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Abstract

In this paper we study the asymptotic behaviour of a nonlocal non-

linear parabolic equation governed by a parameter. After giving the exis-

tence of unique branch of solutions composed by stable solutions in sta-

tionary case, we gives for the parabolic problem L
∞ estimates of solution

based on using the Moser iterations and existence of global attractor. We

finish our study by the issue of asymptotic behaviour in some cases when

t → ∞.

1 Introduction

The non-local issues are important in studying the behavior of certain physi-
cal phenomena and population dynamics. A major difficulty in studying these
problems often lie in the absence of well-known properties as maximum princi-
ple, regularity and properties of Lyapunov (see [5], [6]) and also the difficulty
to characterize and determine the stationary solutions associated thus making
study the asymptotic behavior of these solutions very difficult.
In this paper we study the solution u(t, x) to the nonlocal equation











ut − div(a(lr(u(t)))∇u) = f dans R
+ × Ω

u(x, t) = 0 sur R
+ × ∂Ω

u(., 0) = u0 dans Ω.

(1)

In the above problem u0 and f are such that

u0 ∈ L2(Ω), f ∈ L2(0, T, L2(Ω)), (2)

with T a arbitrary positive number, a is a continuous function such that

∃m,M such that 0 < m ≤ a(ǫ) ≤ M ∀ǫ ∈ R. (3)

The nonlocal functional lr is defined such that

lr(.)(x) : L
2(Ω) → R, u → lr(u(t))(x) =

∫

Ω∩B(x,r)

g(y)u(t, y)dy. (4)

Here B(x, r) is the closed ball of Rn with radius r and g ∈ L2(Ω).. It is some-
times possible to consider g more generally, especially when one is interested in
the study of stationary solutions of (see [3]).
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In physical point of view problem (1) gives many applications especially
where g = 1 in population dynamics. Indeed, in this situation u may represent
a population density and lr(u) the total mass of the subdomain Ω ∩B(x, r) of
Ω. Hence (1) can describe the evolution of a population whose diffusion velocity
depends on the total mass of a subdomain of Ω. For more details of modeli-
sation we refer the reader to [7]. This type of equation can be applied more
generally to other models including the study of propagation of mutant gene
(see [11],[12],[13]). A very recent study of this propagation was made by Ben-
dahmane and Sepúlveda [4] in which they analyze using a finite volume scheme
adapted, the transmission of this gene through 3 types of people: susceptible,
infected and recovered.

In mathematical point of view, when r = d where d is the diameter of Ω
problem (1) has been studied in various forms (see [6],[8],[9],[15]).

However when 0 < r < d, several questions from the theory of bifurca-
tions have arisen concerning the structure of stationary solutions including the
existence of a principle of comparison of different solutions depending on the
parameter r and the existence of branches (local and global) of solutions. A
large majority of these issues has been resolved in [3]. It shows that when a is
decreasing the existence of a unique global branch of solutions and existence of
branch of solutions that are purely local. Some questions may then arise:

(i) The unique branch described in [3] it is composed of stable solutions?

(ii) What about stability properties of the corresponding parabolic problem?

The plan for this work is the following. In section 2 we give some existence and
uniqueness results. Section 3 is devoted to stationary problem corresponding to
(1). In particular, we study in a radial case, a generalisation of Chipot-Lovat
results about determination of the number of solutions. We also establish that
the unique global branch of solutions described in [3] is composed by stable
solutions (theorem3.8). In section 4 firstly we address a L∞ estimate taking to
account Lp estimate based on Moser iterations. Secondly we prove existence of
absorbing set in H1

0 , which allows us to prove the existence of a global attractor
associated to (1) (see remark 5). Finally we obtain a result of stability properties
of the corresponding parabolic problem.

2 Existence and uniqueness results

In this section we show a result of existence . We set V = H1
0 (Ω) and V ′ its

dual, we take the norm in V , ‖.‖V such that

‖u‖2V =

∫

Ω

|∇u|2dx

< ., . > means the duality bracket of V ′ and V.

Then we have

Theorem 2.1. Let T > 0, f ∈ L2(0, T, V ′) and u0 ∈ L2(Ω), we assume that a
is a continuous function and the assumption (3) checked then for every r fixed,
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r ∈ [0, diam(Ω)], there exists a function u such that










u ∈ L2(0, T, V ), ut ∈ L2(0, T, V ′)

u(0, .) = u0 in Ω
d
dt
(u, φ) +

∫

Ω
a(lr(u(t)))∇u∇φdx =< f, φ > in D′(0, T ) ∀φ ∈ H1

0 (Ω).

(5)
Moreover if a is locally Lipschitz i.e

∀c ∃γc such that |a(ǫ)− a(ǫ′)| ≤ γc|ǫ− ǫ′| ∀ǫ, ǫ′ ∈ [−c, c], (6)

then the solution of (5) is unique.

Remark 1. Before to do the proof, it is necessary to see that for r = 0 problem
(5) is linear and the proof follows a well-known result (see [10]), it is even
when r = diam(Ω) (see [7]). We will focus therefore in the following where
r ∈]0, diam(Ω)[.

