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MIRROR AVERAGING WITH SPARSITY PRIORS

A. S. DALALYAN AND A. B. TSYBAKOV

ABSTRACT. We consider the problem of aggregating the elements of a possibly infinite dictionary

for building a decision procedure that aims at minimizing a given criterion. Along with the dic-

tionary, an independent identically distributed training sample is available, on which the perfor-

mance of a given procedure can be tested. In a fairly general set-up, we establish an oracle in-

equality for the Mirror Averaging aggregate with any prior distribution. By choosing an appropriate

prior, we apply this oracle inequality in the context of prediction under sparsity assumption for the

problems of regression with random design, density estimation and binary classification.

1. INTRODUCTION

In recent years several methods of estimation and selection under the sparsity scenario have

been discussed in the literature. The ℓ1-penalized least squares (Lasso) is by far the most studied

one and its statistical properties are now well understood (cf., e.g., [6, 11, 12, 13, 38, 49, 54, 57, 58]

and the references cited therein). Several other estimators are closely related to the Lasso, such

as the Elastic net [59], the Dantzig selector [15], the adaptive Lasso [60], the least squares with

entropy or ℓ1+δ penalization [33, 34], etc. These estimators are obtained as solutions of convex

or linear programming problems and are attractive by their low computational cost. However,

they have good theoretical properties only under rather restrictive assumptions, such as the mu-

tual coherence assumption [24], the uniform uncertainty/restricted isometry principle [15], the

irrepresentable [58] or the restricted eigenvalue [6] conditions. Roughly speaking, these condi-

tions mean that, for example, in the linear regression context one should assume that the Gram

matrix of the predictors is not too far from the identity matrix. Such type of assumption is natural

if we want to identify the parameters or to retrieve the sparsity pattern, but it is not necessary if

we are interested only in the prediction ability.

Indeed, at least in theory, there exist estimators attaining sufficiently good accuracy of predic-

tion under almost no assumption on the Gram matrix. This is, in particular, the case for the

ℓ0-penalized least squares estimator [10, Thm. 3.6], [12, Thm. 3.1]. However, in practice this

estimator can be unstable (cf. [8]). Furthermore, its computation is an NP-hard problem, and

there is a challenge to find a method realizing a compromise between the theoretical optimality

and computational efficiency. Motivated by this, we proposed in [20, 21, 22, 23] an approach to

estimation under the sparsity scenario, which is quite different from the ℓ1 penalization tech-

niques. The idea is to use an exponentially weighted aggregate (EWA) with a properly chosen

sparsity-favoring prior. Let us note that there exists an extensive literature on EWA, which does

not discuss the sparsity issue. Thus, procedures with exponential weighting are quite common

in the context of on-line learning with deterministic data, see [18, 32, 50], the monograph [19]
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and the references cited therein. Statistical properties of various versions of EWA are discussed

in [2, 3, 9, 16, 17, 28, 30, 31, 39, 51, 52, 53, 56].

On the difference from these works, we focus in [20, 21, 22, 23] on the ability of EWA to deal with

the sparsity issue. Specifically, we prove that EWA with a properly chosen prior satisfies spar-

sity oracle inequalities (SOI), which are comparable with those for the ℓ0-penalized techniques

and are even better in some aspects. At the same time, on the difference from the ℓ0-penalized

methods, our method is computationally feasible for relatively large dimensions of the problem,

cf. [23]. Furthermore, our estimator has theoretical advantages as compared to the ℓ1-penalized

methods, since it satisfies oracle inequalities with leading constant 1 that hold with almost no

assumption on the dictionary/Gram matrix (cf. detailed comparison with the ℓ1 based methods

in Section 8 below).

The results of [20, 21, 22, 23] are established for the linear regression model with fixed design.

The aim of this paper is to show that similar ideas can be successfully implemented for a large

scope of statistical problems with i.i.d. data, in particular, for regression with random design,

density estimation and classification. The procedure that we propose is mirror averaging (MA)

with sparsity priors. The difference from the EWA considered in [20, 21, 22, 23] is that we com-

pute the exponential weights recursively and then average them out.

This paper is organized as follows. In Section 2 we introduce some notation and formulate main

assumptions. Section 3 contains the definition of the MA estimator and a general PAC-Bayesian

risk bound in expectation. In Section 4 we introduce our sparsity prior and obtain our main SOI

as a corollary of the PAC-Bayesian bound. Sections 5, 6 and 7 consider applications of this result

to specific models, namely, to nonparametric regression with random design, density estimation

and classification. In Section 8 we briefly discuss computational aspects of the MA aggregate and

compare it to other methods of sparse estimation. Technical proofs are given in the appendix.

2. NOTATION AND ASSUMPTIONS

Let (Z ,F) be a measurable space and let
{

Pf , f ∈F
}

be a collection of probability measures on

(Z ,F) indexed by some set F . We are interested the estimation of f based on an i.i.d. sample

Z1, . . . , Zn drawn from the probability distribution Pf . We will assume that f is a “functional”

parameter, that is F is a subset of a vector space E =
{

f : X →R
d
}

for some set X and for some

positive integer d . From now on, we denote by E f the expectation w.r.t. Pf and by Z the random

vector (Z1, . . . , Zn) ∈Z
n .

To further specify the settings, let ℓ : E ×F → R+ be a general loss function. An estimator of f

is any mapping f̃ : Z
n → E such that the mapping z 7→ ℓ( f̃ (z), f ), defined on (Z n ,Fn) and with

values in R+, is measurable for every f ∈F . The performance of an estimator f̃ is quantified by

the risk

E f [ℓ( f̃ (Z), f )] :=
∫

Z n
ℓ( f̃ (z), f )P n

f (dz).

Here P n
f

stands for the product measure Pf ⊗ . . .⊗Pf on (Z n ,Fn). We will assume the following.

Assumption Q1: There exists a mapping Q : Z ×E →R such that, for every f ∈F ,

- the mapping z 7→Q(z, g ) is measurable and Pf -integrable for every g ∈ E ,

- ∆( f ),
∫
Z

Q(z, g )Pf (d z)−ℓ(g , f ) is independent of g and finite for any f ∈F .
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Assumption Q1 is fulfilled in a number of settings; detailed discussion is given in Sections 5-

7. For example, in the case of regression with squared loss, one has z = (x, y) ∈ Z = X ×R and

ℓ(g , f ) =
∫
X

(g− f )2dPX , where PX stands for the distribution of the design and f is the regression

function. Assumption Q1 is then fulfilled with Q(z, g ) = (y − g (x))2. In simple words, assumption

Q1 requires the existence of an unbiased estimator of the risk ℓ(g , f ), up to a summand depend-

ing excusively on f , where f is the unknwon parameter and g is a known function. It is worth

noting that under assumption Q1 the minimizer of the loss function g 7→ ℓ(g , f ) coincides with

the minimizer of the expectation g 7→
∫

Q(Z , g )P f (d Z ). This property is crucial in what follows.

Since, in general, there is no estimator having the smallest possible risk among all possible esti-

mators, we will pursue a more realistic goal, which consists in finding an estimator whose risk,

for every f , is nearly as small as the minimal risk ming∈FΛ
ℓ(g , f ) over a pre-specified subset FΛ

of E , i.e., we will follow the oracle approach. To make this approach sensible, the subfamily FΛ

should not be too large. On the other hand, it should be chosen large enough to contain a good

approximation to the (unknown) “true” function f .

The set FΛ is indexed by the elements of some measurable space (Λ,L). More precisely, we

define FΛ =
{

fλ,λ ∈ Λ
}
⊂ E as a collection of functions (dictionary) such that, for every x ∈ X

and z ∈ Z , the mappings λ 7→ fλ(x), λ 7→ Q(z, fλ) and λ 7→ ℓ( fλ, f ) from Λ to R are measurable.

The elements of the dictionary FΛ can be interpreted as candidate estimators of f . Define PΛ

as the set of all probability measures on (Λ,L) and P1(FΛ) as the set of all measures µ∈PΛ such

that
∫
Λ | fλ(x)|µ(dλ) <∞ for every x ∈X . We define for every µ ∈P1(FΛ),

fµ =
∫

Λ
fλµ(dλ)

(
fµ(x) =

∫

Λ
fλ(x)µ(dλ), ∀x ∈X

)
.

We say that fµ is a convex aggregate of functions fλ with µ being the mixing measure or the

measure of aggregation. The estimators we study in the present work are convex aggregates with

data-dependent mixing measures.

In what follows, we denote by C (FΛ) the set of all convex aggregates of functions fλ, that is

C (FΛ) =
{

g : X →R s.t. g = fµ for some µ ∈P1(FΛ)
}

.

It is clear that C (FΛ) is a convex set containing FΛ. For our main result we need the following

condition on the function Q appearing in Assumption Q1.

Assumption Q2: There exist β> 0 and a mapping Ψβ : C (FΛ)×C (FΛ) →R+ such that

i) Ψβ(g , g ) = 1 for all g ∈C (FΛ),

ii) the mapping g 7→Ψβ(g , g̃ ) is concave on C (FΛ) for every fixed g̃ ∈C (FΛ),

iii) the inequality
∫

Z

exp
(
−β−1

{
Q(z, g )−Q(z, g̃ )

})
Pf (d z)ÉΨβ(g , g̃ )

holds for every g , g̃ ∈C (FΛ).

At first sight, this assumption seems cumbersome but we will show that it holds for a number

of settings which are of central interest in nonparametric statistics. For example, in the model

of regression with random design and additive Gaussian noise, Assumption Q2 is fulfilled for βÊ
2σ2 +2supλ ‖ fλ− f ‖2

∞, where σ2 is the noise variance and f is the unknown regression function.

