measure of aggregation. The estimators we study in the present work are convex aggregates
with data-dependent mixing measures.

In what follows, we denote by C(FΛ) the set of all convex aggregates of functions fλ, that is

C(FΛ) =
{
g : X → R s.t. g = fµ for some µ ∈ P1(FΛ)

}
.

It is clear that C(FΛ) is a convex set containing FΛ. For our main result we need the following
condition on the function Q appearing in Assumption Q1.
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4 Dalalyan and Tsybakov

Assumption Q2: There exist β > 0 and a mapping Ψβ : C(FΛ)× C(FΛ) → R+ such that

i) Ψβ(g, g) = 1 for all g ∈ C(FΛ),
ii) the mapping g 7→ Ψβ(g, g̃) is concave on C(FΛ) for every fixed g̃ ∈ C(FΛ),
iii) the inequality

∫

Z

exp
(
− β−1

{
Q(z, g) −Q(z, g̃)

})
Pf (dz) 6 Ψβ(g, g̃)

holds for every g, g̃ ∈ C(FΛ).

At first sight, this assumption seems cumbersome but we will show that it holds for a number
of settings which are of central interest in nonparametric statistics. For example, in the model
of regression with random design and additive Gaussian noise, Assumption Q2 is fulfilled for
β > 2σ2 + 2 supλ ‖fλ − f‖2∞, where σ2 is the noise variance and f is the unknown regression
function. Assumption Q2 has been first introduced in [30, Theorem 4.2] for finite dictionaries
and a variant of it has been used in [3, Corollary 5.1].

Note also that if Assumption Q2 is satisfied for some (β,Ψβ), then it is so for (β′,Ψβ/β′

β ) with

any β′ > β. In fact, condition ii) is ensured due to the concavity of the function t 7→ tβ/β
′

on
[0,∞), while iii) can be checked using the Hölder inequality.

3. Mirror averaging and a PAC-Bayesian bound in

expectation

We now introduce the mirror averaging (MA) estimator. First, we fix a prior π ∈ P1(FΛ), a
”temperature” parameter β > 0, and set

θ̂m,λ(Z) =
exp

{
− 1

β

∑m
i=1Q(Zi, fλ)

}
∫
Λ exp

{
− 1

β

∑m
i=1Q(Zi, fw)

}
π(dw)

,

θ̂λ = θ̂λ(Z) =
1

n+ 1

n∑

m=0

θ̂m,λ(Z)

with θ̂0,λ(Z) ≡ 1. For every fixed Z, θ̂λ is a probability density on Λ with respect to the

probability measure π. Let µ̂n be the probability measure on (Λ,L) having θ̂λ as density
w.r.t. π. By analogy with the Bayesian context, one can call θ̂λ and µ̂n the posterior density
and the posterior probability, respectively. Following [30] where the case of discrete π was
considered (see also [41]), we define the MA aggregate as the corresponding posterior mean
f̂n = fµ̂n

, that is µ̂n(dλ) =
1

n+1

∑n
m=0 θ̂m,λ(Z)π(dλ) and

f̂n(Z, x) =

∫

Λ
fλ(x) θ̂λ(Z)π(dλ) =

1

n+ 1

n∑

m=0

∫

Λ
fλ(x) θ̂m,λ(Z)π(dλ). (1)

To simplify the notation we suppress the dependence of f̂n on Z and x when it causes no
ambiguity.
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Theorem 1 (PAC-Bayesian bound in expectation). If Assumptions Q1 and Q2 are fulfilled,
then the MA aggregate f̂n satisfies the following oracle inequality

Ef [ℓ(f̂n, f)] 6 inf
p∈PΛ

(∫

Λ
ℓ(fλ, f) p(dλ) +

βK(p, π)

n+ 1

)
, (2)

where K(p, π) stands for the Kullback-Leibler divergence

K(p, π) =

{∫
Λ log

( dp
dπ (λ)

)
p(dλ), if p≪ π,

+∞, otherwise
.

Proof of Theorem 1 is given in the appendix. It is based on a cancellation argument that can
be traced back to Barron [4].

The oracle inequality of Theorem 1 is in the line of the PAC-Bayesian bounds initiated in
[42] and is applicable to a large variety of models. Some particularly relevant examples will
be treated in Sections 5-7. An interesting feature of Theorem 1 is that it is valid for a large
class of prior distributions.

The fact that (2) holds true for convex mappings g 7→ Q(Z, g) has been discussed informally
in [3], p. 1606, as a consequence of an oracle inequality for a randomized estimator. A difference
of Theorem 1 from the approach in [3] is that the convexity of the loss function is not required.

Remark 1. If the cardinality of FΛ is finite, say card(FΛ) = N and Λ =
{
1, . . . , N

}
,

inequality (2) implies that

Ef [ℓ(f̂n, f)] 6 min
j=1,...,N

(
ℓ(fj, f) +

β log πj
n+ 1

)
.

Oracle inequalities of this type and similar under different sets of assumptions were established
earlier by several authors (cf. [16, 17, 51, 52, 53, 9, 30, 3] and the references therein for
closely related results). Our PAC-Bayesian bound (2) generalizes the oracle inequality of [30,
Thm. 3.2] to arbitrary, not necessarily finite, family FΛ. In the settings that we study below
it is crucial to consider uncountable FΛ. As we will see later, this generalization allows us to
take advantage of sparsity and suggests a powerful alternative to the classical model selection
approach.

Remark 2. For the regression model with additive noise and deterministic design, PAC-
Bayesian bounds in expectation on the empirical l2-norm similar to (2) have been obtained in
[20, 21, 22, 23] for an EWA, which does not contain the step of averaging. Earlier [39] proved
a similar result for the special case of finite card(FΛ) and Gaussian errors. In the notation of
the present paper, the aggregate studied in those works is of the form f̌n =

∫
Λ fλθ̂n,λπ(dλ).

Interestingly, in a very recent paper Lecué and Mendelson [37] proved that f̌n does not satisfy
inequality (2) in the case of i.i.d. observations.

Finally, we note that the results of this work hold only for proper priors. However, it is very
likely that Theorem 1 extends to the case of improper priors under some additional assumption
ensuring, for instance, that the integral

∫
Λ exp

{
− 1

β

∑m
i=1Q(Zi, fw)

}
π(dw) appearing in the

definition of the MA estimator is finite.
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6 Dalalyan and Tsybakov

4. Sparsity oracle inequality

In this section we introduce a prior π that we recommend to use for the MA aggregate under
the sparsity scenario. Then we prove a sparsity oracle inequality (SOI) leading to some natural
choices of the tuning parameters of the prior.

4.1. Sparsity prior and SOI

In what follows we assume that Λ ⊆ R
M for some integer M > 2. We will use bold face

letters to denote vectors and, in particular, the elements of Λ. We denote by Tr(A) the trace
of a square matrix A. To deal with integrals of the type

∫
Λ ℓ(fλ, f) p(dλ) we introduce the

following additional assumption.

Assumption L: For every fixed f ∈ F, there exists a measurable set Λ0 ⊂ Λ such that
Λ \ Λ0 has zero Lebesgue measure and the mapping Lf : Λ0 → R, where Lf (λ) = ℓ(fλ, f),
is twice differentiable. Furthermore, there exists a symmetric M ×M matrix M such that
M−∇2Lf (λ) is positive semi-definite for every λ ∈ Λ0, where∇2Lf (λ) stands for the Hessian
matrix.

We are interested in covering the case of largeM , possibly much larger than the sample size n.
We will be working under the sparsity assumption, i.e., when there exists λ∗ ∈ R

M such that
f is close to f λ

∗ and λ
∗ has a very small number of non-zero components. We argue that an

efficient way for handling this situation is based on a suitable choice of the prior π. To be more
precise, our results will show how to take advantage of sparsity for the purpose of prediction
and not for accurate estimation of the parameters or selection of the sparsity pattern. Thus,
if the underlying model is sparse, we do not prove that our estimated model is sparse as well,
but we claim that it has a small prediction risk under very mild assumptions. Nevertheless, we
have a numerical evidence that our method can also recover very accurately the true sparsity
pattern [22, 23]. We observed this in examples where the restrictive assumptions mentioned
in the Introduction are satisfied.

Let τ and R be positive numbers. The sparsity prior is defined by

π(dλ) =
1

Cτ,R

{ M∏

j=1

(τ2 + λ2j )
−2
}
1l(‖λ‖1 6 R) dλ, (3)

where ‖λ‖1 =
∑

j |λj | stands for the ℓ1-norm, 1l(·) denotes the indicator function, and Cτ,R is
a normalizing constant such that π is a probability density.