Proof. For the existence proof we will use the Schauder fixed point theorem.
Let w ∈ L2(0, T, L2(Ω)) we get

t −→ lr(w(t)),

is measurable as a is continuous then

t −→ a(lr(w(t))),

is too. The problem of finding u = u(t, x) solution of










u ∈ L2(0, T, V ) ∩ C([0, T ], L2(Ω)) ut ∈ L2(0, T, V ′)

u(0, .) = u0

d
dt
(u, φ) +

∫

Ω a(lr(w(t)))∇u∇φdx =< f, φ > in D′(0, T ) ∀φ ∈ H1
0 (Ω),

(7)
is linear, besides (7) admits a unique solution u = Fr(w) (see[10],[7]). Thus we
show that the application

w −→ Fr(w) = u, (8)

admits a fixed point. Taking w = u in (7) we get using (3) and the Cauchy-
Schwarz inequality

1

2

d

dt
|u|22 +m‖u‖2V ≤ |f |⋆‖u‖V , (9)

‖.‖V is the usual norm in V and |f |⋆ is the dual norm of f. We take

|u|L2(0,T,V ) =

{

T
∫

0

‖u‖2V dt

}
1
2

.

Using Young’s inequality to the right-hand side of (9), it follows that

1

2

d

dt
|u|22 +

m

2
‖u‖2V ≤

1

2m
|f |2⋆. (10)

By integrating (10) on (0, t) for t ≤ Twe obtain

1

2
|u(t)|22 +

m

2

t
∫

0

‖u‖2V dt ≤
1

2
|u0|

2
2 +

1

2m

t
∫

0

|f |2⋆. (11)
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We deduce that there exists a constant C = C(m,u0, f) such that

|u|L2(0,T,V ) ≤ C (12)

Moreover

< ut, v > + < −div(a(lr(u(t)))∇u), v >=< f, v > ∀v ∈ V,

This gives us
|ut|⋆ ≤ M‖u‖V + |f |⋆. (13)

By raising (13) squared and using the Young inequality we have that

|ut|
2
⋆ ≤ 2M2‖u‖2V + 2|f |2⋆. (14)

By integrating (14) on (0, t) and assuming (12) we obtain

|ut|L2(0,T,V ′) ≤ C′, (15)

with C′ = C′(m,M, f, u0) and C′ is independent to w. It follows from (12) and
(15)

|ut|
2
L2(0,T,V ′) + |u|2L2(0,T,V ) ≤ R, (16)

with R = C2 + C′2. From (12) and the Poincaré inequality it follows that

|u|L2(0,T,L2(Ω)) ≤ R′, (17)

By setting
R1 = max(R′, R), (18)

and associating (17) and (18), it follows that the application F maps the ball
B(0, R1) of L

2(0, T, L2(Ω)) into itself. Moreover the balls of H1(0, T, V, V ′) are
relatively compact in L2(0, T, L2(Ω)) (see [10] for more details), (16) clearly
shows us that F (B(0, R1) is relatively compact in B(0, R1) with

B(0, R1) = {u ∈ L2(0, T, L2(Ω)); |u|L2(0,T,L2(Ω)) ≤ R1}.

In order to apply the Schauder fixed point theorem, as announced, we just need
to show that F is continuous from B(0, R1) to itself. This is actually the case
and completes the proof of existence.

We will now discuss the uniqueness assuming of course that assumption (6)
be verified. Consider u1 and u2 two solutions (5), by subtracting one obtains in
D ′(0, T )

d

dt
(u1−u2, v)+

∫

Ω

(a(lr(u1(t))∇u1(t)−a(lr(u2(t)))∇u2(t))∇φdx = 0 ∀φ ∈ H1
0 (Ω).

(19)
Since

a(lr(u1(t)))∇u1 − a(lr(u2(t)))∇u2(t) = (a(lr(u1(t))) − a(lr(u2(t)))∇u1(t)

+ a(lr(u2(t)))∇(u1(t)− u2(t)),

(20)
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we get

d

dt
(u1 − u2, v)+

∫

Ω

a(lr(u2(t)))∇(u1(t)− u2(t))∇φdx

= −

∫

Ω

(a(lr(u1(t))) − a(lr(u2(t)))∇u1∇φdx ∀φ ∈ H1
0 (Ω).

(21)

Moreover u1, u2 ∈ C([0, T ], L2(Ω)) there exist z > 0 such that

lr(u1(t)), lr(u2(t)) ∈ [−z, z]. (22)

Taking v = u1 − u2 in (21), it comes easily by Cauchy-Schwartz inequality and
(6)

1

2

d

dt
|u1 − u2|

2
2 +m‖u1− u2‖

2
V ≤ γ|lr(u1(t))− lr(u2(t))|‖u1‖V ‖u1 − u2‖V . (23)

We get in [3]

|lr(u(t)) ≤ C|B(x, r) ∩Ω|
1

n∨3 |g|2|u(t)|2 ≤ |Ω|
1

n∨3 |g|2|u(t)|2, (24)

where C a constant, |Ω| represents the measure of Ω and n ∨ 3 the maximum
between the dimension n of Ω and 3. By using (24), (23) and the Young in-
equality

ab ≤
1

2m
b2 +

m

2
a2.