Assumption Q2 has been first introduced in [30, Theorem 4.2] for finite dictionaries and a variant

of it has been used in [3, Corollary 5.1].
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Note also that if Assumption Q2 is satisfied for some (β,Ψβ), then it is so for (β′,Ψ
β/β′

β
) with any

β′ > β. In fact, condition ii) is ensured due to the concavity of the function t 7→ tβ/β′ on [0,∞),

while iii) can be checked using the Hölder inequality.

3. MIRROR AVERAGING AND A PAC-BAYESIAN BOUND IN EXPECTATION

We now introduce the mirror averaging (MA) estimator. First, we fix a prior π ∈P1(FΛ), a "tem-

perature" parameter β> 0, and set

θ̂m,λ(Z) =
exp

{
− 1

β

∑m
i=1 Q(Zi , fλ)

}

∫
Λ exp

{
− 1

β

∑m
i=1 Q(Zi , fw )

}
π(dw )

,

θ̂λ = θ̂λ(Z) =
1

n +1

n∑

m=0

θ̂m,λ(Z)

with θ̂0,λ(Z) ≡ 1. For every fixed Z, θ̂λ is a probability density on Λ with respect to the proba-

bility measure π. Let µ̂n be the probability measure on (Λ,L) having θ̂λ as density w.r.t. π. By

analogy with the Bayesian context, one can call θ̂λ and µ̂n the posterior density and the pos-

terior probability, respectively. Following [30] where the case of discrete π was considered (see

also [41]), we define the MA aggregate as the corresponding posterior mean f̂n = fµ̂n
, that is

µ̂n(dλ) = 1
n+1

∑n
m=0 θ̂m,λ(Z)π(dλ) and

f̂n(Z, x) =
∫

Λ
fλ(x) θ̂λ(Z)π(dλ) =

1

n +1

n∑

m=0

∫

Λ
fλ(x) θ̂m,λ(Z)π(dλ). (1)

To simplify the notation we suppress the dependence of f̂n on Z and x when it causes no ambi-

guity.

Theorem 1 (PAC-Bayesian bound in expectation). If Assumptions Q1 and Q2 are fulfilled, then

the MA aggregate f̂n satisfies the following oracle inequality

E f [ℓ( f̂n , f )] É inf
p∈PΛ

(∫

Λ
ℓ( fλ, f ) p(dλ)+

βK (p,π)

n +1

)
, (2)

where K (p,π) stands for the Kullback-Leibler divergence

K (p,π) =
{∫

Λ log
(dp

dπ (λ)
)

p(dλ), if p ≪π,

+∞, otherwise
.

Proof of Theorem 1 is given in the appendix. It is based on a cancellation argument that can be

traced back to Barron [4].

The oracle inequality of Theorem 1 is in the line of the PAC-Bayesian bounds initiated in [42]

and is applicable to a large variety of models. Some particularly relevant examples will be treated

in Sections 5-7. An interesting feature of Theorem 1 is that it is valid for a large class of prior

distributions.

The fact that (2) holds true for convex mappings g 7→Q(Z , g ) has been discussed informally in [3],

p. 1606, as a consequence of an oracle inequality for a randomized estimator. A difference of

Theorem 1 from the approach in [3] is that the convexity of the loss function is not required.
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Remark 1. If the cardinality of FΛ is finite, say card(FΛ) = N and Λ =
{

1, . . . , N
}
, inequality (2)

implies that

E f [ℓ( f̂n , f )] É min
j=1,...,N

(
ℓ( f j , f )+

β logπ j

n +1

)
.

Oracle inequalities of this type and similar under different sets of assumptions were established

earlier by several authors (cf. [16, 17, 51, 52, 53, 9, 30, 3] and the references therein for closely

related results). Our PAC-Bayesian bound (2) generalizes the oracle inequality of [30, Thm. 3.2]

to arbitrary, not necessarily finite, family FΛ. In the settings that we study below it is crucial to

consider uncountable FΛ. As we will see later, this generalization allows us to take advantage of

sparsity and suggests a powerful alternative to the classical model selection approach.

Remark 2. For the regression model with additive noise and deterministic design, PAC-Bayesian

bounds in expectation on the empirical l2-norm similar to (2) have been obtained in [20, 21, 22,

23] for an EWA, which does not contain the step of averaging. Earlier [39] proved a similar result

for the special case of finite card(FΛ) and Gaussian errors. In the notation of the present paper,

the aggregate studied in those works is of the form f̌n =
∫
Λ fλθ̂n,λπ(dλ). Interestingly, in a very

recent paper Lecué and Mendelson [37] proved that f̌n does not satisfy inequality (2) in the case

of i.i.d. observations.

Finally, we note that the results of this work hold only for proper priors. However, it is very likely

that Theorem 1 extends to the case of improper priors under some additional assumption ensur-

ing, for instance, that the integral
∫
Λ exp

{
− 1

β

∑m
i=1 Q(Zi , fw )

}
π(dw ) appearing in the definition of

the MA estimator is finite.

4. SPARSITY ORACLE INEQUALITY

In this section we introduce a prior π that we recommend to use for the MA aggregate under

the sparsity scenario. Then we prove a sparsity oracle inequality (SOI) leading to some natural

choices of the tuning parameters of the prior.

4.1. Sparsity prior and SOI. In what follows we assume that Λ ⊆ R
M for some integer M Ê 2.

We will use bold face letters to denote vectors and, in particular, the elements of Λ. We denote

by Tr(A) the trace of a square matrix A. To deal with integrals of the type
∫
Λℓ( fλ, f ) p(dλ) we

introduce the following additional assumption.

Assumption L: For every fixed f ∈ F , there exists a measurable set Λ0 ⊂ Λ such that Λ \Λ0 has

zero Lebesgue measure and the mapping L f : Λ0 → R, where L f (λ) = ℓ( fλ, f ), is twice differen-

tiable. Furthermore, there exists a symmetric M ×M matrix M such that M −∇2L f (λ) is positive

semi-definite for every λ∈Λ0, where ∇2L f (λ) stands for the Hessian matrix.

We are interested in covering the case of large M , possibly much larger than the sample size n.

We will be working under the sparsity assumption, i.e., when there exists λ∗ ∈ R
M such that f is

close to f λ∗ and λ∗ has a very small number of non-zero components. We argue that an efficient

way for handling this situation is based on a suitable choice of the prior π. To be more precise,

our results will show how to take advantage of sparsity for the purpose of prediction and not for

accurate estimation of the parameters or selection of the sparsity pattern. Thus, if the underlying

model is sparse, we do not prove that our estimated model is sparse as well, but we claim that

it has a small prediction risk under very mild assumptions. Nevertheless, we have a numerical
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evidence that our method can also recover very accurately the true sparsity pattern [22, 23]. We

observed this in examples where the restrictive assumptions mentioned in the Introduction are

satisfied.

Let τ and R be positive numbers. The sparsity prior is defined by

π(dλ) =
1

Cτ,R

{ M∏

j=1

(τ2 +λ2
j )−2

}
1l(‖λ‖1 É R)dλ, (3)

where ‖λ‖1 =
∑

j |λj | stands for the ℓ1-norm, 1l(·) denotes the indicator function, and Cτ,R is a

normalizing constant such that π is a probability density.

The prior (3) has a simple heuristical interpretation. Note first that R is a regularization param-

eter, which is typically very large. So, in a rough approximation we may consider that the factor

1l(‖λ‖1 É R) is almost equal to one. Thus, π is essentially a product of M rescaled Student’s dis-

tributions. Precisely, we deal with the distribution of
p

2τY, where Y is a random vector with

i.i.d. coordinates drawn from Student’s t with three degrees of freedom. In the examples below

we choose a very small τ, smaller than 1/n. Therefore, most of the coordinates of τY are very

close to zero. On the other hand, since Student’s distribution has heavy tails, there exists a small

portion of coordinates of τY that are quite far from zero.

The relevance of heavy tailed priors for dealing with sparsity has been emphasized by several

authors (see [46, Section 2.1] and references therein). Most of this work is focused on logarith-

mically concave priors, such as the multivariate Laplace distribution. Also in wavelet estimation

on classes of “sparse" functions [29] and [44] invoke quasi-Cauchy and Pareto priors respectively.

Bayes estimators with heavy-tailed priors in sparse Gaussian shift models are discussed in [1].

We are now in a position to state the SOI for the MA aggregate with the sparsity prior. The result is

even more general because it holds not only for the MA aggregate but for any estimator satisfying

(2) with the sparsity prior.

Theorem 2. Let f̂n be any estimator satisfying inequality (2), where the loss function ℓ satisfies

Assumption L and π is the sparsity prior defined as above. Assume that Λ contains the set B1(R) ={
λ∈R

M | ‖λ‖1 ÉR
}

with R > 2Mτ. Then for all λ∗ such that ‖λ∗‖1 ÉR −2Mτ we have

E f [ℓ( f̂n , f )] É ℓ( fλ∗ , f )+
4β

n +1

M∑

j=1

log(1+τ−1|λ∗
j |)+R(M ,τ), (4)

where the residual term is R(M ,τ)= 4τ2Tr(M )+ β
n+1 .

Proof of Theorem 2 is deferred to Section 9.3 of the appendix.