The prior (3) has a simple heuristical interpretation. Note first that R is a regularization
parameter, which is typically very large. So, in a rough approximation we may consider that
the factor 1l(‖λ‖1 6 R) is almost equal to one. Thus, π is essentially a product of M rescaled
Student’s distributions. Precisely, we deal with the distribution of

√
2τY, whereY is a random

vector with i.i.d. coordinates drawn from Student’s t with three degrees of freedom. In the
examples below we choose a very small τ , smaller than 1/n. Therefore, most of the coordinates
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Mirror averaging with sparsity priors 7

of τY are very close to zero. On the other hand, since Student’s distribution has heavy tails,
there exists a small portion of coordinates of τY that are quite far from zero.

The relevance of heavy tailed priors for dealing with sparsity has been emphasized by sev-
eral authors (see [46, Section 2.1] and references therein). Most of this work is focused on
logarithmically concave priors, such as the multivariate Laplace distribution. Also in wavelet
estimation on classes of “sparse” functions [29] and [44] invoke quasi-Cauchy and Pareto pri-
ors respectively. Bayes estimators with heavy-tailed priors in sparse Gaussian shift models
are discussed in [1].

We are now in a position to state the SOI for the MA aggregate with the sparsity prior.
The result is even more general because it holds not only for the MA aggregate but for any
estimator satisfying (2) with the sparsity prior.

Theorem 2. Let f̂n be any estimator satisfying inequality (2), where the loss function ℓ
satisfies Assumption L and π is the sparsity prior defined as above. Assume that Λ contains the
set B1(R) =

{
λ ∈ R

M | ‖λ‖1 6 R
}
with R > 2Mτ . Then for all λ∗ such that ‖λ∗‖1 6 R−2Mτ

we have

Ef [ℓ(f̂n, f)] 6 ℓ(fλ∗ , f) +
4β

n+ 1

M∑

j=1

log(1 + τ−1|λ∗j |) + R(M, τ), (4)

where the residual term is R(M, τ) = 4τ2Tr(M) + β
n+1 .

Proof of Theorem 2 is deferred to Section 9.3 of the appendix.

As follows from (4), the main term of the excess risk Ef [ℓ(f̂n, f)] − ℓ(fλ∗ , f) is proportional

to
∑M

j=1 log(1 + τ−1|λ∗j |). Importantly, the number of nonzero elements in this sum is equal
to the number of nonzero components of λ∗ that we will further denote by ‖λ∗‖0. Therefore,
for sparse vectors λ∗ this term is rather small. But still, in all the examples that we consider
below, it dominates the remainder term R(M, τ), which is made negligible by choosing a
sufficiently small τ , for instance, τ = O((Tr(M)n)−1/2).

Theorem 2 implies the following bound involving only the ℓ0 norm and the upper bound R
on the ℓ1 norm of λ∗.

Corollary 1. If some estimator f̂n satisfies the oracle inequality of Theorem 2, then

Ef [ℓ(f̂n, f)] 6 ℓ(fλ∗ , f) +
4β‖λ∗‖0 log(1 +Rτ−1)

n+ 1
+ R(M, τ),

where λ
∗ and R(M, τ) are as in Theorem 2.

Proof. Set M∗ = ‖λ∗‖0 for brevity. Using Jensen’s inequality, we get

1

M∗

M∑

j=1

log(1 + τ−1|λ∗j |) 6 log
(
1 + (τM∗)−1‖λ∗‖1

)
.

Using the inequalities ‖λ∗‖1 6 R and M∗ > 1, the desired inequality follows.

imsart-bj ver. 2011/01/24 file: Bernoulli-revised5.tex date: July 26, 2012



8 Dalalyan and Tsybakov

Note that the sparsity oracle inequalities (SOI) stated in this section are valid not only for the
MA aggregate but for any other estimator (whose definition involves a prior π) satisfying a
PAC-Bayesian bound similar to (2), possibly with some additional residual terms that should
be then added in the SOI as well. Examples of such estimators can be found in [3].

Remark 3. Assumption L need not be satisfied exactly. In fact, Lf (·) need not even be
differentiable. Inspection of the proof of Theorem 2 reveals that if Lf (λ) is well approximated
by a smooth function L̄f (λ), that is 0 6 Lf (λ)− L̄f (λ) 6 ε, ∀λ, for some small ε > 0 and if
M̄ε −∇2L̄f is positive semidefinite, then the conclusions of Theorem 2 hold with a modified
residual term

Rε(M, τ) = ε+ 4τ2Tr(M̄ε) +
β

n+ 1
.

This remark will be useful for studying the problem of classification under the hinge loss where
the function Lf is not differentiable, cf. Section 7.

4.2. Choice of the tuning parameters

The above sparsity oracle inequalities suggest some guidelines for the choice of tuning param-
eters τ and R:

1. Parameter τ should be chosen very carefully : It should be small enough to guarantee the
negligibility of the residual term but not exponentially small to prevent the explosion
of the main term of the risk. A reasonable choice (which is not the only possible) for τ
is

τ = min
( √

β√
Mn

,
R

4M

)
. (5)

For this choice of τ we have:

(a) the residual term R(M, τ) is at most of order β/n,

(b) the terms log(1+ |λ∗j |/τ) increase at most logarithmically in M and in n under the
condition that Tr(M) increases not faster than a power of M . Note that Tr(M) =
O(M) in all the examples that we consider below.

(c) the MA aggregate is accurate enough if there exists a sparse vector λ∗, with ℓ1-norm
bounded by R/2 which provides a good approximation fλ∗ of f ,

2. It is clear that one should choose R as large as possible in order to cover the broadest
class of possible values λ∗. However, we are not aware of any example where Assumption
Q2 holds with finite β for R = +∞ or, equivalently, for Λ = R

M . Therefore, we assume
that R is an a priori chosen large parameter and interpret the above results as follows:
If there is a sparse vector λ

∗ such that ℓ(fλ∗ , f) is small and ‖λ∗‖1 6 R − 2Mτ , then
the MA aggregate has a small prediction risk.

Remark 4. The choice τ = min
( √

β√
Tr(M)n

, R
4M

)
ensures that the estimator f̂n is invariant

with respect to an overall scaling of λ. More precisely, if instead of considering the parametriza-
tion

{
fλ : ‖λ‖1 6 R

}
we consider the parametrization

{
f̃ω : ‖ω‖1 6 R/s

}
with f̃ω = fsω
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Mirror averaging with sparsity priors 9

for some s > 0, then the MA aggregate based on the prior defined by (3) remains unchanged.
This can be easily checked by the change of variables using the relation M̃ = s2M where M̃

denotes the Hessian matrix analogous to M for the dictionary {f̃ω}.

Along with choosing the parameters (τ,R) of the prior, one needs to choose the “temperature”
parameter β. A model-free choice of β seems to be impossible. In fact, even the existence of
β such that Assumption Q2 holds is not ensured for every model. Some more discussion of
the choice of β is given in Remark 7 below.

5. Application to regression with random design

5.1. Regression estimation in L
2-norm

Let Z = X × R and we have the i.i.d. observations Zi = (Xi, Yi), i = 1, . . . , n with Xi ∈ X

and Yi ∈ R. We define the regression function by f(x) = E(Y1|X1 = x), ∀x ∈ X, and assume
that the errors

ξi = Yi − f(Xi), i = 1, . . . , n,

are such that E[ξ21 ] < ∞. Then E(ξi|Xi) = 0. Let PX denote the distribution of X1. For
s ∈ [1,∞] we denote by ‖ · ‖PX ,s the Ls-norm with respect to PX . We also denote by 〈·, ·〉PX

to the scalar product in L2(X, PX ). Throughout this section we consider the integrated squared
loss ℓ(f, g) = ‖f − g‖2PX ,2. Then it is easy to check that Assumption Q1 is fulfilled with

Q(z, g) = (y − g(x))2, z = (x, y) ∈ Z.

Furthermore, we focus on the particular case where FΛ is a convex subset of the vector space
spanned by a finite number of measurable functions

{
φj
}
j=1,...,M

⊂ L2(X, PX ), that is

FΛ =
{
fλ =

M∑

j=1

λjφj

∣∣∣ λ ∈ R
Mwith ‖λ‖1 6 R

}
(6)

for some R > 0. Then assumption L holds with M being the matrix with entries 〈φj , φj′〉PX
,

which will be referred to as the Gram matrix. This definition of M will be used throughout
this section. The collection of functions {φ1, . . . , φM} will be called the dictionary.