We deduce
d

dt
|u1 − u2|

2
2 +m‖u1 − u2‖

2
V ≤ p(t)|u1 − u2|

2
2, (25)

with

p(t) =
1

m
(γC |Ω|

1
n∨3 |g|2 ‖u1‖V )2 ∈ L1(0, T ),

which leads to
d

dt
|u1 − u2|

2
2 ≤ p(t)|u1 − u2|

2
2. (26)

Multiplying (26) by e−
∫

t

0
p(s)ds it follows that

e−
∫

t

0
p(s)ds d

dt
|u1 − u2|

2
2 − p(t)e−

∫
t

0
p(s)ds|u1 − u2|

2
2 ≤ 0. (27)

Hence
d

dt
{e−

∫
t

0
p(s)ds|u1 − u2|

2
2} ≤ 0. (28)

This shows that t 7−→ e
−

t∫

0

p(s)ds
|u1 − u2|

2
2 is nonincreasing. Since for t = 0,

u1(0, .) = u2(0, .) = u0.

This function vanishes at 0 and nonnegative, we conclude that it is identically
zero. This concludes the proof.
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3 Stationary solutions

Consider the weak formulation to the stationary problem associated to (1)

(Pr)

{

−div(a(lr(u))∇u) = f dans Ω

u ∈ H1
0 (Ω).

(29)

3.1 The case r = d

By taking φ the weak solution of the problem
{

−∆φ = f dans Ω

φ ∈ H1
0 (Ω),

(30)

we get due to a Chipot-Lovat [8] results that

Theorem 3.1. Let a be a mapping from R into (0,∞). The problem (Pd) has
many solutions as the problem in R

µa(µ) = ld(φ), (31)

with µ = ld(ud).

Remark 2. Theorem 3.1 allows us to see where a is increasing that the problem
Pd admits a unique solution and determine for a given a the exact number of
solutions (Pd). However it is difficult or impossible to adapt the proof of the
theorem3.1 in case 0 < r < d.

3.2 The case 0 < r < d

As announced in the introduction we focus our study to the case of radial
solutions of (Pd). We will assume Ω is the open ball of Rn with radius d/2
centered at zero. We set

L2
r(Ω) = {u ∈ L2(Ω) ∃ũ ∈ L2(]0, d/2[) such that u(x) = ũ(‖x‖)},

and we also assume that

f ∈ L2
r(Ω)

g ∈ L2
r(Ω)

a ∈ W 1,∞(R), inf
R

a > 0

f ≥ 0 a.e in Ω

g ≥ 0 a.e in Ω.

(32)

We start by giving in some sense in a linear case a result that will be used
later to explain the asymptotic behavior.

Proposition 3.2. Let A,B ∈ C(Ω) be positive radial functions such that A ≤ B
in Ω and also f, h ∈ L2(Ω) two positive radial functions. Let u ∈ H1

0 (Ω) the
radial solution to

− div(A(x)∇u) = f in Ω, (33)

and
− div(B(x)∇u) = h in Ω. (34)

Then f ≤ h a.e in Ω.
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Proof. We proved in [3] that if u is a the radial solution of (33) then for a.e t in
[0, d/2],

ũ′(t) = −
1

Ã(t)

t
∫

0

(
s

t
)n−1f̃(s) ds. (35)

From (33), (34) and (35) we obtain

B̃(t)

Ã(t)

t
∫

0

(
s

t
)n−1f̃(s) ds =

t
∫

0

(
s

t
)n−1h̃(s) ds.

Since A ≤ B in Ω and f, h ≥ 0 with f 6≡ 0, h 6≡ 0 hence f ≤ g.

In a nonlocal case, some results of existence of radial solutions and compar-
ison principle between ur, ud and u0 has been demonstrated in [3]. It is also
proved that if we set for all r ∈ [0, d]

Ir := [inf
Ω

lr(φ), sup
Ω

lr(φ)]. (36)

Here φ denotes the solution of
{

−∆φ = f dans Ω

φ ∈ H1
0 (Ω).

(37)

By the inclusion or not of Ir at an interval of R we somehow generalize the
theorem3.1.