As follows from (4), the main term of the excess risk E f [ℓ( f̂n , f )] − ℓ( fλ∗ , f ) is proportional to∑M
j=1 log(1+τ−1|λ∗

j
|). Importantly, the number of nonzero elements in this sum is equal to the

number of nonzero components of λ∗ that we will further denote by ‖λ∗‖0. Therefore, for sparse

vectors λ∗ this term is rather small. But still, in all the examples that we consider below, it dom-

inates the remainder term R(M ,τ), which is made negligible by choosing a sufficiently small τ,

for instance, τ=O((Tr(M )n)−1/2).

Theorem 2 implies the following bound involving only the ℓ0 norm and the upper bound R on

the ℓ1 norm of λ∗.
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Corollary 1. If some estimator f̂n satisfies the oracle inequality of Theorem 2, then

E f [ℓ( f̂n , f )] É ℓ( fλ∗ , f )+
4β‖λ∗‖0 log(1+Rτ−1)

n +1
+R(M ,τ),

where λ∗ and R(M ,τ) are as in Theorem 2.

Proof. Set M∗ =‖λ∗‖0 for brevity. Using Jensen’s inequality, we get

1

M∗

M∑

j=1

log(1+τ−1|λ∗
j |) É log

(
1+ (τM∗)−1‖λ∗‖1

)
.

Using the inequalities ‖λ∗‖1 É R and M∗ Ê 1, the desired inequality follows. �

Note that the sparsity oracle inequalities (SOI) stated in this section are valid not only for the

MA aggregate but for any other estimator (whose definition involves a prior π) satisfying a PAC-

Bayesian bound similar to (2), possibly with some additional residual terms that should be then

added in the SOI as well. Examples of such estimators can be found in [3].

Remark 3. Assumption L need not be satisfied exactly. In fact, L f (·) need not even be differ-

entiable. Inspection of the proof of Theorem 2 reveals that if L f (λ) is well approximated by a

smooth function L̄ f (λ), that is 0É L f (λ)− L̄ f (λ) É ǫ, ∀λ, for some small ǫ> 0 and if M̄ǫ−∇2L̄ f is

positive semidefinite, then the conclusions of Theorem 2 hold with a modified residual term

Rǫ(M ,τ) = ǫ+4τ2Tr(M̄ǫ)+
β

n +1
.

This remark will be useful for studying the problem of classification under the hinge loss where

the function L f is not differentiable, cf. Section 7.

4.2. Choice of the tuning parameters. The above sparsity oracle inequalities suggest some guide-

lines for the choice of tuning parameters τ and R :

(1) Parameter τ should be chosen very carefully : It should be small enough to guarantee the

negligibility of the residual term but not exponentially small to prevent the explosion of

the main term of the risk. A reasonable choice (which is not the only possible) for τ is

τ= min
( √

β
p

Mn
,

R

4M

)
. (5)

For this choice of τ we have:

(a) the residual term R(M ,τ) is at most of order β/n,

(b) the terms log(1+ |λ∗
j
|/τ) increase at most logarithmically in M and in n under the

condition that Tr(M ) increases not faster than a power of M . Note that Tr(M ) =
O(M ) in all the examples that we consider below.

(c) the MA aggregate is accurate enough if there exists a sparse vector λ∗, with ℓ1-norm

bounded by R/2 which provides a good approximation fλ∗ of f ,

(2) It is clear that one should choose R as large as possible in order to cover the broadest

class of possible values λ∗. However, we are not aware of any example where Assumption

Q2 holds with finite β for R = +∞ or, equivalently, for Λ = R
M . Therefore, we assume

that R is an a priori chosen large parameter and interpret the above results as follows: If

there is a sparse vector λ∗ such that ℓ( fλ∗ , f ) is small and ‖λ∗‖1 É R −2Mτ, then the MA

aggregate has a small prediction risk.
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Remark 4. The choice τ= min
( p

βp
Tr(M )n

, R
4M

)
ensures that the estimator f̂n is invariant with re-

spect to an overall scaling of λ. More precisely, if instead of considering the parametrization{
fλ : ‖λ‖1 É R

}
we consider the parametrization

{
f̃ω : ‖ω‖1 É R/s

}
with f̃ω = fsω for some s > 0,

then the MA aggregate based on the prior defined by (3) remains unchanged. This can be easily

checked by the change of variables using the relation M̃ = s2
M where M̃ denotes the Hessian

matrix analogous to M for the dictionary { f̃ω}.

Along with choosing the parameters (τ,R) of the prior, one needs to choose the “temperature”

parameter β. A model-free choice of β seems to be impossible. In fact, even the existence of β

such that Assumption Q2 holds is not ensured for every model. Some more discussion of the

choice of β is given in Remark 7 below.

5. APPLICATION TO REGRESSION WITH RANDOM DESIGN

5.1. Regression estimation in L2-norm. Let Z =X ×R and we have the i.i.d. observations Zi =
(Xi ,Yi ), i = 1, . . . ,n with Xi ∈X and Yi ∈R. We define the regression function by f (x) =E(Y1|X1 =
x), ∀x ∈X , and assume that the errors

ξi = Yi − f (Xi ), i = 1, . . . ,n,

are such that E[ξ2
1] <∞. Then E(ξi |Xi ) = 0. Let PX denote the distribution of X1. For s ∈ [1,∞]

we denote by ‖ · ‖PX ,s the Ls -norm with respect to PX . We also denote by 〈·, ·〉PX
to the scalar

product in L2(X ,PX ). Throughout this section we consider the integrated squared loss ℓ( f , g ) =
‖ f − g‖2

PX ,2. Then it is easy to check that Assumption Q1 is fulfilled with

Q(z, g ) = (y − g (x))2, z = (x, y) ∈Z .

Furthermore, we focus on the particular case where FΛ is a convex subset of the vector space

spanned by a finite number of measurable functions
{
φ j

}
j=1,...,M ⊂ L2(X ,PX ), that is

FΛ =
{

fλ =
M∑

j=1

λjφ j

∣∣∣ λ∈R
M with ‖λ‖1 É R

}
(6)

for some R > 0. Then assumption L holds with M being the matrix with entries 〈φ j ,φ j ′〉PX
, which

will be referred to as the Gram matrix. This definition of M will be used throughout this section.

The collection of functions {φ1, . . . ,φM } will be called the dictionary.

Remark 5. The value of the parameter τ presented in (5) does not allow us to take into account

the possible inhomogeneity of functions φ j . One way of dealing with the inhomogeneity is to let

τ depend on j in the definition of the sparsity prior π. In this paper we consider for brevity a

less general approach, which is common in the literature on sparsity. Namely, we normalize the

functions φ j in advance and use the same τ for all coordinates of λ. The normalization is done

by rescaling the functions φ j so that all the diagonal entries of the Gram matrix M are equal to

one.

Following this remark, we assume that the functions φ j are such that ‖φ j‖PX ,2 = 1 for every j .

Therefore, Tr(M )= M .

Proposition 1. Assume that for some constant Lφ > 0 we have max j=1,...,M ‖φ j‖PX ,∞ É Lφ. If, in

addition, the errors ξi have a bounded exponential moment:

∃ b,σ2 > 0 such that E(e tξ1|X1)É eσ2t 2/2, ∀|t | É b, PX -a.s., (7)
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then, for every βÊ max
(
2σ2 +2supλ∈Λ ‖ fλ− f ‖2

PX ,∞,4RLφ/b
)
, the MA aggregate f̂n defined by (1)

with the sparsity prior (3) satisfies

E f [‖ f̂n − f ‖2
PX ,2] É inf

λ∗

{
‖ fλ∗ − f ‖2

PX ,2 +
4β

n +1

M∑

j=1

log(1+τ−1|λ∗
j |)

}
+R(M ,τ) (8)

where the inf is taken over all λ∗ such that ‖λ∗‖1 É R −2Mτ and R(M ,τ)= 4τ2M + β

n+1 .

Proof of Proposition 1. In view of Theorem 2, it suffices to check that Assumption Q2 is fulfilled

for βÊ max
(
2σ2+2supλ∈Λ ‖ fλ− f ‖2

PX ,∞,4RLφ/b
)
. This is done along the lines of the proof of [30,

Corollary 5.5]. We omit the details. �

Proposition 1 can be used in signal denoising under the sparsity assumption. A typical issue

studied in statistical literature, as well as in the literature on signal processing, is to estimate a

signal f based on its noisy version recorded at some points X1, . . . , Xn , under the assumption

that f admits a sparse representation w.r.t. some given dictionary
{
φ j ; j = 1, . . . , M

}
. By sparse

representation we mean a linear combination of a small number of functions φ j . Assume for

the moment that the noise satisfies (7) with b = +∞ and some known σ ∈ [0,∞) and that the

unknown signal is bounded by some constant that can be assumed to be equal to 1. The latter

assumption is fulfilled in many applications, as for example in image processing.

The method that we suggest for estimating a sparse representation of f , under the assumption

M Ê n, consists of:

a) normalizing the functions φ j ,

b) fixing a parameter R > 0,

c) setting

β= 2σ2 +2(RLφ+1)2, τ=min
( √

β
p

Tr(M )n
,

R

4M

)
, (9)

d) computing the MA aggregate f̂n =
∑M

j=1 λ̂jφ j with coefficients λ̂j =
∫
RM λj θ̂λπ(dλ) based

on the sparsity prior (3) and the posterior density

θ̂λ =
1

n +1

n+1∑

m=0

exp
{
− 1

β

∑m
i=1

(Yi − fλ(Xi ))2
}

∫
Λ exp

{
− 1

β

∑m
i=1

(Yi − fw (Xi ))2
}
π(d w )

.

In view of Proposition 1, if we run this procedure with some value R > 0, we will get accurate

estimates for signals that are well approximated by a sparse linear combination of functions φ j ,

provided that the coefficients of this linear combination have an ℓ1-norm bounded by R −2Mτ.