Remark 5. The value of the parameter τ presented in (5) does not allow us to take into
account the possible inhomogeneity of functions φj . One way of dealing with the inhomogeneity
is to let τ depend on j in the definition of the sparsity prior π. In this paper we consider for
brevity a less general approach, which is common in the literature on sparsity. Namely, we
normalize the functions φj in advance and use the same τ for all coordinates of λ. The
normalization is done by rescaling the functions φj so that all the diagonal entries of the
Gram matrix M are equal to one.

Following this remark, we assume that the functions φj are such that ‖φj‖PX ,2 = 1 for every
j. Therefore, Tr(M) =M .
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10 Dalalyan and Tsybakov

Proposition 1. Assume that for some constant Lφ > 0 we have maxj=1,...,M ‖φj‖PX ,∞ 6
Lφ. If, in addition, the errors ξi have a bounded exponential moment:

∃ b, σ2 > 0 such that E(etξ1 |X1) 6 eσ
2t2/2, ∀ |t| 6 b, PX -a.s., (7)

then, for every β > max
(
2σ2+2 supλ∈Λ ‖fλ−f‖2PX ,∞, 4RLφ/b

)
, the MA aggregate f̂n defined

by (1) with the sparsity prior (3) satisfies

Ef [‖f̂n − f‖2PX ,2] 6 inf
λ
∗

{
‖fλ∗ − f‖2PX ,2 +

4β

n+ 1

M∑

j=1

log(1 + τ−1|λ∗j |)
}

+ R(M, τ) (8)

where the inf is taken over all λ∗ such that ‖λ∗‖1 6 R− 2Mτ and R(M, τ) = 4τ2M + β
n+1 .

Proof of Proposition 1. In view of Theorem 2, it suffices to check that Assumption Q2 is
fulfilled for β > max

(
2σ2 + 2 supλ∈Λ ‖fλ − f‖2PX ,∞, 4RLφ/b

)
. This is done along the lines of

the proof of [30, Corollary 5.5]. We omit the details.

Proposition 1 can be used in signal denoising under the sparsity assumption. A typical issue
studied in statistical literature, as well as in the literature on signal processing, is to estimate a
signal f based on its noisy version recorded at some points X1, . . . ,Xn, under the assumption
that f admits a sparse representation w.r.t. some given dictionary

{
φj ; j = 1, . . . ,M

}
. By

sparse representation we mean a linear combination of a small number of functions φj . Assume
for the moment that the noise satisfies (7) with b = +∞ and some known σ ∈ [0,∞) and that
the unknown signal is bounded by some constant that can be assumed to be equal to 1. The
latter assumption is fulfilled in many applications, as for example in image processing.

The method that we suggest for estimating a sparse representation of f , under the assumption
M > n, consists of:

a) normalizing the functions φj ,
b) fixing a parameter R > 0,
c) setting

β = 2σ2 + 2(RLφ + 1)2, τ = min
( √

β√
Tr(M)n

,
R

4M

)
, (9)

d) computing the MA aggregate f̂n =
∑M

j=1 λ̂jφj with coefficients λ̂j =
∫
RM λj θ̂λπ(dλ)

based on the sparsity prior (3) and the posterior density

θ̂λ =
1

n+ 1

n+1∑

m=0

exp
{
− 1

β

∑m
i=1(Yi − fλ(Xi))

2
}

∫
Λ exp

{
− 1

β

∑m
i=1(Yi − fw(Xi))2

}
π(dw)

.

In view of Proposition 1, if we run this procedure with some value R > 0, we will get accurate
estimates for signals that are well approximated by a sparse linear combination of functions
φj , provided that the coefficients of this linear combination have an ℓ1-norm bounded by
R − 2Mτ . In most of the problems arising in signal or image processing the ℓ1-norm of the
best sparse approximation to the signal is unknown. It is therefore important to make a data-
driven choice of R. Let us outline one possible way to do this. Consider that only the signals
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Mirror averaging with sparsity priors 11

formed by a linear combination of at most M∗ functions φj are of interest, and assume that
the dictionary

{
φj
}
satisfies the restricted isometry property (RIP) of orderM∗, see equation

(1.3) in [15] for the definition. In other terms, assume that f ≈ fλ∗ with ‖λ∗‖0 6 M∗ and
‖fλ∗‖PX ,2 > 1

2‖λ∗‖2 where ‖ · ‖2 is the Euclidean norm. Then we can bound the ℓ1-norm of
λ
∗ as follows:

‖λ∗‖1 6
√
M∗‖λ∗‖2 6 2

√
M∗‖fλ∗‖PX ,2 ≈ 2

√
M∗‖f‖PX ,2.

We can estimate ‖f‖2PX ,2 consistently by 1
n

∑n
i=1(Y

2
i − σ2). Based on these estimates, we

suggest the following data-driven choice of R:

R̂ = 4
[M̂∗

n

n∑

i=1

(Y 2
i − σ2)

]1/2
+
,

where x+ = max(x, 0) and M̂∗ a prior approximation of the sparsity index of the signal f .

Remark 6. The choice of β in (9) requires the knowledge of σ2, which characterizes the
magnitude of the noise. This value may not be available in practice. Then it is natural to
consider β as a tuning parameter and to select it by a data-driven method, for example, by
a suitably adapted version of cross-validation. This point deserves a special attention and is
beyond the scope of the present paper.

Remark 7. If the distribution PX of the design is unknown, it is impossible to normalize
the dictionary functions φj . In such a situation, i.e., when the functions φj do not necessarily
satisfy ‖φj‖PX ,2 = 1, the claim of Proposition 1 continues to hold true with the modified

residual term R(M, τ) = 4τ2Tr(M) + β
n+1 , which can be bounded by 4τ2ML2

φ + β
n+1 . Thus,

once again, choosing τ as in (9) makes the residual term R(M, τ) negligible w.r.t. the main
terms of the risk bound.

Remark 8. Proposition 1 is in agreement with the main principles of the theory of com-
pressive sampling and sparse recovery, cf., e.g., [14]. Indeed, if the tuning parameters are
well-chosen, the prediction done by f̂n can be quite accurate even if the sample size is rela-
tively small with respect to the dimension M . This happens if the signal admits a M∗-sparse
representation in a possibly overcomplete dictionary of cardinality M . Then the number of
observations sufficient for an accurate prediction is of order M∗ up to a logarithmic factor.
Proposition 1 is also in perfect agreement with the principle of incoherent sampling (see, for
instance, [14], page 10). In fact, in our setting, the incoherence of the sampling is ensured by
the fact that φj ∈ L2(X, PX ) satisfy ‖φj‖PX ,2 = 1.

Before closing this section, let us mention the recent work [26], where some interesting results
on the aggregation of estimators in sparse regression are obtained.

5.2. Linear regression with random design

Consider now the case of linear regression. Assume that the i.i.d. observations (X i, Yi), i =
1, . . . , n, are drawn from the linear model

Yi = X
⊤
i λ

∗ + ξi, i = 1, . . . , n, (10)
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12 Dalalyan and Tsybakov

where X i ∈ R
M are i.i.d. covariates and λ

∗ ∈ R
M is the parameter of interest. Then our

method reduces to estimating λ
∗ by

λ̂n =
1

n+ 1

n+1∑

m=0

∫

RM

λ θ̂m,λ π(dλ),

where π is the sparsity prior and

θ̂m,λ =
exp

{
− β−1

∑m
i=1(Yi −X

⊤
i λ)

2
}

∫
RM exp

{
− β−1

∑m
i=1(Yi −X

⊤
i ω)2

}
π(dω)

.

Then the following result holds.

Proposition 2. Consider the linear model (10) satisfying the above assumptions. Let the
support of the probability distribution of X1 be included in [−1, 1]M and E[etξ1 |X1] 6 eσ

2t2/2

for all t ∈ R. Set ΣX = E[X1X
⊤
1 ]. Then for any β > 2σ2 + 2(R + ‖λ∗‖1)2 and any λ

∗ such
that ‖λ∗‖1 6 R− 2Mτ we have

E[‖Σ1/2
X (λ̂n − λ

∗)‖22] 6
β

n+ 1

(
1 + 4

M∑

j=1

log(1 + τ−1|λ∗j |)
)}

+ 4τ2Tr(ΣX). (11)

This proposition follows directly from Proposition 1 by setting φj(x) = xj if |xj | 6 1 and
φj(x) = 0 if |xj | > 1, where x ∈ R

M and xj is its jth coordinate. Note also that here we have
M = ΣX .