Lemma 3.3. Let r ∈ [0, d]. Assume that (32) holds true and there exist 0 ≤
m1 ≤ m2 such that

a(m1) = max
[m1,m2]

a a(m2) = min
[m1,m2]

a (38)

Ir ⊂ [m1a(m1),m2a(m2)]. (39)

Then (Pr) admits a radial solution u and

m1 ≤ lr(u) ≤ m2 a.e in Ω. (40)

For the proof, we refer the reader to [3].
Generalizing this construction type of the diffusion coefficient a we obtain

Proposition 3.4. Let r ∈ [0, d]. Assume that (32) holds true and there exist
an odd integer n1 and n1 + 1 positive real numbers {mi}i=0...n1 , with m0 = 0
and for all i ∈ {0, . . . , n1 − 1} we have mi < mi+1. Moreover

a(mi) = max
[mi,mi+1]

a; a(mi+1) = min
[mi,mi+1]

a ∀i ∈ {0, 2, . . . , n1 − 3, n1 − 1}

Ir ⊂
⋂

i=0,2,...,n1−3,n1−1

[mia(mi),mi+1a(mi+1)]

(41)

Then (Pr) admits at least n1+1
2 radial solutions {ui}i∈{0,2,...,n1−1} such that

mi ≤ lr(ui) ≤ mi+1 ∀i ∈ {0, 2, . . . , n1 − 3, n1 − 1}.
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Proof. The proof here is by induction. Indeed we set

Pn1 = { If condition (41) is satisfied then(Pr) admits at least
n1 + 1

2
solutions.}

By using lemma 3.3 with m1 = 0 and m2 = m1, it is easy to prove for n1 = 1
that Pn1 is true. For n1 > 1, This procedure can be repeated to prove that if
Pn1−2 holds true then Pn1 holds too.

Example 1. Let us see a function a satisfying proposition 3.4. For this, we
consider the case n1 = 3 and r ∈ (0, d]. Considering (32) and the strong
maximum principle we get min Ir > 0. Taking

m1 := 2
max Ir
a(0)

, a(m1) :=
a(0)

2

with a(0) > 0 and also a decreasing on [0,m1] then we prove lemma 3.3 condi-
tions.

By repeating this process with m2 > m1 and setting

a(m2) :=
min Ir
m2

, m3 := 2
max Ir
a(m2)

with a(m3) := a(m2)
2 and also a is decreasing on [m2,m3]. This shows the

existence of such a.

a(0)

a(m2 )

a(m1 )

a(m3 )

x
m1 m2 m3

0

Figure 1: The case n1 = 3

In the representation of a we have deliberately left, on solid line parts of
the curve satisfying the conditions of proposition 3.4 and dotted line one without
constraints. This situation are explain in the figure 1.
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Remark 3. As previously announced, the proposition 3.4 generalizes a certain
point of view Theorem 3.1. However it does not accurately determine the exact
number of solutions of (Pr) and the bifurcation points of branch of solutions.
We have shown in [2] way to solve this problem by using the linearized problem,
the principle of comparisons obtained in [3] and the Krein-Rutman theorem.

3.3 Stable solutions of (P
r
)

Definition 3.5. Given a domain Ω ⊂ R
n, a solution ur ∈ H1

0 (Ω) of (Pr) is
stable if:

∀φ ∈ H1
0 (Ω) Gur

(φ) :=

∫

Ω

a(lr(ur))|∇φ|2 −

∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ ≥ 0.

(42)

Definition 3.6. Given u : [0, d] → H1
0 (Ω), the graph of u is called a (global)

branch of solutions if

(i) u ∈ C([0, d], H1
0 (Ω)),

(ii) u(r) is solution to (Pr) for all r in [0, d].

u is called a local branch if it’s defined only on a subinterval of [0, d] with positive
measure.

Before concluding this section, we will focus into the case a nonincreasing to
prove the stability of the global branch of solutions. Assume for all r ∈ [0, d],
ur is a solution to (Pr) and

0 ≤ lr(ur)(x) ≤ µd for a.e x ∈ Ω. (43)

Assume that there exists a solution µd to (31) such that

a(µd) = min
[0,µd]

a and a(0) = max
[0,µd]

a. (44)

We prove in [3]

Theorem 3.7. Assume (32), (43), (44) and (31) holds. Assume in addition
that a ∈ W 1,∞(R) and for some positive constant ǫ, it holds that

C1|g|2|f |2|a
′|∞,[−ǫ,µd+ǫ]

1

a(µd)2
< 1, (45)

where C1 is a constant dependent to Ω. Then

(i) For all r in [0, d], (Pr) possesses a unique radial solution ur in [u0, ud];

(ii) {(r, ur) : r ∈ [0, d]} is a branch of solutions without bifurcation point;

(iii) it is only global branch of solutions;

(iv) if in addition, a is nonincreasing on [0, µd] then r 7→ ur is nondecreasing.
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Remark 4. It is very difficult to obtain property (iv) for any a. However when
a is nonincreasing provide us important information for studying the stability
of this branch of solutions.

Corollary 3.8. Let u1
d the smallest solution to (Pd). Assume (32) and (31)

holds true and there exists a solution µd to (31) satisfied (44). Assume in
addition that a ∈ W 1,∞(R), u1

d satisfied (43) and for some positive constant ǫ,
it holds that

C1|g|2|f |2|a
′|∞,[−ǫ,µd+ǫ]

1

a(µd)2
< 1, (46)

where C1 is a constant dependent to Ω.
Then {(r, ur) : r ∈ [0, d]} is the only global branch of solutions starting to

u1
d.