In most of the problems arising in signal or image processing the ℓ1-norm of the best sparse

approximation to the signal is unknown. It is therefore important to make a data-driven choice

of R . Let us outline one possible way to do this. Consider that only the signals formed by a

linear combination of at most M∗ functions φ j are of interest, and assume that the dictionary{
φ j

}
satisfies the restricted isometry property (RIP) of order M∗, see equation (1.3) in [15] for the

definition. In other terms, assume that f ≈ fλ∗ with ‖λ∗‖0 É M∗ and ‖ fλ∗‖PX ,2 Ê 1
2‖λ

∗‖2 where

‖ ·‖2 is the Euclidean norm. Then we can bound the ℓ1-norm of λ∗ as follows:

‖λ∗‖1 É
p

M∗‖λ∗‖2 É 2
p

M∗‖ fλ∗‖PX ,2 ≈ 2
p

M∗‖ f ‖PX ,2.
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We can estimate ‖ f ‖2
PX ,2 consistently by 1

n

∑n
i=1(Y 2

i
−σ2). Based on these estimates, we suggest

the following data-driven choice of R :

R̂ = 4
[M̂∗

n

n∑

i=1

(Y 2
i −σ2)

]1/2

+
,

where x+ = max(x,0) and M̂∗ a prior approximation of the sparsity index of the signal f .

Remark 6. The choice of β in (9) requires the knowledge of σ2, which characterizes the magni-

tude of the noise. This value may not be available in practice. Then it is natural to consider β as

a tuning parameter and to select it by a data-driven method, for example, by a suitably adapted

version of cross-validation. This point deserves a special attention and is beyond the scope of

the present paper.

Remark 7. If the distribution PX of the design is unknown, it is impossible to normalize the

dictionary functions φ j . In such a situation, i.e., when the functions φ j do not necessarily satisfy

‖φ j‖PX ,2 = 1, the claim of Proposition 1 continues to hold true with the modified residual term

R(M ,τ) = 4τ2Tr(M )+ β

n+1
, which can be bounded by 4τ2ML2

φ+ β

n+1
. Thus, once again, choosing

τ as in (9) makes the residual term R(M ,τ) negligible w.r.t. the main terms of the risk bound.

Remark 8. Proposition 1 is in agreement with the main principles of the theory of compressive

sampling and sparse recovery, cf., e.g., [14]. Indeed, if the tuning parameters are well-chosen,

the prediction done by f̂n can be quite accurate even if the sample size is relatively small with

respect to the dimension M . This happens if the signal admits a M∗-sparse representation in a

possibly overcomplete dictionary of cardinality M . Then the number of observations sufficient

for an accurate prediction is of order M∗ up to a logarithmic factor. Proposition 1 is also in

perfect agreement with the principle of incoherent sampling (see, for instance, [14], page 10). In

fact, in our setting, the incoherence of the sampling is ensured by the fact that φ j ∈ L2(X ,PX )

satisfy ‖φ j‖PX ,2 = 1.

Before closing this section, let us mention the recent work [26], where some interesting results

on the aggregation of estimators in sparse regression are obtained.

5.2. Linear regression with random design. Consider now the case of linear regression. Assume

that the i.i.d. observations (X i ,Yi ), i = 1, . . . ,n, are drawn from the linear model

Yi = X ⊤
i λ

∗+ξi , i = 1, . . . ,n, (10)

where X i ∈ R
M are i.i.d. covariates and λ∗ ∈ R

M is the parameter of interest. Then our method

reduces to estimating λ∗ by

λ̂n =
1

n +1

n+1∑

m=0

∫

RM
λ θ̂m,λπ(dλ),

where π is the sparsity prior and

θ̂m,λ =
exp

{
−β−1 ∑m

i=1(Yi −X ⊤
i
λ)2

}
∫
RM exp

{
−β−1

∑m
i=1

(Yi −X ⊤
i
ω)2

}
π(dω)

.

Then the following result holds.

Proposition 2. Consider the linear model (10) satisfying the above assumptions. Let the support

of the probability distribution of X 1 be included in [−1,1]M and E[e tξ1|X 1] É eσ2t 2/2 for all t ∈ R.
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Set ΣX = E[X 1 X ⊤
1 ]. Then for any βÊ 2σ2 +2(R +‖λ∗‖1)2 and any λ∗ such that ‖λ∗‖1 É R −2Mτ we

have

E[‖Σ1/2
X (λ̂n −λ∗)‖2

2] É
β

n +1

(
1+4

M∑

j=1

log(1+τ−1|λ∗
j |)

)}
+4τ2Tr(ΣX ). (11)

This proposition follows directly from Proposition 1 by setting φ j (x) = x j if |x j | É 1 and φ j (x) = 0

if |x j | > 1, where x ∈R
M and x j is its j th coordinate. Note also that here we have M =ΣX .

5.3. Rate optimality. In this section, we discuss the optimality of the rates of aggregation ob-

tained in Proposition 1. We show that the MA aggregate with the sparsity prior attains, up to

a logarithmic factor, the optimal rates of aggregation (cf. [47]). Furthermore, f̂n is adaptive in

the sense that it simultaneously achieves the optimal rates for the Model Selection (MS), Convex

(C) and Linear (L) aggregation. In what follows, these rates are denoted respectively by ψMS
n (M ),

ψC
n (M ) and ψL

n(M ). It is established in [47] that:

ψMS
n (M )= n−1log M ,

ψC
n (M )= n−1(M ∧

p
n) log(1+Mn−1/2),

ψL
n(M )= n−1M .

We wish to compare the risk of the estimator f̂n with the sparsity prior π to the smallest error

‖ fλ∗ − f ‖2
PX ,2 where λ∗ is one of λMS, λC or λL such that

λMS = arg min
‖λ‖0=‖λ‖1=1

‖ fλ− f ‖2
PX ,2,

λC = arg min
‖λ‖1É1

‖ fλ− f ‖2
PX ,2,

λL = arg min
λ∈RM

‖ fλ− f ‖2
PX ,2.

In the next proposition we denote by c constants which do not depend on M and n.

Proposition 3. Assume that f̂n satisfies (8) with some β > 0 independent of M and n, and that

log(M ) É c0n for some constant c0. If R > 4 and τ satisfies (5) with Tr(M )= M, then

E f [‖ f̂n − f ‖2
PX ,2] É‖ fλMS − f ‖2

PX ,2 +cψMS
n (M ) log(1+nM )

and

E f [‖ f̂n − f ‖2
PX ,2] É‖ fλC − f ‖2

PX ,2 +cψC
n (M ) log(1+nM ).

Finally, if ‖λL‖1 É R −2Mτ, then

E f [‖ f̂n − f ‖2
PX ,2] É‖ fλL − f ‖2

PX ,2 +cψL
n(M ) log(1+nM ).

Proof. For model selection and linear aggregation the result follows immediately from (8) by

putting there λ∗ =λMS or λ∗ =λL and using that ‖λMS‖0 = ‖λMS‖1 = 1. The case of convex aggre-

gation with M É
p

n follows from the bound for the linear aggregation. The case M >
p

n requires

some additional arguments, which are presented below.

Let s = sn be the integer part of
p

n, denoted by [
p

n]. We assume that λC has at least sn non-

zero coordinates, the case ‖λC‖0 < [
p

n] being a trivial consequence of (8). Using the Maurey
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randomization argument as in [7, 43], one can show that

min
‖λ‖1É1
‖λ‖0És

‖ fλ− f ‖2
PX ,2 É ‖ fλC − f ‖2

PX ,2 +
‖λC‖2

1

min(s,‖λC‖0)
É ‖ fλC − f ‖2

PX ,2 +
1

s
. (12)

Let λs,C be a point where the minimum on the left hand side of (12) is attained. Since λs,C

has not more than s nonzero coordinates and ‖λs,C‖1 É 1, we have
∑

j log(1+|λs,C
j

/τ|) É s log(1+
‖λs,C‖1/τ) É s log(1+τ−1). Thus, applying (8) to λ∗ =λs,C and using (5), we get

E f [‖ f̂n − f ‖2
PX ,2] É ‖ fλs,C − f ‖2

PX ,2 +
cs log(1+τ−1)

n
, (13)

where c is some constant independent of n and M . Recall now that ‖ fλs,C − f ‖2
PX ,2 is equal to the

left hand side of (12). This implies

E f [‖ f̂n − f ‖2
PX ,2] É‖ fλC − f ‖2

PX ,2 +
1

s
+

cs log(1+τ−1)

n
,

which leads to the desired result due to the choice s = [
p

n] and (5). �

Remark 9. The theory developed here relies on the fact that the risk is measured by the expected

squared loss. In the case of general Lp -loss with p Ê 1, a universal procedure for aggregation is

proposed in [27] and it is proved that the aggregation in Lp for p > 2 is more difficult than it is in

L2.

6. APPLICATION TO DENSITY ESTIMATION

Let X1, . . . , Xn be the observations, which are independent copies of a random variable X : Ω→X

whose distribution has a density f with respect to some reference measure µ. We consider the

problem of estimating f based on X1, . . . , Xn . We measure the risk of an estimator f̃ of f by the

integrated squared error

ℓ( f̃ , f ) = ‖ f̃ − f ‖2
µ,2 =

∫

X

(
f̃ (x)− f (x)

)2
µ(d x).

Define the mapping Q(·, g ) : X ×L2(X ,µ) →R by

Q(x, g ) =‖g‖2
µ,2 −2g (x).