5.3. Rate optimality

In this section, we discuss the optimality of the rates of aggregation obtained in Proposition 1.
We show that the MA aggregate with the sparsity prior attains, up to a logarithmic factor,
the optimal rates of aggregation (cf. [47]). Furthermore, f̂n is adaptive in the sense that it
simultaneously achieves the optimal rates for the Model Selection (MS), Convex (C) and
Linear (L) aggregation. In what follows, these rates are denoted respectively by ψMS

n (M),
ψC
n (M) and ψL

n (M). It is established in [47] that:

ψMS

n (M) = n−1logM,

ψC

n (M) = n−1(M ∧
√
n) log(1 +Mn−1/2),

ψL

n (M) = n−1M.

We wish to compare the risk of the estimator f̂n with the sparsity prior π to the smallest
error ‖fλ∗ − f‖2PX ,2 where λ

∗ is one of λMS, λC or λL such that

λ
MS = arg min

‖λ‖0=‖λ‖1=1
‖fλ − f‖2PX ,2,

λ
C = arg min

‖λ‖161
‖fλ − f‖2PX ,2,

λ
L = arg min

λ∈RM
‖fλ − f‖2PX ,2.

In the next proposition we denote by c constants which do not depend on M and n.
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Mirror averaging with sparsity priors 13

Proposition 3. Assume that f̂n satisfies (8) with some β > 0 independent of M and n,
and that log(M) 6 c0n for some constant c0. If R > 4 and τ satisfies (5) with Tr(M) = M ,
then

Ef [‖f̂n − f‖2PX ,2] 6 ‖f
λ
MS − f‖2PX ,2 + cψMS

n (M) log(1 + nM)

and

Ef [‖f̂n − f‖2PX ,2] 6 ‖f
λ
C − f‖2PX ,2 + cψC

n (M) log(1 + nM).

Finally, if ‖λL‖1 6 R− 2Mτ , then

Ef [‖f̂n − f‖2PX ,2] 6 ‖f
λ
L − f‖2PX ,2 + cψL

n (M) log(1 + nM).

Proof. For model selection and linear aggregation the result follows immediately from (8)
by putting there λ

∗ = λ
MS or λ

∗ = λ
L and using that ‖λMS‖0 = ‖λMS‖1 = 1. The case

of convex aggregation with M 6
√
n follows from the bound for the linear aggregation. The

case M >
√
n requires some additional arguments, which are presented below.

Let s = sn be the integer part of
√
n, denoted by [

√
n]. We assume that λ

C has at least sn
non-zero coordinates, the case ‖λC‖0 < [

√
n] being a trivial consequence of (8). Using the

Maurey randomization argument as in [7, 43], one can show that

min
‖λ‖161
‖λ‖06s

‖fλ − f‖2PX ,2 6 ‖f
λ
C − f‖2PX ,2 +

‖λC‖21
min(s, ‖λC‖0)

6 ‖f
λ
C − f‖2PX ,2 +

1

s
. (12)

Let λs,C be a point where the minimum on the left hand side of (12) is attained. Since λ
s,C

has not more than s nonzero coordinates and ‖λs,C‖1 6 1, we have
∑

j log(1 + |λs,Cj /τ |) 6
s log(1 + ‖λs,C‖1/τ) 6 s log(1 + τ−1). Thus, applying (8) to λ

∗ = λ
s,C and using (5), we get

Ef [‖f̂n − f‖2PX ,2] 6 ‖f
λ
s,C − f‖2PX ,2 +

cs log(1 + τ−1)

n
, (13)

where c is some constant independent of n and M . Recall now that ‖f
λ
s,C − f‖2PX ,2 is equal

to the left hand side of (12). This implies

Ef [‖f̂n − f‖2PX ,2] 6 ‖f
λ
C − f‖2PX ,2 +

1

s
+
cs log(1 + τ−1)

n
,

which leads to the desired result due to the choice s = [
√
n] and (5).

Remark 9. The theory developed here relies on the fact that the risk is measured by the
expected squared loss. In the case of general Lp-loss with p > 1, a universal procedure for
aggregation is proposed in [27] and it is proved that the aggregation in Lp for p > 2 is more
difficult than it is in L2.
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14 Dalalyan and Tsybakov

6. Application to density estimation

Let X1, . . . ,Xn be the observations, which are independent copies of a random variable X :
Ω → X whose distribution has a density f with respect to some reference measure µ. We
consider the problem of estimating f based onX1, . . . ,Xn. We measure the risk of an estimator
f̃ of f by the integrated squared error

ℓ(f̃ , f) = ‖f̃ − f‖2µ,2 =
∫

X

(
f̃(x)− f(x)

)2
µ(dx).

Define the mapping Q(·, g) : X× L2(X, µ) → R by

Q(x, g) = ‖g‖2µ,2 − 2g(x).

It is straightforward that EfQ(X, g) − ℓ(g, f) = −‖f‖2µ,2 and, therefore, Assumption Q1 is
fulfilled. To further specify the setting, we consider the family FΛ defined in (6) where the
functions φj are chosen from L2(X, µ) so that ‖φj‖µ,2 = 1 and ‖φj‖µ,∞ 6 L, j = 1, . . . ,M ,
for some positive constant L. Note that the functions φj need not be integrable or positive.
We have the following result.

Proposition 4. Let the assumptions given above in this subsection be satisfied and ‖f‖µ,∞ 6
L. If β is such that

(β − 2R2)e−4R(L+
√
L)/β > 2L+ 4RL, (14)

then the MA aggregate f̂n based on the sparsity prior (3) satisfies

Ef [‖f̂n − f‖2µ,2] 6 inf
λ
∗

{
‖fλ∗ − f‖2µ,2 +

4β

n+ 1

M∑

j=1

log(1 + τ−1|λ∗j |)
}

+ R(M, τ) (15)

where the inf is taken over all the vectors λ
∗ such that ‖λ∗‖1 6 R− 2Mτ .

The proof of this proposition is given in the appendix. It consists in checking that Assumptions
Q2 and L are satisfied and then applying Theorem 2. Condition (14) can be significantly
simplified in many concrete situations. For example, if we assume that R = 1 or R = 2, then
one can choose β = 12L and β = 23L respectively, provided that L > 2.

7. Classification

Assume that we have a sample (X1, Y1), . . . , (Xn, Yn), where Xi ∈ X and Yi ∈ {−1,+1}
are labels. Here X is an arbitrary measurable space and (Xi, Yi) are assumed to be generated
independently according to a probability distribution P . The goal of binary classification is to
assign a label +1 or −1 to a new random point x which is distributed as Xi and independent
of X1, . . . ,Xn.
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The problem of interest in classification is to design a classifier f̂ : X → R having a small
misclassification risk R[f̂ ] =

∫
X×{−1,+1} 1l(sgn(f̂(x)) 6= y)P (dx, dy). Denote by η : X → [−1, 1]

the regression function

η(x) = E(Y1|X1 = x) = 2P(Y1 = 1|X1 = x)− 1, ∀x ∈ X.

The Bayes classifier is defined as follows: f(x) = 1l(η(x) > 0)− 1l(η(x) 6 0) = sgn(η(x)). One
easily checks that

R[f̂ ]−R[f ] =

∫

X

1l(sgn(f̂(x)) 6= f(x))|η(x)|PX (dx),

where PX is the distribution of X1. This shows that the Bayes classifier f minimizes the
misclassification risk. Clearly, the Bayes classifier is not available in practice because of its
dependence on the unknown regression function η(·).

This problem is a special case of the general setting of Section 2 if we take there Zi = (Xi, Yi)
and ℓ(g, f) = R[g] − R[f ]. Assumption Q1 is then fulfilled with Q(z, g) = 1l

(
sgn(g(x)) = y

)

where z = (x, y). However, Assumptions Q2 and L are not satisfied.

7.1. Classification under smooth Φ-losses

An alternative approach is to consider the Φ-risk of classifiers. For a fixed convex twice
differentiable function Φ : R → R+, the Φ-risk of a classifier f̂ is defined by

RΦ[f̂ ] =

∫

X×{±1}
Φ
(
−yf̂(x)

)
P (dx, dy) =

1

2

∫

X

{
Φ
(
−f̂(x)

)(
1+η(x)

)
+Φ
(
f̂(x)

)(
1−η(x)

)}
PX(dx).

In this subsection, we are mainly interested in the four common choices of Φ presented in the
top lines of Table 1. For these and other loss functions, sharp relations between the Φ-risk and
the misclassification risk of a given classifier f̂ have been established in [55], [5]. In particular,
it is proved in these papers that the minimum of Φ-risk is attained at any classifier satisfying

fΦ(x) ∈ argmin
u∈R

{
Φ(−u)

(
1 + η(x)

)
+Φ(u)

(
1− η(x)

)}
, ∀x ∈ X.

Note however that in practice the computation of fΦ is impossible because of its dependence
on the unknown η.