Proof. The fact that {(r, ur) : r ∈ [0, d]} is the only global branch of solutions
results from theorem3.7. We will now show that this unique branch of solutions
is stable and start at r = d by u1

d. For this we consider without loss of generality
(Pd) admits two solutions u1

d and u2
d such that u1

d ≤ u2
d. We denote by µ1 and

µ2 respectively solutions of (31) corresponding to u1
d and u2

d (see figure 2). It is
easy to see that µ1 and µ2 satisfied (44).

Assume {(r, ur) : r ∈ [0, d]} is the only global branch of solutions starting
to u2

d. Then we get C1|g|2|f |2|a
′|∞,[−ǫ,µ2+ǫ]

1
a(µ2)2

< 1. In this case, using

theorem3.7 we get (Pr) possesses a unique radial solution ur in [u0, u
2
d] and the

mapping r 7→ ur is nondecreasing. By continuity of this mapping, we can find a
r0 ∈]0, d[ such that ur0 = u1

d for a.e x ∈ Ω. This means that u1
d is a solution

of (Pr0). This gives us an absurdity and concludes the proof.

We are now able to prove:

Proposition 3.9. Under assumptions and notation of corollary 3.8, the global
branch of solutions described in theorem3.7 is composed by stable solutions.

Proof. For all r ∈ [0, d], let ur be a solution belonging to the global branch of
solutions described in theorem3.7. By using the linearized problem of (Pr), we
get ∀φ ∈ H1

0 (Ω)

∫

Ω

a(lr(ur))|∇φ|2−

∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ ≥

inf
Ω

a(lr(ur))|∇φ|22 − C |g|2|a
′|∞,[−ǫ,µ1+ǫ]|∇ur|2|∇φ|22.

(47)

Taking into account that |∇ur|2 ≤ C(Ω) |f |2

inf
Ω

a(lr(ur))
where C(Ω) designed the

Poincaré Sobolev constant. We obtain
∫

Ω

a(lr(ur))|∇φ|2−

∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ ≥

|∇φ|22

(

inf
Ω

a(lr(ur))− C1 |g|2|a
′|∞,[−ǫ,µ1+ǫ]

|f |2
inf
Ω

a(lr(ur))

)

.

(48)
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Moreover by assumptions (43) and (44) we get a(µ1) ≤ inf
Ω

a(lr(ur)).

Thus (46) becomes

C1|g|2|f |2|a
′|∞,[−ǫ,µd+ǫ]

1

inf
Ω

a(lr(ur))
2 < 1. (49)

We deduces
∫

Ω

a(lr(ur))|∇φ|2 −

∫

Ω

a′(lr(ur))lr(φ)∇ur∇φ ≥ 0. (50)

This concluded the proof.

a(0)

a(\mu_1)

a(\mu_2)

\mu_1 \mu_2 \mu

Figure 2: case of 2 solutions

r=0 r=d

r

u 0

u1

u 2

Global stable branch

Local branch

Figure 3: Branch of solutions
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4 Parabolic problem

4.1 L
∞ estimate

In what follows we obtain L∞ estimate of the solution (1) from Lq estimate.
The method we use is based on iterations Moser type, for more details on the
method see [14].

We get

Theorem 4.1. Let n ≥ 3 and u a classical solution of (1) defined on [0, T ).
Assume that p > 1 and q > 1 such that 1

p
+ 1

q
= 1. Suppose further that

Uq = supt<T |u(t)|q < ∞, f ∈ L∞(0,∞, Lq(Ω)). If p < n
n−2 then U∞ < ∞.

To prove this theorem we need the following proposition:

Lemma 4.2. Consider u a classical solution of (1) on [0, T ), r ≥ 1 and p >
1 such that 1

p
+ 1

q
= 1 with p < n

n−2 . We take Ũr = max{1, |u0|∞, Ur =

supt<T |u(t)|r} and let

σ(r) =
p(n+ 2)

2[r(2p− pn+ n) + np]
.

Then there exists a constant C2 = C2(Ω,m) such that

Ũ2r ≤ [C2 ‖f‖L∞(0,∞,Lq(Ω))]
σ(r)rσ(r)Ũr.

Proof. Multiplying (1) by u2r−1 and then using the Hölder inequality yields

1

2r

d

dt

∫

Ω

u2rdx+m
2r − 1

r2

∫

Ω

|∇(ur)|2dx ≤ |f |q|u
2r−1|p. (51)

As

|u2r−1|p = |ur|
2r−1

r

p 2r−1
r

, (52)

by taking w = ur in (51) and (52), we get easily

1

2r

d

dt
|w|22 +m

2r − 1

r2
|∇w|22 ≤ |f |q|w|

α
αp, (53)

with α = 2r−1
r

. Let β such that

1

αp
= β +

1− β

2⋆
, (54)

with 2⋆ = 2n
n−2 . We claim that β ∈ (0, 1).

In fact

β =
2nr − (n− 2)(2r − 1)p

(n+ 2)(2r − 1)p
.