It is straightforward that E f Q(X , g )−ℓ(g , f ) =−‖ f ‖2
µ,2 and, therefore, Assumption Q1 is fulfilled.

To further specify the setting, we consider the family FΛ defined in (6) where the functions φ j

are chosen from L2(X ,µ) so that ‖φ j‖µ,2 = 1 and ‖φ j‖µ,∞ É L, j = 1, . . . , M , for some positive

constant L. Note that the functions φ j need not be integrable or positive. We have the following

result.

Proposition 4. Let the assumptions given above in this subsection be satisfied and ‖ f ‖µ,∞ É L. If

β is such that

(β−2R2)e−4R(L+
p

L)/β Ê 2L+4RL, (14)

then the MA aggregate f̂n based on the sparsity prior (3) satisfies

E f [‖ f̂n − f ‖2
µ,2] É inf

λ∗

{
‖ fλ∗ − f ‖2

µ,2 +
4β

n +1

M∑

j=1

log(1+τ−1|λ∗
j |)

}
+R(M ,τ) (15)

where the inf is taken over all the vectors λ∗ such that ‖λ∗‖1 É R −2Mτ.
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The proof of this proposition is given in the appendix. It consists in checking that Assumptions

Q2 and L are satisfied and then applying Theorem 2. Condition (14) can be significantly simpli-

fied in many concrete situations. For example, if we assume that R = 1 or R = 2, then one can

choose β= 12L and β= 23L respectively, provided that L Ê 2.

7. CLASSIFICATION

Assume that we have a sample (X1,Y1), . . . , (Xn ,Yn), where Xi ∈ X and Yi ∈ {−1,+1} are labels.

Here X is an arbitrary measurable space and (Xi ,Yi ) are assumed to be generated independently

according to a probability distribution P . The goal of binary classification is to assign a label +1

or −1 to a new random point x which is distributed as Xi and independent of X1, . . . , Xn .

The problem of interest in classification is to design a classifier f̂ : X →R having a small misclas-

sification risk R[ f̂ ] =
∫
X×{−1,+1} 1l(sgn( f̂ (x)) 6= y)P(d x,d y). Denote by η : X → [−1,1] the regres-

sion function

η(x) = E(Y1|X1 = x)= 2P(Y1 = 1|X1 = x)−1, ∀x ∈X .

The Bayes classifier is defined as follows: f (x) = 1l(η(x) > 0)−1l(η(x) É 0) = sgn(η(x)). One easily

checks that

R[ f̂ ]−R[ f ] =
∫

X

1l(sgn( f̂ (x)) 6= f (x))|η(x)|PX (d x),

where PX is the distribution of X1. This shows that the Bayes classifier f minimizes the misclas-

sification risk. Clearly, the Bayes classifier is not available in practice because of its dependence

on the unknown regression function η(·).

This problem is a special case of the general setting of Section 2 if we take there Zi = (Xi ,Yi )

and ℓ(g , f ) = R[g ]−R[ f ]. Assumption Q1 is then fulfilled with Q(z, g ) = 1l
(

sgn(g (x)) = y
)

where

z = (x, y). However, Assumptions Q2 and L are not satisfied.

7.1. Classification under smooth Φ-losses. An alternative approach is to consider the Φ-risk of

classifiers. For a fixed convex twice differentiable function Φ : R→R+, the Φ-risk of a classifier f̂

is defined by

RΦ[ f̂ ] =
∫

X×{±1}
Φ

(
− y f̂ (x)

)
P(d x,d y)=

1

2

∫

X

{
Φ

(
− f̂ (x)

)(
1+η(x)

)
+Φ

(
f̂ (x)

)(
1−η(x)

)}
PX (d x).

In this subsection, we are mainly interested in the four common choices of Φ presented in the

top lines of Table 1. For these and other loss functions, sharp relations between the Φ-risk and

the misclassification risk of a given classifier f̂ have been established in [55], [5]. In particular, it

is proved in these papers that the minimum of Φ-risk is attained at any classifier satisfying

fΦ(x) ∈ argmin
u∈R

{
Φ(−u)

(
1+η(x)

)
+Φ(u)

(
1−η(x)

)}
, ∀x ∈X .

Note however that in practice the computation of fΦ is impossible because of its dependence on

the unknown η.

Our aim here is to design a classifier having a Φ-risk which is nearly as small as the minimal

possible Φ-risk. This task can be recast in a problem of estimation where fΦ is the function to

be estimated and the quality of an estimator (classifier) f̂ is measured by the excess risk RΦ[ f̂ ]−
RΦ[ fΦ]. Therefore, this is a particular case of the setting described in Section 2 with ℓ(g , f ) =
ℓΦ(g , fΦ) = RΦ[g ]−RΦ[ fΦ] and Q(z, g ) = Φ(−y g (x)) for every z = (x, y). Here Assumption Q1 is

obviously satisfied.
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Loss Φ(u) fΦ(x) Q(z , g ) βΦ CΦ

Squared (1+u)2 η(x) (1− y g (x))2 2(1+RLΦ)2 8

Truncated Squared {max(1+u,0)}2 η(x) {max(1− y g (x),0)}2 2(1+RLΦ)2 8

Boosting eu 1
2

log
1+η(x)
1−η(x)

e−y g (x) eRLΦ 4eRLΦ

Logit-Boosting log(1+eu) log
1+η(x)
1−η(x) log(1+e−y g (x)) eRLΦ 4

Misclassification 1l(u = 1) η(x) 1l(g (x) 6= y) – –

Hinge max(1−u,0) η(x) max(1− y g (x),0) – –

TABLE 1. Common choices of function Φ; classifiers fΦ minimizing the Φ-risk; the cor-

responding functions Q ; constants βΦ and CΦ appearing in Proposition 5.

In the same spirit as in the previous sections, we assume that we are given a dictionary {φ j } j=1,...,M

of functions on X with values in R. The family FΛ is defined as the set of all linear combinations

of the functions φ j with coefficients λ1, . . . ,λM , such that the vector λ= (λ1, . . . ,λM ) belongs to the

ℓ1 ball with radius R , cf. (6). The next proposition shows that a strong sparsity oracle inequality

holds for an appropriate choice of β.

Proposition 5. Assume that for some constant Lφ > 0 we have max j=1,...,M ‖φ j‖PX ,∞ É Lφ. Let the

function Φ be twice continuously differentiable with1

βΦ := sup
|u|ÉRLφ

Φ′(u)2

Φ′′(u)
<∞.

Then the MA aggregate defined with βÊ βΦ and with the sparsity prior (3) satisfies

E f [ℓΦ( f̂n , f )] É min
‖λ∗‖1ÉR−2Mτ

(
ℓΦ( fλ∗ , f )+

4β

n +1

M∑

j=1

log(1+τ−1|λ∗j |)
)
+CΦτ

2
M∑

j=1

‖φ j‖2
PX ,2+

β

n +1
, (16)

where CΦ = 4max|u|ÉRLφ
Φ′′(u).

Proof. We apply Theorems 1 and 2. First, we show that Assumption Q2 is satisfied. Recall that

Q(z, g ) =Φ(−y g (x)) and set Ψβ(g , g̃ )=
∫
X×{±1} exp

(
−β−1

{
Q(z, g )−Q(z, g̃ )

})
P(d x,d y). Let us show

that for β Ê βΦ the mapping g 7→ Ψβ(g , g̃ ) is concave. By standard arguments, this reduces to

proving that the function t 7→φ(t ) =Ψβ(t g + (1− t )ḡ , g̃ ) is concave on t ∈ [0,1] for every fixed g , ḡ

and g̃ . A simple algebra shows that the second derivative of φ is non-positive on [0,1] whenever

βÊΦ′(−y g (x))2/Φ′′(−y g (x)) for all (x, y) ∈X × {±1} and all g ∈FΛ. On this set of x, y, g the value

−y g (x) belongs to the interval [−RLφ,RLφ]. Thus, Assumption Q2 is satisfied for β Ê βΦ and

Theorem 1 can be applied.

To use Theorem 2, it remains to prove that Assumption L is satisfied with M being the matrix

with entries
(

1
4

CΦ〈φ j ,φ j ′〉
)
, where j and j ′ run over {1, . . . , M }. From the formula for RΦ[ f̂ ] given

at the beginning of this subsection we get

∇2L f (λ) =∇2RΦ[ fλ] =
∫

X×{±1}

(
∇ fλ(x) ·∇ fλ(x)⊤

)
Φ′′(− y fλ(x)

)
P(d x,d y).

Since y fλ(x) ∈ [−RLφ,RLφ] the matrix M −∇2L f (λ), where M = 1
4CΦ

∫
(∇ fλ∇ f ⊤

λ
)(x)PX (d x), is

positive semi-definite. The desired result follows now from the linearity in λ of fλ(x). �

1We use here the convention 0/0 = 0.
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For the four common choices of Φ presented in the top lines of Table 1 all the conditions of

Proposition 5 are satisfied for a properly chosen constant β. The minimal values of β, as well

as the values of the constant CΦ, for each loss function Φ are reported in the last two columns

of Table 1. It is often interesting to use binary classifiers φ j (i.e., functions with values in {±1}),

in which case Lφ = 1. Also note that the expressions for βΦ suggest to choose R not too large,

especially in the case of the boosting and the logit-boosting losses.