Our aim here is to design a classifier having a Φ-risk which is nearly as small as the minimal
possible Φ-risk. This task can be recast in a problem of estimation where fΦ is the function
to be estimated and the quality of an estimator (classifier) f̂ is measured by the excess risk
RΦ[f̂ ]−RΦ[fΦ]. Therefore, this is a particular case of the setting described in Section 2 with
ℓ(g, f) = ℓΦ(g, fΦ) = RΦ[g] − RΦ[fΦ] and Q(z, g) = Φ(−yg(x)) for every z = (x, y). Here
Assumption Q1 is obviously satisfied.

In the same spirit as in the previous sections, we assume that we are given a dictionary
{φj}j=1,...,M of functions on X with values in R. The family FΛ is defined as the set of all
linear combinations of the functions φj with coefficients λ1, . . . , λM , such that the vector
λ = (λ1, . . . , λM ) belongs to the ℓ1 ball with radius R, cf. (6). The next proposition shows
that a strong sparsity oracle inequality holds for an appropriate choice of β.
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16 Dalalyan and Tsybakov

Loss Φ(u) fΦ(x) Q(z, g) βΦ CΦ

Squared (1 + u)2 η(x) (1− yg(x))2 2(1 +RLΦ)
2 8

Truncated Squared {(1 + u)+}
2 η(x) {max(1− yg(x),0)}2 2(1 +RLΦ)

2 8

Boosting eu 1
2
log 1+η(x)

1−η(x)
e−yg(x) eRLΦ 4eRLΦ

Logit-Boosting log(1 + eu) log 1+η(x)
1−η(x)

log(1 + e−yg(x)) eRLΦ 4

Misclassification 1l(u = 1) η(x) 1l(g(x) 6= y) – –

Hinge (1− u)+ η(x) max(1− yg(x),0) – –

Table 1. Common choices of function Φ; classifiers fΦ minimizing the Φ-risk; the corresponding
functions Q; constants βΦ and CΦ appearing in Proposition 5.

Proposition 5. Assume that for some constant Lφ > 0 we have maxj=1,...,M ‖φj‖PX ,∞ 6
Lφ. Let the function Φ be twice continuously differentiable with1

βΦ := sup
|u|6RLφ

Φ′(u)2

Φ′′(u)
<∞.

Then the MA aggregate defined with β > βΦ and with the sparsity prior (3) satisfies

Ef [ℓΦ(f̂n, f)] 6 min
‖λ∗‖16R−2Mτ

(
ℓΦ(fλ∗ , f)+

4β

n+ 1

M∑

j=1

log(1+τ−1|λ∗j|)
)
+CΦτ

2
M∑

j=1

‖φj‖2PX ,2+
β

n+ 1
,

(16)
where CΦ = 4max|u|6RLφ

Φ′′(u).

Proof. We apply Theorems 1 and 2. First, we show that Assumption Q2 is satisfied. Recall
thatQ(z, g) = Φ(−yg(x)) and set Ψβ(g, g̃) =

∫
X×{±1} exp

(
−β−1

{
Q(z, g)−Q(z, g̃)

})
P (dx, dy).

Let us show that for β > βΦ the mapping g 7→ Ψβ(g, g̃) is concave. By standard arguments,
this reduces to proving that the function t 7→ φ(t) = Ψβ(tg + (1 − t)ḡ, g̃) is concave on
t ∈ [0, 1] for every fixed g, ḡ and g̃. A simple algebra shows that the second derivative of φ is
non-positive on [0, 1] whenever β > Φ′(−yg(x))2/Φ′′(−yg(x)) for all (x, y) ∈ X × {±1} and
all g ∈ FΛ. On this set of x, y, g the value −yg(x) belongs to the interval [−RLφ, RLφ]. Thus,
Assumption Q2 is satisfied for β > βΦ and Theorem 1 can be applied.

To use Theorem 2, it remains to prove that Assumption L is satisfied with M being the matrix
with entries

(
1
4CΦ〈φj , φj′〉

)
, where j and j′ run over {1, . . . ,M}. From the formula for RΦ[f̂ ]

given at the beginning of this subsection we get

∇2Lf (λ) = ∇2RΦ[fλ] =

∫

X×{±1}

(
∇fλ(x) · ∇fλ(x)

⊤)Φ′′(− yfλ(x)
)
P (dx, dy).

Since yfλ(x) ∈ [−RLφ, RLφ] the matrixM−∇2Lf (λ), whereM = 1
4CΦ

∫
(∇fλ∇f⊤λ)(x)PX (dx),

is positive semi-definite. The desired result follows now from the linearity in λ of fλ(x).

For the four common choices of Φ presented in the top lines of Table 1 all the conditions of
Proposition 5 are satisfied for a properly chosen constant β. The minimal values of β, as well

1We use here the convention 0/0 = 0.
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Mirror averaging with sparsity priors 17

as the values of the constant CΦ, for each loss function Φ are reported in the last two columns
of Table 1. It is often interesting to use binary classifiers φj (i.e., functions with values in
{±1}), in which case Lφ = 1. Also note that the expressions for βΦ suggest to choose R not
too large, especially in the case of the boosting and the logit-boosting losses.

7.2. Classification under the hinge loss

One of the key issues in machine learning is classification by support vector machines. They
correspond to a penalized Φ-risk classification with the loss Φ(u) = ΦH(u) = max(1 + u, 0),
referred to as the hinge loss. A notable feature of the hinge loss is that the classifier fΦH

(x)
equals sgn(η(x)) and therefore coincides with the Bayes classifier for the misclassification risk.
However, since the hinge loss does not satisfy Assumptions Q2 and L, Proposition 5 cannot
be applied. Furthermore, as shown in [36], no aggregation procedure can attain the fast rate
of aggregation (i.e., the rate 1/n up to a logarithmic factor) when the risk is measured by
the hinge loss.

The reason for the failure of Assumption L is that the hinge loss is not continuously differ-
entiable. One can circumvent this problem by using the smoothing argument of Remark 3.
Indeed, let us fix ε > 0 and introduce the function Kε(z) = (

√
ε2 + z2 − ε)1l(z > 0), which is

a smooth approximation to the positive part of z. It is easy to see that Kε(z) 6 max(z, 0) 6
Kε(z)+ε and that K ′′

ε (z) = ε2(ε2+z2)−3/2 ∈ (0, ε−1] for z > 0. This allows us to approximate
the loss ℓΦH

(g, f) by

ℓε(g, f) =
1

2

∫

X

{
Kε(1− g(x))(1 + η(x)) +Kε(1 + g(x))(1 − η(x))

}
PX(dx)−RΦH

[f ].

Although Assumption Q2 is not fulfilled, the next proposition shows that it is possible to adapt
the argument of Proposition 5 to the hinge loss Φ = ΦH . However, unlike Proposition 5 where
the rate of convergence is of the order 1/n (up to a logarithmic factor), the resulting sparsity
oracle inequality has only the rate 1/

√
n (up to a logarithmic factor), cf. also Remark 10 (1)

below. This is the best we can get for the hinge loss without imposing any condition on η.

Proposition 6. Let ΦH(u) = max(1+u, 0) be the hinge loss and maxj=1,...,M ‖φj‖PX ,∞ 6 Lφ

for some Lφ > 0. Then, for every β > 0 the MA aggregate f̂n based on the prior given by (3)
satisfies

Ef [ℓΦH
(f̂n, f)] 6 min

‖λ∗‖16R−2Mτ

(
ℓΦH

(fλ∗ , f)+
4β

n+ 1

M∑

j=1

log(1+τ−1|λ∗j |)
)
+
2(1 +RLφ)

2

β
e

1+RLφ
β +R̃(M, τ),

where R̃(M, τ) = 4τLφ

√
M + β(n + 1)−1.

The proof of this proposition is given in the appendix.

Remark 10.
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18 Dalalyan and Tsybakov

1. Consider the sparsity scenario, i.e., assume that for some vector λ
∗ having at most M∗

non-zero coordinates, the excess risk ℓΦH
(fλ∗ , f) is small and ‖λ∗‖1 6 R/2. Proposi-

tion 6 with the choice of β = (1 + RLφ)
√
n/M∗ and τ = min

(
1√
nM

, R
4M

)
leads to the

sparsity oracle inequality

Ef [ℓΦH
(f̂n, f)] 6 min

‖λ∗‖16R/2
‖λ∗‖06M∗

(
ℓΦH

(fλ∗ , f) +
(1 +RLφ)

√
M∗

√
n

{
C +4 log(1 + τ−1‖λ∗‖1)

})
,

where C > 0 is a constant independent on M , M∗ and n if M∗ 6 n. This result is
valid for arbitrary η. It should be noted that the MA aggregate f̂n satisfying this SOI
depends on the upper bound M∗ on the sparsity level, which is not always available in
practice. Constructing a classifier independent of M∗ and satisfying the above SOI is
an interesting open problem.