Since p < 2r
2r−1

n
n−2 then β > 0. As well as (n+2)(2r−1)p > 2nr−(n−2)(2r−1)p

implies that β < 1 this prove that β ∈ (0, 1).
Using an interpolation inequality (see [14]) in (53) and (54), we get

1

2r

d

dt
|w|22 +m

2r − 1

r2
|∇w|22 ≤ |f |q

(

|w|β1 |w|
1−β
2⋆

)α

. (55)
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Applying Sobolev injections in (55), we have

1

2r

d

dt
|w|22+m

2r − 1

r2
|∇w|22 ≤

[

|f |q

(

2r

m

)

α(1−β)
2

|w|βα1 C(1−β)α

] [(

m

2r

)

α(1−β)
2

|∇w|
(1−β)α
2

]

,

(56)
and also

1

2r

d

dt
|w|22+m

2r − 1

r2
|∇w|22 ≤

[

|f |q

(

2r

m

)

α(1−β)
2

|w|βα1 C(1−β)α

] [(

m

2r

)

|∇w|22

]

α(1−β)
2

.

(57)

Since β ∈ (0, 1) and α
2 ∈ (0, 1) it is clear that α(1−β)

2 ∈ (0, 1). Applying Young’s

inequality to (57) with α(1−β)
2 + 1− α(1−β)

2 = 1. We obtain

1

2r

d

dt
|w|22+m

2r − 1

r2
|∇w|22 ≤ δ

[

|f |
1
δ
q

(

2r

m

)

α(1−β)
2δ

|w|
βα
δ

1 C
2
δ

]

+
α(1− β)

2

[(

m

2r

)

|∇w|22

]

,

(58)

with δ = 1− α(1−β)
2 .

Joining the fact that α(1−β)
2 ∈ (0, 1) and δ < 1 to (58), we deduce

1

2r

d

dt
|w|22 +m

3r − 2

2r2
|∇w|22 ≤ |f |

1
δ
q

(

2r

m

)

α(1−β)
2δ

|w|
βα
δ

1 C
2
δ . (59)

We set

2rσ(r) − 1 =
α(1 − β)

2δ
and 2ρ(r) =

βα

δ
,

(59) becomes

1

2r

d

dt
|w|22 +m

3r − 2

2r2
|∇w|22 ≤ |f |

1
δ
q

(

2r

m

)2rσ(r)−1

|w|
2ρ(r)
1 C

2
δ . (60)

This gives us taking into account that 3r−2
r

> 1

d

dt
|w|22 +m|∇w|22 ≤ |f |

1
δ
q

(

2r

m

)2rσ(r)

|w|
2ρ(r)
1 mC

2
δ . (61)

By a calculation we can verify that

ρ(r) =
2nr − (n− 2)(2r − 1)p

2r(p(n+ 2) + n)− 2n(2r − 1)p
,

and also that ρ(r) ∈ (0, 1).
Using the Poincaré Sobolev inequality and that ρ(r) < 1 in (61), yields

d

dt
|w|22 +

m

C1(Ω)
|w|22 ≤ |f |

1
δ
q

(

2r

m

)2rσ(r)

|w|21 mC
2
δ , (62)

where C1(Ω) designed the Poincaré Sobolev constant. Noticing that

e
− m

C1(Ω)
t d

dt

(

e
m

C1(Ω)
t
|w|22

)

=
d

dt
|w|22 +

m

C1(Ω)
|w|22 ≤ |f |

1
δ
q

(

2r

m

)2rσ(r)

|w|21 mC
2
δ .

(63)
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and integrating (63) on [0, t) we get

|w(t)|22 ≤ |w(0)|22 + ‖f‖
1
δ

L∞(0,∞,Lq(Ω))

(

2r

m

)2rσ(r)

mC
2
δ |w|21. (64)

Since

|w(0)|22 =

∫

Ω

w(0)2dx =

∫

Ω

u(0)2rdx ≤ |Ω||u(0)|2r∞ ≤ |Ω|Ũ2r
r , (65)

(64) and (65) gives us

Ũ2r
2r ≤ |Ω|Ũ2r

r + ‖f‖
1
δ

L∞(0,∞,Lq(Ω))

(

2r

m

)2rσ(r)

mC
2
δ Ũ2r

r . (66)

Whereas 1
δ
> 1, 2rσ(r) > 0 and σ(r) = 1

2rδ it follows that

Ũ2r ≤ C
σ(r)
2 ‖f‖

σ(r)
L∞(0,∞,Lq(Ω))r

σ(r)Ũr, (67)

with C2 = C2(Ω,m). This completes the proof of Lemma.

We have also

Lemma 4.3. Let r > 1, n ≥ 3, p < n
n−2 and σ(r) = p(n+2)

2[r(2p−pn+n)+np] then we
get

σ(2kr) ≤ θkσ(r) ∀k ∈ N,

with θ ∈ (0, 1).