7.2. Classification under the hinge loss. One of the key issues in machine learning is classifica-

tion by support vector machines. They correspond to a penalized Φ-risk classification with the

loss Φ(u) =ΦH (u)= max(1+u,0), referred to as the hinge loss. A notable feature of the hinge loss

is that the classifier fΦH
(x) equals sgn(η(x)) and therefore coincides with the Bayes classifier for

the misclassification risk. However, since the hinge loss does not satisfy Assumptions Q2 and L,

Proposition 5 cannot be applied. Furthermore, as shown in [36], no aggregation procedure can

attain the fast rate of aggregation (i.e., the rate 1/n up to a logarithmic factor) when the risk is

measured by the hinge loss.

The reason for the failure of Assumption L is that the hinge loss is not continuously differen-

tiable. One can circumvent this problem by using the smoothing argument of Remark 3. Indeed,

let us fix ǫ > 0 and introduce the function Kǫ(z) = (
p
ǫ2 + z2 − ǫ)1l(z > 0), which is a smooth ap-

proximation to the positive part of z. It is easy to see that Kǫ(z) É max(z,0) É Kǫ(z)+ ǫ and that

K ′′
ǫ (z) = ǫ2(ǫ2 + z2)−3/2 ∈ (0,ǫ−1] for z > 0. This allows us to approximate the loss ℓΦH

(g , f ) by

ℓǫ(g , f )=
1

2

∫

X

{
Kǫ(1− g (x))(1+η(x))+Kǫ(1+ g (x))(1−η(x))

}
PX (d x)−RΦH

[ f ].

Although Assumption Q2 is not fulfilled, the next proposition shows that it is possible to adapt

the argument of Proposition 5 to the hinge loss Φ=ΦH . However, unlike Proposition 5 where the

rate of convergence is of the order 1/n (up to a logarithmic factor), the resulting sparsity oracle

inequality has only the rate 1/
p

n (up to a logarithmic factor), cf. also Remark 10 (1) below. This

is the best we can get for the hinge loss without imposing any condition on η.

Proposition 6. Let ΦH (u) =max(1+u,0) be the hinge loss and max j=1,...,M ‖φ j‖PX ,∞ É Lφ for some

Lφ > 0. Then, for every β> 0 the MA aggregate f̂n based on the prior given by (3) satisfies

E f [ℓΦH
( f̂n , f )] É min

‖λ∗‖1ÉR−2Mτ

(
ℓΦH

( fλ∗ , f )+
4β

n +1

M∑

j=1

log(1+τ−1|λ∗j |)
)
+

2(1+RLφ)2

β
e

1+RLφ

β + R̃(M ,τ),

where R̃(M ,τ) = 4τLφ

p
M +β(n +1)−1.

The proof of this proposition is given in the appendix.

Remark 10.

(1) Consider the sparsity scenario, i.e., assume that for some vector λ∗ having at most M∗

non-zero coordinates, the excess risk ℓΦH
( fλ∗ , f ) is small and ‖λ∗‖1 É R/2. Proposition 6

with the choice of β= (1+RLφ)
p

n/M∗ and τ= min
(

1p
nM

, R
4M

)
leads to the sparsity oracle

inequality

E f [ℓΦH
( f̂n , f )] É min

‖λ∗‖1ÉR/2
‖λ∗‖0ÉM∗

(
ℓΦH

( fλ∗ , f )+
(1+RLφ)

p
M∗

p
n

{
C +4log(1+τ−1‖λ∗‖1)

})
,

where C > 0 is a constant independent on M , M∗ and n if M∗ É n. This result is valid

for arbitrary η. It should be noted that the MA aggregate f̂n satisfying this SOI depends
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on the upper bound M∗ on the sparsity level, which is not always available in practice.

Constructing a classifier independent of M∗ and satisfying the above SOI is an interesting

open problem.

(2) An important special case is a dictionary composed from a large number of simple binary

classifiers φ j : X → {±1}. If we choose R = 1, all aggregates fλ with ‖λ‖1 É R , as well as

their mixtures, take values in [−1,1], and therefore the function Q(z, fλ) associated with

the hinge loss is linear in λ. This property has two important consequences. The first

one is that Assumption L holds with M = 0 and it is no longer necessary to smooth out

the function L f (λ) and to use Remark 3 in the proof Proposition 6. Thus, the residual

term R̃ is equal to β(n +1)−1. The second consequence is computational, related to the

Langevin Monte-Carlo approximation of the MA aggregate briefly described in Section 8.2

below. Namely, in this case we have strong mixing properties that are independent of

the ambient dimension M , due to the independence of the coordinates of the Langevin

diffusion.

(3) According to [36], if the underlying distribution P satisfies the margin assumption of [48],

then the rate of aggregation can be substantially improved. It would be interesting to

investigate whether this property extends to the sparsity scenario. It is likely that one of

the randomized procedures of [3] used in conjunction with our sparsity prior can yield

an aggregation rate optimal classifier.

8. DISCUSSION

8.1. Comparison with other methods of sparse estimation. In this paper we have proved spar-

sity oracle inequalities (SOI) in a setting, which is important but not much studied in the litera-

ture on sparsity. We considered the i.i.d. random sampling and we measured the quality of esti-

mation/prediction by the average loss with respect to the distribution of Z = (X ,Y ), namely, our

main example was the loss ℓ(g , f ) =
∫
Z

Q(z, g )Pf (d z). Most of the literature on sparse estimation

is focused on the high-dimensional linear regression model with fixed design, so the data are not

i.i.d. and the empirical prediction loss, rather than the average loss is considered. Notable excep-

tions are the papers [13, 33, 34, 35, 49] where the framework is similar to ours. Among these, [35]

focuses on regression with random design and study the Dantzig selector, while [13, 33, 34, 49]

analyze the penalized estimators of the form

λ̂n = argmin
λ∈Λ

(
1

n

n∑

i=1

Q(Zi , fλ)+Pen(λ)

)

where Pen(λ) is a penalty, which is equal or close to the ℓ1-penalty r‖λ‖1 with a suitable regu-

larization parameter r > 0. For the penalized estimator f̃n = fλ̂n
they prove SOI of the form (here

we give a “generic" simplified version based on [33]):

ℓ( f̃n , f ) É min
‖λ∗‖1ÉR
‖λ∗‖0ÉM∗

(
3ℓ( fλ∗ , f )+

C (1+R2)M∗

nκn,M
Ln,M

)
(17)

with a probability close to 1, where C > 0 is a constant independent of n and M , Ln,M is a factor,

which is logarithmic in n and M , and κn,M is minimal sparse eigenvalue appearing in the condi-

tions on the Gram matrix of the dictionary quoted in the Introduction. With the same notation,
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a “generic" version of our SOI for the MA aggregate f̂n is the following:

E[ℓ( f̂n , f )] É min
‖λ∗‖1ÉR
‖λ∗‖0ÉM∗

(
ℓ( fλ∗ , f )+

C (1+R2)M∗

n
Ln,M

)
. (18)

There are two advantages of (18) with respect to (17). First, (18) is a sharp oracle inequality,

since the leading constant is 1, whereas this is not the case in (17). Second and most important,

(18) holds under mild assumptions on the dictionary, such as the boundedness of the functions

φ j in some norm, whereas (17) requires restrictive assumptions on minimal sparse eigenvalue

κn,M which can be very small and appears in the denominator. In particular, (18) is applicable

when κn,M = 0. Finally, we note that (17) is an oracle inequality “in probability" while (18) is “in

expectation". Inequalities in expectation can be derived from the inequalities in probability of

the form (17) obtained in [13, 33, 34, 49] only under some additional assumptions. So, strictly

speaking, even more assumptions should be imposed in the case of (17) to make possible direct

comparison with (18).

In conclusion, we see that the oracle bounds for ℓ1-penalized methods, such as the Lasso or

its modifications can be quite inaccurate as compared to the those that we obtain for the MA

aggregate.

The ℓ0-penalized methods for models with i.i.d. data are less studied. To our knowledge, this

is done only for regression with random design [10] and for density estimation [40]. The oracle

inequalities in those papers are less accurate than the ours since the leading constant there is

greater than 1. Moreover, if we want to make it closer to 1, the remainder term of the oracle

inequalities explodes.

Furthermore, as mentioned above, our sparsity oracle inequalities are potentially applicable not

only for the MA aggregate, but for any estimator associated to prior distribution π and satisfying

a PAC-Bayesian bound in expectation as in Theorem 1.

8.2. Computational aspects. If the dimension M is large the computation of the MA aggregate

with the sparsity prior becomes a hard problem. Indeed, its definition contains integrals over

a simplex in R
M . Nevertheless, accurate approximations can be realized by a numerically effi-

cient algorithm based on Langevin Monte-Carlo. This algorithm along with the convergence and

simulation studies is discussed in [22, 23]. Here we only sketch some main ideas underlying the

numerical procedure. For simplicity, we consider the case of linear regression (cf. Subsection

5.2). The argument is easily extended to other models discussed in the previous section.

Thus, assume that we have a sample (X i ,Yi ), i = 1, . . . ,n, and a finite dictionary {φ j : X → R} of

cardinality M . We wish to compute the expression

λ̃=
∫
RM λe−β−1‖Y−Fλ(X )‖2

2π(dλ)
∫
RM e−β−1‖Y−Fλ(X )‖2

2π(dλ)
, (19)

where Fλ(X ) = ( fλ(X 1), . . . , fλ(X n))⊤ and fλ =
∑M

j=1λ jφ j . A slight modification of the sparsity

prior consists in replacing π defined in (3) by

π̃(dλ) ∝
( M∏

j=1

e−̟(αλ j )

(τ2 +λ2
j
)2

)
1l(‖λ‖1 É R)dλ, (20)

where α is a small parameter and ̟ : R → R is the Huber function: ̟(t ) = t 21l(|t | É 1)+ (2|t | −
1)1l(|t | > 1). Introducing the product of e−̟(αλ j ) in the definition of the prior does not affect its
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capacity to capture sparse objects, in the sense that the MA aggregate based on the prior (20)

can be shown to satisfy a SOI which is quite similar to that of Theorem 2 (cf. [22, 23] where the

regression model with fixed design is treated). On the other hand, this modification of the spar-

sity prior makes it possible to rigorously prove the geometric ergodicity of the Langevin diffusion

defined below.