2. An important special case is a dictionary composed from a large number of simple binary
classifiers φj : X → {±1}. If we choose R = 1, all aggregates fλ with ‖λ‖1 6 R, as well
as their mixtures, take values in [−1, 1], and therefore the function Q(z, fλ) associated
with the hinge loss is linear in λ. This property has two important consequences. The
first one is that Assumption L holds with M = 0 and it is no longer necessary to
smooth out the function Lf (λ) and to use Remark 3 in the proof Proposition 6. Thus,
the residual term R̃ is equal to β(n + 1)−1. The second consequence is computational,
related to the Langevin Monte-Carlo approximation of the MA aggregate briefly described
in Section 8.2 below. Namely, in this case we have strong mixing properties that are
independent of the ambient dimension M , due to the independence of the coordinates of
the Langevin diffusion.

3. According to [36], if the underlying distribution P satisfies the margin assumption of
[48], then the rate of aggregation can be substantially improved. It would be interesting
to investigate whether this property extends to the sparsity scenario. It is likely that one
of the randomized procedures of [3] used in conjunction with our sparsity prior can yield
an aggregation rate optimal classifier.

8. Discussion

8.1. Comparison with other methods of sparse estimation

In this paper we have proved sparsity oracle inequalities (SOI) in a setting, which is important
but not much studied in the literature on sparsity. We considered the i.i.d. random sampling
and we measured the quality of estimation/prediction by the average loss with respect to the
distribution of Z = (X,Y ), namely, our main example was the loss ℓ(g, f) =

∫
Z
Q(z, g)Pf (dz).

Most of the literature on sparse estimation is focused on the high-dimensional linear regression
model with fixed design, so the data are not i.i.d. and the empirical prediction loss, rather
than the average loss is considered. Notable exceptions are the papers [13, 33, 34, 35, 49]
where the framework is similar to ours. Among these, [35] focuses on regression with random
design and study the Dantzig selector, while [13, 33, 34, 49] analyze the penalized estimators
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Mirror averaging with sparsity priors 19

of the form

λ̂n = argmin
λ∈Λ

(
1

n

n∑

i=1

Q(Zi, fλ) + Pen(λ)

)

where Pen(λ) is a penalty, which is equal or close to the ℓ1-penalty r‖λ‖1 with a suitable
regularization parameter r > 0. For the penalized estimator f̃n = f

λ̂n
they prove SOI of the

form (here we give a “generic” simplified version based on [33]):

ℓ(f̃n, f) 6 min
‖λ∗‖16R
‖λ∗‖06M∗

(
3ℓ(fλ∗ , f) +

C(1 +R2)M∗

nκn,M
Ln,M

)
(17)

with a probability close to 1, where C > 0 is a constant independent of n and M , Ln,M is
a factor, which is logarithmic in n and M , and κn,M is minimal sparse eigenvalue appearing
in the conditions on the Gram matrix of the dictionary quoted in the Introduction. With the
same notation, a “generic” version of our SOI for the MA aggregate f̂n is the following:

E[ℓ(f̂n, f)] 6 min
‖λ∗‖16R
‖λ∗‖06M∗

(
ℓ(fλ∗ , f) +

C(1 +R2)M∗

n
Ln,M

)
. (18)

There are two advantages of (18) with respect to (17). First, (18) is a sharp oracle inequality,
since the leading constant is 1, whereas this is not the case in (17). Second and most important,
(18) holds under mild assumptions on the dictionary, such as the boundedness of the functions
φj in some norm, whereas (17) requires restrictive assumptions on minimal sparse eigenvalue
κn,M which can be very small and appears in the denominator. In particular, (18) is applicable
when κn,M = 0. Finally, we note that (17) is an oracle inequality “in probability” while (18) is
“in expectation”. Inequalities in expectation can be derived from the inequalities in probability
of the form (17) obtained in [13, 33, 34, 49] only under some additional assumptions. So,
strictly speaking, even more assumptions should be imposed in the case of (17) to make
possible direct comparison with (18).

In conclusion, we see that the oracle bounds for ℓ1-penalized methods, such as the Lasso or
its modifications can be quite inaccurate as compared to the those that we obtain for the MA
aggregate.

The ℓ0-penalized methods for models with i.i.d. data are less studied. To our knowledge, this
is done only for regression with random design [10] and for density estimation [40]. The oracle
inequalities in those papers are less accurate than the ours since the leading constant there is
greater than 1. Moreover, if we want to make it closer to 1, the remainder term of the oracle
inequalities explodes.

Furthermore, as mentioned above, our sparsity oracle inequalities are potentially applicable
not only for the MA aggregate, but for any estimator associated to prior distribution π and
satisfying a PAC-Bayesian bound in expectation as in Theorem 1.

8.2. Computational aspects

If the dimension M is large the computation of the MA aggregate with the sparsity prior
becomes a hard problem. Indeed, its definition contains integrals over a simplex in R

M .
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20 Dalalyan and Tsybakov

Nevertheless, accurate approximations can be realized by a numerically efficient algorithm
based on Langevin Monte-Carlo. This algorithm along with the convergence and simulation
studies is discussed in [22, 23]. Here we only sketch some main ideas underlying the numerical
procedure. For simplicity, we consider the case of linear regression (cf. Subsection 5.2). The
argument is easily extended to other models discussed in the previous section.

Thus, assume that we have a sample (X i, Yi), i = 1, . . . , n, and a finite dictionary {φj : X →
R} of cardinality M . We wish to compute the expression

λ̃ =

∫
RM λe−β−1‖Y−Fλ(X)‖22π(dλ)∫
RM e−β−1‖Y−Fλ(X)‖22π(dλ)

, (19)

where Fλ(X) = (fλ(X1), . . . , fλ(Xn))
⊤ and fλ =

∑M
j=1 λjφj. A slight modification of the

sparsity prior consists in replacing π defined in (3) by

π̃(dλ) ∝
(

M∏

j=1

e−̟(αλj)

(τ2 + λ2j )
2

)
1l(‖λ‖1 6 R) dλ, (20)

where α is a small parameter and ̟ : R → R is the Huber function: ̟(t) = t21l(|t| 6
1)+(2|t|−1)1l(|t| > 1). Introducing the product of e−̟(αλj) in the definition of the prior does
not affect its capacity to capture sparse objects, in the sense that the MA aggregate based
on the prior (20) can be shown to satisfy a SOI which is quite similar to that of Theorem 2
(cf. [22, 23] where the regression model with fixed design is treated). On the other hand,
this modification of the sparsity prior makes it possible to rigorously prove the geometric
ergodicity of the Langevin diffusion defined below.

Note that we can equivalently write λ̃ in the form

λ̃ =

∫
RM λ1l(‖λ‖1 6 R)pV (λ) dλ∫
RM 1l(‖λ‖1 6 R)pV (λ) dλ

, (21)

where pV (λ) ∝ eV (λ) with

V (λ) = −β−1‖Y − Fλ(X)‖22 −
M∑

j=1

2
{
log(τ2 + λ2j ) +̟(αλj)

}
. (22)

Consider now the Langevin stochastic differential equation (SDE)

dLt = ∇V (Lt) dt+
√
2 dW t, L0 = 0, t > 0

where W stands for an M -dimensional Brownian motion. For our choice of the potential V
this SDE has a unique strong solution. It can be also shown (cf. [22, 23]) that this choice
of V guarantees the geometric ergodicity of the solution, which implies that its stationary
distribution has the density pV (λ) ∝ eV (λ), λ ∈ R

M . This and (21) suggest the Langevin
Monte Carlo procedure of computation of λ̃. Indeed, consider the time averages

L̄T =
1

T

∫ T

0
Lt1l(‖Lt‖1 6 R) dt, ST =

1

T

∫ T

0
1l(‖Lt‖1 6 R) dt, T > 0.
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According to the above remarks, the ratio of these average values converges, as T → ∞, to the
vector λ̃ that we want to compute. Note that L̄T and ST are one-dimensional integrals over a
finite interval and, therefore, are simpler objects than λ̃, which is an integral inM dimensions.
Still, one cannot compute L̄T directly, and some discretization is needed. A standard way of
doing it is to approximate L̄T and ST by the sums

L̄
E
T,h =

1

[T/h]

[T/h]−1∑

k=0

L
E
k 1l(‖LE

k ‖1 6 R), SE
T,h =

1

[T/h]

[T/h]−1∑

k=0

1l(‖LE
k ‖1 6 R),

where {LE
k } is the Markov chain defined by the Euler scheme

L
E
k+1 = L

E
k + h∇V (LE

k ) +
√
2hW k, L

E
0 = 0, k = 0, 1, . . . , [T/h] − 1.