Proof. By asking c1 = p(n+2)
2 , c2 = (2p − pn + n) and c3 = np yields σ(r) =

c1
rc2+c3

with c1, c2, c3 ∈ R
⋆
+ .By taking θ = 1− c2

2c2+c3
the proof of this lemma is

deduced by reasoning by induction.

Returning now to the proof of the theorem, by lemma 4.2 we get

Proof.
Ũ2r ≤ [C2 ‖f‖L∞(0,∞,Lq(Ω))]

σ(r)rσ(r)Ũr.

By iterating this equation by taking r = h, r = 2h, r = 22h, etc, we obtain

Ũ2k+1h ≤ [C2 ‖f‖L∞(0,∞,Lq(Ω))]
λ1 2λ2 hλ1 Ũh,

with
λ1 := σ(h) + σ(2h) + σ(22h) + ..+ σ(2k−1h) + σ(2kr)

et

λ2 := σ(2h) + 2σ(22h) + 3σ(23h) + ...+ (k − 1)σ(2k−1h) + kσ(2kr).

To complete the proof we just need to show that λ1, λ2 < +∞. Indeed by
lemma 4.3

λ1 ≤

k
∑

µ=0

αµσ(h) ≤

∞
∑

µ=0

αµσ(h) =
σ(h)

(1− α)
< ∞.

Noting also that
σ(2kh) ≤ θk−1σ(2h) ∀k ∈ N

⋆,
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it follows

λ2 ≤

k
∑

µ=1

µαµ−1σ(2h) ≤

∞
∑

µ=1

µαµ−1σ(2h) =
σ(2h)

(1− α)2
< ∞.

This completes the proof of the theorem.

4.2 Uniform estimate in time

We prove in what follows an estimate of u in L∞(R+, H1
0 (Ω)). We get

Theorem 4.4. Assume that f ∈ L2(Ω), g ∈ H1(Ω), u0 ∈ H1
0 (Ω) and a ∈

W 1,∞(R) with inf
R

a > 0. Then a solution u of (1) is such that u ∈ L∞(R+, H1
0 (Ω)).

Taking a spectral basis related to the Laplace operator in the Galerkin ap-
proximation (see [16]) we find that −∆u can be regarded as test function in
L2(0, T, L2(Ω)) for all T > 0. By multiplying (1) by −∆u(t) and integrating
over Ω

(ut,−∆u) + (−div(a(lr(u))∇u),−∆u) = (f,−∆u), (68)

and also

1

2

d

dt
‖u‖2V + (−a(lr(u))∆u,−∆u) + (−a′(lr(u))∇lr(u).∇u,−∆u) = (f,−∆u).

(69)
Here (., .) is the usual scalar product on L2(Ω). Taking to account

|∇lr(u)|2 ≤ K ‖g‖H1(Ω)|∇u|2, (70)

where K is a constant depending of Ω. It comes

|(−a′(lr(u))∇lr(u).∇u,−∆u)| ≤ K ‖g‖H1(Ω)|a
′|∞‖u‖2V |∆u|2 (71)

Now from (71) and (69) we have

1

2

d

dt
‖u‖2V +m|∆u|22 −K ‖g‖H1(Ω)|a

′|∞‖u‖2V |∆u|2 ≤ |f |2|∆u|2. (72)

By using Young’s inequality ab ≤ 1
2ma2 + m

2 b
2, we get

d

dt
‖u‖2V ≤

1

m
|f |22 +

1

m
(K ‖g‖H1(Ω))

2‖a′‖2∞‖u‖4. (73)

In order to apply the uniform Gronwall lemma to (73) we start with a small
estimate. Remember that

d

dt
|u|22 + m‖u‖2V ≤

1

λm
|f |22, (74)

where λ is the principal eigenvalue of the Laplacian operator with Dirichlet
boundary conditions.

By integrating on [t, t0) we get

|u(t+ t0)|
2
2 + m

t+t0
∫

t

‖u‖2V ds ≤

t+t0
∫

t

1

λm
|f |22 ds+ |u(t)|22, (75)
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and also
t+t0
∫

t

‖u‖2V ds ≤
t0

λm2
|f |22 ds+

1

m
|u(t)|22. (76)

Let ρ0 > 0 such that |u(t)|22 ≤ ρ20. By setting

a1 =
1

m
c1(Ω)

2|a′|2∞a3 a2 =
t0
m
|f |22 a3 =

t0λ

m2
|f |22 +

1

m
ρ20,

we obtain by using uniform Gronwall lemma to (73)

‖u(t+ t0)‖V ≤ (
a3
t0

+ a2)exp(a1) ∀t ≥ 0, t0 > 0. (77)

Hence u ∈ L∞(t0,+∞, H1
0 (Ω)). By using (73) and the classical Gronwall lemma

it is easy to see that u ∈ L∞(0, t0, H
1
0 (Ω)). This completes the proof of the

theorem.