Note that we can equivalently write λ̃ in the form

λ̃=
∫
RM λ1l(‖λ‖1 É R)pV (λ)dλ
∫
RM 1l(‖λ‖1 É R)pV (λ)dλ

, (21)

where pV (λ) ∝ eV (λ) with

V (λ) =−β−1‖Y−Fλ(X )‖2
2 −

M∑

j=1

2
{

log(τ2 +λ2
j )+̟(αλ j )

}
. (22)

Consider now the Langevin stochastic differential equation (SDE)

dLt =∇V (Lt )dt +
p

2dW t , L0 = 0, t Ê 0

where W stands for an M-dimensional Brownian motion. For our choice of the potential V this

SDE has a unique strong solution. It can be also shown (cf. [22, 23]) that this choice of V guar-

antees the geometric ergodicity of the solution, which implies that its stationary distribution has

the density pV (λ) ∝ eV (λ), λ ∈R
M . This and (21) suggest the Langevin Monte Carlo procedure of

computation of λ̃. Indeed, consider the time averages

L̄T =
1

T

∫T

0
Lt 1l(‖Lt‖1 É R)dt , ST =

1

T

∫T

0
1l(‖Lt‖1 É R)dt , T Ê 0.

According to the above remarks, the ratio of these average values converges, as T → ∞, to the

vector λ̃ that we want to compute. Note that L̄T and ST are one-dimensional integrals over a

finite interval and, therefore, are simpler objects than λ̃, which is an integral in M dimensions.

Still, one cannot compute L̄T directly, and some discretization is needed. A standard way of doing

it is to approximate L̄T and ST by the sums

L̄
E
T,h =

1

[T /h]

[T /h]−1∑

k=0

LE
k 1l(‖LE

k ‖1 ÉR), SE
T,h =

1

[T /h]

[T /h]−1∑

k=0

1l(‖LE
k ‖1 É R),

where {LE
k

} is the Markov chain defined by the Euler scheme

LE
k+1 = LE

k +h∇V (LE
k )+

p
2h W k , LE

0 = 0, k = 0,1, . . . , [T /h]−1.

Here W 1, W 2, . . . are i.i.d. standard Gaussian random vectors in R
M , h > 0 is a step of discretiza-

tion, and [x] stands for the integer part of x ∈R. It can be shown that L̄
E
T,h is an accurate approx-

imation of L̄T for small h. We refer to [22, 23] for further details. The computational complexity

is polynomial in M and n. Simulation results in [22, 23], as well as the experiments on image

denoising [45], show the fast convergence of the algorithm; it can be easily realized in dimen-

sions M up to several thousands. They also demonstrate nice performance of the exponentially

weighted aggregate as compared with the Lasso and other related methods of prediction under

the sparsity scenario.
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9. APPENDIX

9.1. Proof of Theorem 1. First, note that without loss of generality we can set β= 1. If this is not

the case, it suffices to replace Q and ℓ by Q̃ = 1
βQ and ℓ̃= 1

βℓ, respectively. By Assumption Q1,

E f [ℓ( f̂n , f )] =
∫

Z

E f [Q(z, f̂n)]Pf (d z)−∆( f ). (23)

In the last display we have used Fubini’s theorem to interchange the integral and the expectation;

this is possible since the integrand is bounded from below. To get the desired result, one needs

now to bound the first term on the RHS of (23), which we rewrite as follows
∫

Z

E f [Q(z, f̂n)]Pf (d z) =−
∫

Z

E f

[
log

(
exp

{
−Q(z, f̂n)

})]
Pf (d z). (24)

Recall now that f̂n is defined as the average of the functions fλ w.r.t. the probability measure µ̂n .

If we knew that the mapping g 7→ exp
{
−Q(z, g )

}
is concave on the convex hull of FΛ, we could

apply Jensen’s inequality to get

exp
{
−Q(z, f̂n)

}
Ê

∫

Λ
exp

{
−Q(z, fλ)

}
µ̂n(dλ).

As we see below, this would allow us to get inequality (2) by a simple application of the convex

duality argument. Unfortunately, the above mentioned concavity property is rather exceptional

and therefore the quantity

S1(z,Z) = log
(∫

Λ
exp

{
−Q(z, fλ)

}
µ̂n(dλ)

)
− log

(
exp

{
−Q(z, f̂n)

})

is not necessarily a.s. negative. However, we may write
∫

Z

E f

[
log

(
e−Q(z, f̂n)

)]
Pf (d z) =

∫

Z

E f

[
S0(z,Z)−S1(z,Z)

]
Pf (d z) (25)

where

S0(z,Z) = log
(∫

Λ
exp

{
−Q(z, fλ)

}
µ̂n(dλ)

)
.

By the concavity of the logarithm,

S0(z,Z) Ê
1

n +1

n∑

m=0

log
(∫

Λ
e−Q(z, fλ)θ̂m,λπ(dλ)

)
.

Replacing θ̂m,λ by its explicit expression and taking the integral of both sides of the last display,

we get on the RHS a telescoping sum. This leads to the inequality
∫

Z

E f

[
S0(z,Z)

]
Pf (d z) Ê

1

n +1

∫

Z n+1
log

(∫

Λ
e−

∑n+1
i=1 Q(zi , fλ)π(dλ)

)
P (n+1)

f
(dz).

By a convex duality argument (cf., e.g., [25], p.264, or [16], p.160), we get

log
(∫

Λ
e−

∑n+1
i=1 Q(zi , fλ)π(dλ)

)
Ê−

n+1∑

i=1

∫

Λ
Q(zi , fλ) p(dλ)−K (p,π),

for every p ∈PΛ. Therefore, integrating w.r.t. z1, . . . , zn+1 and using the symmetry, we get
∫

Z

E f

[
S0(z,Z)

]
Pf (d z)Ê−

∫

Z

∫

Λ
Q(z, fλ) p(dλ)Pf (d z)−

K (p,π)

n +1

=−
∫

Λ
ℓ( fλ, f ) p(dλ)−∆( f )−

K (p,π)

n +1
.
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This and equations (23)-(25) imply

E f [ℓ( f̂n , f )] É
∫

Λ
ℓ( fλ, f ) p(dλ)+

K (p,π)

n +1
+

∫

Z

E f [S1(z,Z)]Pf (d z). (26)

Let us show that the last term on the RHS of (26) is non-positive. Rewrite S1(z,Z) in the form

S1(z,Z) = log

∫

Λ
exp

(
−

{
Q(z, fλ)−Q(z, f̂n)

})
µ̂n(dλ).

By the Fubini theorem, the concavity of the logarithm and Assumption Q2, we get
∫

Z

E f [S1(z,Z)]Pf (d z)É E f

[
log

∫

Λ
Ψ1( fλ, f̂n) µ̂n(dλ)

]

(recall that we set β= 1). The concavity of the map g 7→Ψ1(g , f̂n) and Jensen’s inequality yield
∫

Λ
Ψ1( fλ, f̂n) µ̂n(dλ) ÉΨ1

(∫

Λ
fλ µ̂n(dλ), f̂n

)
=Ψβ( f̂n , f̂n) = 1,

and the desired result follows.

9.2. Some lemmas. We now give some technical results needed in the proofs.

Lemma 1. For every M ∈N and every s > M, the following inequality holds:

1

(π/2)M

∫
{

u:‖u‖1>s
}

M∏

j=1

du j

(1+u2
j
)2

É
M

(s −M )2
.

Proof. Let U1, . . . ,UM be iid random variables drawn from the scaled Student t (3) distribution

having as density the function u 7→ 2/
[
π(1+u2)2

]
. One easily checks that E[U 2

1 ] = 1. Furthermore,

with this notation, we have

1

(π/2)M

∫
{

u:‖u‖1>s
}

M∏

j=1

du j

(1+u2
j
)2

= P
( M∑

j=1

|U j | Ê s
)
.

In view of Chebyshev’s inequality the last probability can be bounded as follows:

P
( M∑

j=1

|U j | Ê s
)
É

ME[U 2
1 ]

(s −ME[|U1|])2
É

M

(s −M )2

and the desired inequality follows. �

Lemma 2. Let the assumptions of Theorem 2 be satisfied and let p0 be the probability measure

defined by (30). If M Ê 2 then
∫
Λ(λ1 −λ∗

1 )2p0(dλ) É 4τ2.

Proof. Using the change of variables u = (λ−λ∗)/τ we write
∫

Λ
(λ1 −λ∗

1 )2p0(dλ)=CMτ2
∫

B1(2M)
u2

1

( M∏

j=1

(1+u2
j )−2

)
du

with

CM =
(∫

B1(2M)

( M∏

j=1

(1+u2
j )−2

)
du

)−1
(27)

where u j are the components of u. Extending the integration from B1(2M ) to R
M and using the

inequality
∫
R

u2
1(1+u2

1)−2du1 Éπ, we get
∫

Λ
(λ1 −λ∗

1 )2p0(dλ) ÉCMτ2π
(∫

R

(1+ t 2)−2 d t
)M−1

= 2CMτ2(π/2)M ,
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where we used that the primitive of the function (1+x2)−2 is 1
2 arctan(x)+ x

2(1+x2)
. To bound CM ,

we apply Lemma 1 which yields

CM É (2/π)M
(
1−1/M

)−1 É 2(2/π)M , (28)

for M Ê 2. Combining these estimates we get
∫
Λ(λ1−λ∗

1 )2p0(dλ) É 4τ2 and the desired inequality

follows. �

Lemma 3. Let the assumptions of Theorem 2 be satisfied and let p0 be the probability measure

defined by (30). Then K (p0,π) É 4
∑M

j=1 log(1+|λ∗
j
|/τ)+1.