Here W 1, W 2, . . . are i.i.d. standard Gaussian random vectors in R
M , h > 0 is a step of

discretization, and [x] stands for the integer part of x ∈ R. It can be shown that L̄
E
T,h is

an accurate approximation of L̄T for small h. We refer to [22, 23] for further details. The
computational complexity is polynomial in M and n. Simulation results in [22, 23], as well
as the experiments on image denoising [45], show the fast convergence of the algorithm; it
can be easily realized in dimensions M up to several thousands. They also demonstrate nice
performance of the exponentially weighted aggregate as compared with the Lasso and other
related methods of prediction under the sparsity scenario.

9. Appendix

9.1. Proof of Theorem 1.

First, note that without loss of generality we can set β = 1. If this is not the case, it suffices
to replace Q and ℓ by Q̃ = 1

βQ and ℓ̃ = 1
β ℓ, respectively. By Assumption Q1,

Ef [ℓ(f̂n, f)] =

∫

Z

Ef [Q(z, f̂n)]Pf (dz)−∆(f). (23)

In the last display we have used Fubini’s theorem to interchange the integral and the expec-
tation; this is possible since the integrand is bounded from below. To get the desired result,
one needs now to bound the first term on the RHS of (23), which we rewrite as follows

∫

Z

Ef [Q(z, f̂n)]Pf (dz) = −
∫

Z

Ef

[
log
(
exp

{
−Q(z, f̂n)

})]
Pf (dz). (24)

Recall now that f̂n is defined as the average of the functions fλ w.r.t. the probability measure
µ̂n. If we knew that the mapping g 7→ exp

{
−Q(z, g)

}
is concave on the convex hull of FΛ,

we could apply Jensen’s inequality to get

exp
{
−Q(z, f̂n)

}
>

∫

Λ
exp

{
−Q(z, fλ)

}
µ̂n(dλ).
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As we see below, this would allow us to get inequality (2) by a simple application of the
convex duality argument. Unfortunately, the above mentioned concavity property is rather
exceptional and therefore the quantity

S1(z,Z) = log
( ∫

Λ
exp

{
−Q(z, fλ)

}
µ̂n(dλ)

)
− log

(
exp

{
−Q(z, f̂n)

})

is not necessarily a.s. negative. However, we may write∫

Z

Ef

[
log
(
e−Q(z,f̂n)

)]
Pf (dz) =

∫

Z

Ef

[
S0(z,Z)− S1(z,Z)

]
Pf (dz) (25)

where

S0(z,Z) = log
(∫

Λ
exp

{
−Q(z, fλ)

}
µ̂n(dλ)

)
.

By the concavity of the logarithm,

S0(z,Z) >
1

n+ 1

n∑

m=0

log
(∫

Λ
e−Q(z,fλ)θ̂m,λ π(dλ)

)
.

Replacing θ̂m,λ by its explicit expression and taking the integral of both sides of the last
display, we get on the RHS a telescoping sum. This leads to the inequality∫

Z

Ef

[
S0(z,Z)

]
Pf (dz) >

1

n+ 1

∫

Zn+1

log
( ∫

Λ
e−

∑n+1
i=1 Q(zi,fλ)π(dλ)

)
P

(n+1)
f (dz).

By a convex duality argument (cf., e.g., [25], p.264, or [16], p.160), we get

log
( ∫

Λ
e−

∑n+1
i=1 Q(zi,fλ)π(dλ)

)
> −

n+1∑

i=1

∫

Λ
Q(zi, fλ) p(dλ)−K(p, π),

for every p ∈ PΛ. Therefore, integrating w.r.t. z1, . . . , zn+1 and using the symmetry, we get
∫

Z

Ef

[
S0(z,Z)

]
Pf (dz) > −

∫

Z

∫

Λ
Q(z, fλ) p(dλ)Pf (dz)−

K(p, π)

n+ 1

= −
∫

Λ
ℓ(fλ, f) p(dλ)−∆(f)− K(p, π)

n+ 1
.

This and equations (23)-(25) imply

Ef [ℓ(f̂n, f)] 6

∫

Λ
ℓ(fλ, f) p(dλ) +

K(p, π)

n+ 1
+

∫

Z

Ef [S1(z,Z)]Pf (dz). (26)

Let us show that the last term on the RHS of (26) is non-positive. Rewrite S1(z,Z) in the
form

S1(z,Z) = log

∫

Λ
exp

(
−
{
Q(z, fλ)−Q(z, f̂n)

})
µ̂n(dλ).

By the Fubini theorem, the concavity of the logarithm and Assumption Q2, we get∫

Z

Ef [S1(z,Z)]Pf (dz) 6 Ef

[
log

∫

Λ
Ψ1(fλ, f̂n) µ̂n(dλ)

]

(recall that we set β = 1). The concavity of the map g 7→ Ψ1(g, f̂n) and Jensen’s inequality
yield ∫

Λ
Ψ1(fλ, f̂n) µ̂n(dλ) 6 Ψ1

( ∫

Λ
fλ µ̂n(dλ), f̂n

)
= Ψβ(f̂n, f̂n) = 1,

and the desired result follows.

imsart-bj ver. 2011/01/24 file: Bernoulli-revised5.tex date: July 26, 2012



Mirror averaging with sparsity priors 23

9.2. Some lemmas.

We now give some technical results needed in the proofs.

Lemma 1. For every M ∈ N and every s > M , the following inequality holds:

1

(π/2)M

∫
{
u:‖u‖1>s

}
M∏

j=1

duj
(1 + u2j )

2
6

M

(s−M)2
.

Proof. Let U1, . . . , UM be iid random variables drawn from the scaled Student t(3) distribu-
tion having as density the function u 7→ 2/

[
π(1 + u2)2

]
. One easily checks that E[U2

1 ] = 1.
Furthermore, with this notation, we have

1

(π/2)M

∫
{
u:‖u‖1>s

}
M∏

j=1

duj
(1 + u2j)

2
= P

( M∑

j=1

|Uj | > s
)
.

In view of Chebyshev’s inequality the last probability can be bounded as follows:

P
( M∑

j=1

|Uj | > s
)
6

ME[U2
1 ]

(s−ME[|U1|])2
6

M

(s−M)2

and the desired inequality follows.

Lemma 2. Let the assumptions of Theorem 2 be satisfied and let p0 be the probability
measure defined by (30). If M > 2 then

∫
Λ(λ1 − λ∗1)

2p0(dλ) 6 4τ2.

Proof. Using the change of variables u = (λ− λ
∗)/τ we write

∫

Λ
(λ1 − λ∗1)

2p0(dλ) = CMτ
2

∫

B1(2M)
u21

( M∏

j=1

(1 + u2j )
−2
)
du

with

CM =
(∫

B1(2M)

( M∏

j=1

(1 + u2j)
−2
)
du
)−1

(27)

where uj are the components of u. Extending the integration from B1(2M) to R
M and using

the inequality
∫
R
u21(1 + u21)

−2du1 6 π, we get
∫

Λ
(λ1 − λ∗1)

2p0(dλ) 6 CMτ
2π
( ∫

R

(1 + t2)−2 dt
)M−1

= 2CM τ
2(π/2)M ,

where we used that the primitive of the function (1+x2)−2 is 1
2 arctan(x)+

x
2(1+x2) . To bound

CM , we apply Lemma 1 which yields

CM 6 (2/π)M
(
1− 1/M

)−1
6 2(2/π)M , (28)

for M > 2. Combining these estimates we get
∫
Λ(λ1 − λ∗1)

2p0(dλ) 6 4τ2 and the desired
inequality follows.
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Lemma 3. Let the assumptions of Theorem 2 be satisfied and let p0 be the probability
measure defined by (30). Then K(p0, π) 6 4

∑M
j=1 log(1 + |λ∗j |/τ) + 1.

Proof. The definition of π, p0 and of the Kullback-Leibler divergence imply that

K(p0, π) =

∫

B1(2Mτ)
log

{
τ3MCMCτ,R

M∏

j=1

(τ2 + λ2j )
2

(τ2 + (λj − λ∗j )
2)2

}
p0(dλ)

= log(τ3MCMCτ,R) + 2

M∑

j=1

∫

B1(2Mτ)
log

{
τ2 + λ2j

τ2 + (λj − λ∗j )
2

}
p0(dλ). (29)

We now successively evaluate the terms on the RHS of (29). First, in view of (3), we have

Cτ,R = τ−3M

∫

B1(R/τ)

M∏

j=1

1

(1 + u2j)
2
duj 6 τ−3M

( ∫

R

(1 + u2j )
−2 duj

)M
= τ−3M (π/2)M .