Remark 5. This theorem show us the existence of absorbing set in H1
0 (Ω). By

considering S(t) the semigroup associated to the equation (1) defined by

S(t) : L2(Ω) → L2(Ω)

u0 7→ u(t),

with u(t) a solution of (1). As a result of the theorem 4.4 and the compact
embedding of H1

0 (Ω) into L2(Ω) we deduce that the semigroup S(t) possesses
a global attractor. Indeed it is easy to show the existence of absorbing set in
L2(Ω), the main difficulty here is to show that S(t) is such that

∀B ⊂ L2(Ω) bounded, ∃t0 = t0(B)

such that
⋂

t≥t0

⋃

S(t)B is relatively compact in L2(Ω). (78)

This property known as S(t) is uniformly compact for t large can be proved by
using theorem4.4 and the compact embedding of H1

0 (Ω) into L2(Ω).

4.3 Asymptotic behaviour

In this part we are interested in asymptotic behaviour of a weak solution of (1).
Our main interest here is the radial solutions. By radial solutions we means
ũ(t, |x|) = u(t, x). As in the stationary case Ω is a open ball of Rn. Remember
that

L2
r(Ω) = {v ∈ L2(Ω) ∃ṽ ∈ L2(]0, d/2[) such that v(x) = ṽ(‖x‖)}.

In order to not make confusion between u0 the solution to (P0) and the initial
value of (1), we will take u0 the initial value of (1).

Theorem 4.5. Assume that f, g ∈ L2
r(Ω), a is a continuous function and the

assumption (3) checked then (1) admits a radial solution.

Proof. Let w ∈ L2(0, t, L2
r(Ω)) it is clear that lr(w) is radial and also a(lr(w)).

Thus by (8) Fr maps L2(0, t, L2
r(Ω)) into itself. The proof now follows by using

arguments similar to those used in theorem2.1.
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Assume now
f, g ≥ 0 in Ω (79)

and
u0 ≤ u0 ≤ ud, (80)

with u0 the initial value to (1) and u0 and ud respectively the solution of (P0)
and (Pd).

We can now give a stability result assuming that (1) admits a unique solution.

Theorem 4.6. Assume (79) and f, g ∈ L2
r(Ω). Let u, ud and u0 respectively

the solution of (1), (Pd) and (Pd). If

u0 ≤ u0 ≤ ud,

then
u0 ≤ u ≤ ud ∀t.

Proof. Let
S = {t | l(u(s)) ∈ [0, ld(ud)] ∀s ≤ t}. (81)

It is easy to prove that S contains 0 (see 80). By setting

t⋆ = sup{t |t ∈ S}. (82)

By continuity of the mapping t → ld(u(t)), we get

ld(u(t
⋆)) ∈ [0, ld(ud)]. (83)

By using (1) and (Pd) we get in D(0, t⋆)

d

dt
(ud−u, φ)+

∫

Ω

a(ld(u))∇(ud−u)∇φ = −

∫

Ω

(a(ld(ud))−a(ld(u)))∇ud∇φ ∀φ ∈ H1
0 (Ω).

(84)
Choising φ = (ud − u)−, (84) becomes

1

2

d

dt
|(ud−u)−|22+

∫

Ω

a(ld(ud))|∇(ud−u)−|2 =

∫

Ω

(a(ld(u))−a(ld(ud)))∇ud∇(ud−u)−.

(85)
Since a is nonincreasing (a(ld(u))−a(ld(ud)) ≥ 0 ∀t ≤ t⋆) hence proposition 3.2
yields

∫

Ω

(a(ld(u))− a(ld(ud)))∇ud∇(ud − u)− ≤ 0. (86)

Thus
1

2

d

dt
|(ud − u)−|22 + a(ld(ud))|∇(ud − u)−|22 ≤ 0 (87)

Applying Poincarr Sobolev inequality we get

1

2

d

dt
|(ud − u)−|22 + C2|(ud − u)−|22 ≤ 0, (88)

this prove
d

dt
{e2tC2 |(ud − u)−|22} ≤ 0. (89)

17



Moreover (ud − u)−(0) = (ud − u0)− = 0 it follows that ud ≥ u ∀t ∈ [0, t⋆]. In
the same way we can also prove u0 ≤ u ∀t ∈ [0, t⋆]. It follows

u0 ≤ u ≤ ud ∀t ∈ [0, t⋆] (90)

To finish we just need to prove that t⋆ is very large, this is typically the case.
Indeed if t⋆ < ∞ then

l(u(t⋆)) = 0 or ld(ud). (91)

From (79) and (90) we deduce

u(t⋆) = u0 or u(t⋆) = ud. (92)

Due to the uniqueness of (1), we deduce that t = ∞. This shows that

u0 ≤ u ≤ ud ∀t,

and achieve the proof.

Remark 6. The fact that |u(t)|22 is not a Lyapunov function that is to say de-
creases in time, makes very complex the study of certain asymptotic properties
of our problem. Indeed under our study it is tempting to show that for r fixed
r ∈]0, d[

u(t) → u1
r in L2(Ω),

where u is the solution of (1) and u1
r the solution belonging to the stable global

branch described previously. A numerical study would be a great contribution to
try to carry out some of our theoretical intuitions.
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