Proof. The definition of π, p0 and of the Kullback-Leibler divergence imply that

K (p0,π) =
∫

B1(2Mτ)
log

{
τ3MCMCτ,R

M∏

j=1

(τ2 +λ2
j

)2

(τ2 + (λj −λ∗
j

)2)2

}
p0(dλ)

= log(τ3MCMCτ,R )+2
M∑

j=1

∫

B1(2Mτ)
log

{ τ2 +λ2
j

τ2 + (λj −λ∗
j

)2

}
p0(dλ). (29)

We now successively evaluate the terms on the RHS of (29). First, in view of (3), we have

Cτ,R = τ−3M

∫

B1(R/τ)

M∏

j=1

1

(1+u2
j
)2

du j É τ−3M
(∫

R

(1+u2
j )−2 du j

)M
= τ−3M (π/2)M .

This and (28) imply log(CM Cτ,R )É log 2 É 1.

To evaluate the second term on the RHS of (29) we use that

τ2 +λ2
j

τ2 + (λj −λ∗
j

)2
= 1+

2τ(λj −λ∗
j

)

τ2 + (λj −λ∗
j

)2
(λ∗

j /τ)+
λ∗

j
2

τ2 + (λj −λ∗
j

)2

É 1+|λ∗
j /τ|+ (λ∗

j /τ)2 É (1+|λ∗
j /τ|)2.

This entails that the second term on the RHS of (29) is bounded from above by
∑M

j=1 2log(1+
|λ∗

j
|/τ). Combining these inequalities we get the lemma. �

9.3. Proof of Theorem 2. In view of inequality (2), we have

E f [ℓ( f̂n , f )] É
∫

Λ
ℓ( fλ, f ) p(dλ)+

βK (p,π)

n +1
,

for every probability measure p . We choose here p = p0 where p0 has the following Lebesgue

density:
d p0

dλ
(λ) ∝

dπ

dλ
(λ−λ∗)1lB1(2Mτ)(λ−λ∗). (30)

Here the sign ∝ indicates the proportionality of two functions. Since ‖λ∗‖1 É R −2Mτ, the con-

dition λ−λ∗ ∈ B1(2Mτ) implies that λ ∈ B1(R) and, therefore, p0 is absolutely continuous w.r.t.

the sparsity prior π. By Taylor’s formula and Assumption L we have

ℓ( fλ, f ) = L f (λ) É L f (λ∗)+∇L f (λ∗)⊤(λ−λ∗)+ (λ−λ∗)⊤M (λ−λ∗), ∀λ ∈Λ0.

Integrating both sides of this inequality w.r.t. p0 and using the fact that the density of π0 is sym-

metric about λ∗ and invariant under permutation of the components we find
∫

Λ
ℓ( fλ, f ) p0(dλ) É L f (λ∗)+Tr(M )

∫

Λ
(λ1 −λ∗

1 )2p0(dλ). (31)
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Combining this inequality with those stated in Lemmas 2 and 3, we get the desired result.

9.4. Proof of Proposition 4. Note that Assumption Q1 obviously holds and Assumption L is ful-

filled with M being the Gram matrix. The diagonal entries of M are equal to one since ‖φ j‖µ,2 =
1, and therefore we have Tr(M ) = M .

It remains to check Assumption Q2 in order to apply Theorem 2. Introduce the function

Ξ(t ) = exp
(
−β−1

{
Q(X1, g0 + t (g1 − g0))−Q(X1, g̃ )

})

= exp
[
−β−1

{
‖gt‖2

µ,2 −‖g̃‖2
µ,2 +2

(
g̃ (X1)− gt (X1)

)}]
, t ∈ [0,1]

where g0, g1 and g̃ are functions from the convex set FΛ, and gt = g0+t (g1−g0) ∈F . It is not hard

to see that Assumption Q2 follows from the fact that the mapping t 7→ E f [Ξ(t )] is concave for any

triplet g0, g1, g̃ ∈ FΛ. Let us prove now this concavity property. Since the functions g0, g1, g̃ are

uniformly bounded we get that Ξ(·) is twice continuously differentiable and the differentiation

inside the expectation E f [Ξ(t )] is legitimate. Therefore,

d

dt
E f [Ξ(t )] =−2β−1E f

[(
〈gt ,h〉−h(X1)

)
Ξ(t )

]
,

d 2

dt 2
E f [Ξ(t )] =−2β−2E f

[(
β‖h‖2

2 −2
{
〈gt ,h〉−h(X1)

}2
)
Ξ(t )

]
,

where h = g1 − g0, and

β2

2

d 2

dt 2
E f [Ξ(t )] É−

(
β‖h‖2

2 −2〈gt ,h〉2
)
E f

[
Ξ(t )

]
+2E f

[{
h(X1)2 −2〈gt ,h〉h(X1)

}
Ξ(t )

]
.

This leads to

Ξ(t ) É exp
[
−β−1

{
‖gt‖2

µ,2 −‖g̃‖2
µ,2

}
+4RL/β

]
:=Ξ1(t )

and

E f [Ξ(t )] Ê exp
[
−β−1

{
‖gt‖2

µ,2 −‖g̃‖2
µ,2 +4max

FΛ

E f [|g (X1)|]
}]

=Ξ1(t )e−4R(L+
p

L)/β.

Combining these estimates with inequalities

E[h(X1)2] É L‖h‖2
2, |〈gt ,h〉| É ‖gt‖2‖h‖2 É R‖h‖2, E[|〈gt ,h〉h(X1)|] É RL‖h‖2

2,

we get

β2

2

d 2

dt 2
E f [Ξ(t )] É−‖h‖2

2Ξ1(t )
(

(β−2R2)e−4R(L+
p

L)/β−2L−4RL)
)
É 0,

whenever (β−2R2)e−4R(L+
p

L)/β Ê 2L +4RL. This proves the concavity of t 7→ E f [Ξ(t )], and thus

the proposition.

9.5. Proof of Proposition 6. In view of (26), for any prior π and any β > 0 the MA aggregate f̂n

satisfies the inequality

E f [ℓΦ( f̂n , f )] É inf
p∈PΛ

(∫

Λ
ℓΦ( fλ, f ) p(dλ)+

βK (p,π)

n +1

)
+β

∫

Z

E f [S1(z,Z)]Pf (d z). (32)

with S1(z,Z) defined by S1(z,Z) = log
∫
λ exp

(
−β−1

{
Q(z, fλ)−Q(z, f̂n)

})
µ̂n(dλ). Let us introduce

the function ψλ(t ) = exp
(
− t

{
Q(z, fλ)−Q(z, f̂n)

})
. This function is infinitely differentiable, equals

one at the origin and we have S1(z,Z) = log
∫
Λψλ(β−1)µ̂n(dλ). Using the Taylor formula, we get

ψλ(t )É 1+ tψ′
λ(0)+

t 2

2

(
Q(z, fλ)−Q(z, f̂n)

)2
e tQ(z, f̂n), ∀t Ê 0.
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Furthermore, since the hinge loss is convex, the Jensen inequality yields
∫
Λψ′

λ
(0) µ̂n (dλ) É 0.

Replacing t by β−1 and using that Q(z, f̂n) É 1+RLφ, we get the inequalities

S1(z,Z) = log

∫

Λ
ψλ(β−1)µ̂n(dλ) É log

(
1+

e (1+RLφ)/β

2β2

∫

Λ

(
Q(z, fλ)−Q(z, f̂n)

)2
µ̂n(dλ)

)

É
e (1+RLφ)/β

2β2

∫

Λ

(
Q(z, fλ)−Q(z, f̂n)

)2
µ̂n(dλ) É

2e (1+RLφ)/β

β2
(1+RLφ)2.

Thus we obtain

E f [ℓΦ( f̂n , f )] É inf
p∈PΛ

(∫

Λ
ℓΦ( fλ, f ) p(dλ)+

βK (p,π)

n +1

)
+

2(1+RLφ)2e (1+RLφ)/β

β
, (33)

which is valid for any prior π. Note that the term with the infimum in (33) coincides with the right

hand side of the oracle inequality of Theorem 1. Therefore, when the sparsity prior is used, this

term can be bounded from above using Remark 3 with L̄ f (λ) =
∫
X
|η(x)|Kǫ

(
fλ(x)− f (x)

)
PX (d x).

Since also |η(x)| É 1, we get

E f [ℓ( f̂n , f )] É min
‖λ∗‖1ÉR−2Mτ

(
ℓ( fλ∗ , f )+

2β

n +1

{
α‖λ∗‖1 +

M∑

j=1

log(1+τ−1|λ∗j |)
})

+ǫ+4τ2Tr(M̄ǫ)

+
2(1+RLφ)2e (1+RLφ)/β

β
,

where the entries of the matrix M̄ǫ are ǫ−1
∫
X
|η(x)|φ j (x)φ j ′(x)PX (d x) with i , j = 1, . . . , M . Thus,

Tr(M̄ǫ) É L2
φMǫ−1, and we get the result of the proposition by minimizing the right hand side of

the last display with respect to ǫ> 0.
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