This and (28) imply log(CMCτ,R) 6 log 2 6 1.

To evaluate the second term on the RHS of (29) we use that

τ2 + λ2j
τ2 + (λj − λ∗j )

2
= 1 +

2τ(λj − λ∗j )

τ2 + (λj − λ∗j )
2
(λ∗j /τ) +

λ∗j
2

τ2 + (λj − λ∗j )
2

6 1 + |λ∗j /τ |+ (λ∗j /τ)
2 6 (1 + |λ∗j /τ |)2.

This entails that the second term on the RHS of (29) is bounded from above by
∑M

j=1 2 log(1+
|λ∗j |/τ). Combining these inequalities we get the lemma.

9.3. Proof of Theorem 2

In view of inequality (2), we have

Ef [ℓ(f̂n, f)] 6

∫

Λ
ℓ(fλ, f) p(dλ) +

βK(p, π)

n+ 1
,

for every probability measure p. We choose here p = p0 where p0 has the following Lebesgue
density:

dp0
dλ

(λ) ∝ dπ

dλ
(λ− λ

∗)1lB1(2Mτ)(λ− λ
∗). (30)

Here the sign ∝ indicates the proportionality of two functions. Since ‖λ∗‖1 6 R − 2Mτ ,
the condition λ − λ

∗ ∈ B1(2Mτ) implies that λ ∈ B1(R) and, therefore, p0 is absolutely
continuous w.r.t. the sparsity prior π. By Taylor’s formula and Assumption L we have

ℓ(fλ, f) = Lf (λ) 6 Lf (λ
∗) +∇Lf (λ

∗)⊤(λ− λ
∗) + (λ− λ

∗)⊤M(λ− λ
∗), ∀λ ∈ Λ0.

Integrating both sides of this inequality w.r.t. p0 and using the fact that the density of π0 is
symmetric about λ∗ and invariant under permutation of the components we find

∫

Λ
ℓ(fλ, f) p0(dλ) 6 Lf (λ

∗) + Tr(M)

∫

Λ
(λ1 − λ∗1)

2p0(dλ). (31)

Combining this inequality with those stated in Lemmas 2 and 3, we get the desired result.
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9.4. Proof of Proposition 4

Note that Assumption Q1 obviously holds and Assumption L is fulfilled with M being the
Gram matrix. The diagonal entries of M are equal to one since ‖φj‖µ,2 = 1, and therefore we
have Tr(M) =M .

It remains to check Assumption Q2 in order to apply Theorem 2. Introduce the function

Ξ(t) = exp
(
− β−1

{
Q(X1, g0 + t(g1 − g0))−Q(X1, g̃)

})

= exp
[
− β−1

{
‖gt‖2µ,2 − ‖g̃‖2µ,2 + 2

(
g̃(X1)− gt(X1)

)}]
, t ∈ [0, 1]

where g0, g1 and g̃ are functions from the convex set FΛ, and gt = g0 + t(g1 − g0) ∈ F. It
is not hard to see that Assumption Q2 follows from the fact that the mapping t 7→ Ef [Ξ(t)]
is concave for any triplet g0, g1, g̃ ∈ FΛ. Let us prove now this concavity property. Since the
functions g0, g1, g̃ are uniformly bounded we get that Ξ(·) is twice continuously differentiable
and the differentiation inside the expectation Ef [Ξ(t)] is legitimate. Therefore,

d

dt
Ef [Ξ(t)] = −2β−1Ef

[(
〈gt, h〉 − h(X1)

)
Ξ(t)

]
,

d2

dt2
Ef [Ξ(t)] = −2β−2Ef

[(
β‖h‖22 − 2

{
〈gt, h〉 − h(X1)

}2)
Ξ(t)

]
,

where h = g1 − g0, and

β2

2

d2

dt2
Ef [Ξ(t)] 6 −

(
β‖h‖22 − 2〈gt, h〉2

)
Ef

[
Ξ(t)

]
+ 2Ef

[{
h(X1)

2 − 2〈gt, h〉h(X1)
}
Ξ(t)

]
.

This leads to
Ξ(t) 6 exp

[
− β−1

{
‖gt‖2µ,2 − ‖g̃‖2µ,2

}
+ 4RL/β

]
:= Ξ1(t)

and

Ef [Ξ(t)] > exp
[
− β−1

{
‖gt‖2µ,2 − ‖g̃‖2µ,2 + 4max

FΛ

Ef [|g(X1)|]
}]

= Ξ1(t)e
−4R(L+

√
L)/β .

Combining these estimates with inequalities

E[h(X1)
2] 6 L‖h‖22, |〈gt, h〉| 6 ‖gt‖2‖h‖2 6 R‖h‖2, E[|〈gt, h〉h(X1)|] 6 RL‖h‖22,

we get

β2

2

d2

dt2
Ef [Ξ(t)] 6 −‖h‖22Ξ1(t)

(
(β − 2R2)e−4R(L+

√
L)/β − 2L− 4RL)

)
6 0,

whenever (β − 2R2)e−4R(L+
√
L)/β > 2L + 4RL. This proves the concavity of t 7→ Ef [Ξ(t)],

and thus the proposition.
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9.5. Proof of Proposition 6

In view of (26), for any prior π and any β > 0 the MA aggregate f̂n satisfies the inequality

Ef [ℓΦ(f̂n, f)] 6 inf
p∈PΛ

(∫

Λ
ℓΦ(fλ, f) p(dλ) +

βK(p, π)

n+ 1

)
+ β

∫

Z

Ef [S1(z,Z)]Pf (dz). (32)

with S1(z,Z) defined by S1(z,Z) = log
∫
λ
exp

(
− β−1

{
Q(z, fλ) −Q(z, f̂n)

})
µ̂n(dλ). Let us

introduce the function ψλ(t) = exp
(
− t
{
Q(z, fλ) − Q(z, f̂n)

})
. This function is infinitely

differentiable, equals one at the origin and we have S1(z,Z) = log
∫
Λ ψλ(β

−1)µ̂n(dλ). Using
the Taylor formula, we get

ψλ(t) 6 1 + tψ′
λ(0) +

t2

2

(
Q(z, fλ)−Q(z, f̂n)

)2
etQ(z,f̂n), ∀t > 0.

Furthermore, since the hinge loss is convex, the Jensen inequality yields
∫
Λ ψ

′
λ
(0) µ̂n(dλ) 6 0.

Replacing t by β−1 and using that Q(z, f̂n) 6 1 +RLφ, we get the inequalities

S1(z,Z) = log

∫

Λ
ψλ(β

−1)µ̂n(dλ) 6 log
(
1 +

e(1+RLφ)/β

2β2

∫

Λ

(
Q(z, fλ)−Q(z, f̂n)

)2
µ̂n(dλ)

)

6
e(1+RLφ)/β

2β2

∫

Λ

(
Q(z, fλ)−Q(z, f̂n)

)2
µ̂n(dλ) 6

2e(1+RLφ)/β

β2
(1 +RLφ)

2.

Thus we obtain

Ef [ℓΦ(f̂n, f)] 6 inf
p∈PΛ

( ∫

Λ
ℓΦ(fλ, f) p(dλ) +

βK(p, π)

n+ 1

)
+

2(1 +RLφ)
2e(1+RLφ)/β

β
, (33)

which is valid for any prior π. Note that the term with the infimum in (33) coincides with the
right hand side of the oracle inequality of Theorem 1. Therefore, when the sparsity prior is
used, this term can be bounded from above using Remark 3 with L̄f (λ) =

∫
X
|η(x)|Kε

(
fλ(x)−

f(x)
)
PX(dx). Since also |η(x)| 6 1, we get

Ef [ℓ(f̂n, f)] 6 min
‖λ∗‖16R−2Mτ

(
ℓ(fλ∗ , f) +

2β

n+ 1

{
α‖λ∗‖1 +

M∑

j=1

log(1 + τ−1|λ∗j |)
})

+ ε+ 4τ2Tr(M̄ε)

+
2(1 +RLφ)

2e(1+RLφ)/β

β
,

where the entries of the matrix M̄ε are ε−1
∫
X
|η(x)|φj(x)φj′(x)PX (dx) with i, j = 1, . . . ,M .

Thus, Tr(M̄ε) 6 L2
φMε−1, and we get the result of the proposition by minimizing the right

hand side of the last display with respect to ε > 0.
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