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What is a seismic reflector like?

Nathalie Favretto-Cristini', Paul Cristini', and Eric de Bazelaire®

ABSTRACT

The spatial region that is in the vicinity of an interface and
actually affects the interface response, and hence the reflect-
ed wavefield, is of particular interest for the characterization
of reflectors from a seismic viewpoint. This region is repre-
sented by a volume of integration of medium properties
above and below the interface whose maximum lateral extent
corresponds to the lateral extent of the interface Fresnel zone,
and whose maximum vertical extent is equal to a thickness
we evaluate approximately for subcritical incidence angles
for a plane interface as well as for curved interfaces of anti-
cline and syncline type. The maximum vertical extent might
be larger than the seismic wavelengths for subcritical inci-
dence angles close to the critical angle and for a strong
impedance contrast at the interface. Although the part of the
reflector volume lying below the interface and affecting trav-
eltime measurements actually is smaller than described in
previous studies, the whole part of the reflector volume that
affects the amplitude of the reflected wavefield is larger than
estimates in previous studies, which considered only the spa-
tial region below the interface. For a syncline (respectively,
an anticline), it is larger (respectively, smaller) than de-
scribed for a plane interface. In addition to providing more
physical insights into the wave reflection process, this study
might have significant implications for seismic interpretation
using amplitude-variation-with-angle methodologies.

INTRODUCTION

The basis of many seismic studies is ray theory (Cerveny, 2001).
Nevertheless, as measured seismic data have a finite low-frequency
content, it is accepted that seismic wave propagation is not limited to
an infinitely narrow line called ray but is extended to a finite volume
of space around the raypath (i.e., the first Fresnel volume) (Kravtsov

and Orlov, 1990), which contributes to the received wavefield for
each frequency. The first Fresnel volume (FV) and its intersection
with an interface, called the interface Fresnel zone (IFZ), have re-
ceived wide attention in past decades. These concepts are being de-
veloped continually, and they have found so many applications in
seismology and seismic exploration that it is impossible here to re-
view all the books and articles that consider them in relation to seis-
mic wave propagation (Schleicher et al., 1997; Spetzler and Snieder,
2004; Zhou et al., 2005). Nevertheless, we will mention the works
compiled in Cerveny (2001).

Cerveny and his coauthors have suggested two methods that in-
clude FV parameter calculations into the ray-tracing procedure in
complex 2D and 3D structures. The first method, called Fresnel vol-
ume ray tracing (Cerveny and Soares, 1992), combines the paraxial
ray approximation with dynamic ray tracing and is applicable only to
zero-order waves (direct, reflected, and transmitted waves), whereas
the second method, more accurate than the first, is based on network
ray tracing (Kvasni¢ka and Cerveny, 1994). Unfortunately, the sec-
ond method can be applied only to waves arriving at receivers in first
arrivals.

Kvasnitka and Cerveny (1994, 1996a, 1996b) have derived ana-
lytic expressions for FVs of seismic body waves and for IFZ for sim-
ple structures with plane interfaces, offering deeper insight into the
properties of FV and IFZ. It is interesting to note that FV boundaries
with corresponding FZ also can be estimated by using the method of
isochron rays (Iversen, 2004).

Of particular interest are the size of the IFZ and size of the volume
of the reflector involved in reflection time measurements (Hage-
doorn, 1954) because each can be related to horizontal and vertical
resolutions of seismic methods (Sheriff, 1980; Lindsey, 1989). Until
now, only the IFZ and penetration depth of the FV below the inter-
face have been considered thus in studies. If seismic amplitudes at
receivers must be evaluated, the interface reflectivity must be deter-
mined. It is well known that except for mathematical convenience,
interfaces are not infinitely thin. The underlying question then is:
Considering an isolated interface, how thick are the spatial regions,
above and below the interface, that actually might affect the inter-
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face response and hence the reflected wavefield measured at the re-
ceivers? In other words, what is a reflector like from a seismic view-
point? That question is the focus of this paper.

As noted above, as most seismic wave propagation studies have
kinematic objectives, only the IFZ and penetration depth of the FV
below the interface have received special attention in recent years.
They have been evaluated approximately by analytic expressions for
the case of a plane homogeneous interface (i.e., a plane interface
with no lateral change in its physical properties) (Kvasni¢ka and
Cerveny, 1996a) or by using network ray tracing (Kvasni¢ka and
Cerveny, 1994). Unfortunately, to our knowledge, the spatial region
above the plane interface in the incidence medium, which also af-
fects the interface response, has never been identified. In addition,
very few works are devoted to computations of the IFZ at a curved
interface. Moreover, most of these works are mainly concerned with
the case of normal wave incidence onto the interface (Lindsey, 1989;
Iversen, 2006).

‘We mention that Hubral and his coworkers found the projected FZ
of a zero-offset reflection onto the subsurface reflector using a stan-
dard 3D common-midpoint (CMP) traveltime analysis, without
knowing the reflector overburden (Hubral et al., 1993; Schleicher et
al., 1997). We refer also to the work of Kvasni¢ka and Cerveny
(1994). Using network ray tracing, they performed FV and IFZ pa-
rameter calculations for the wave transmission process in simple 2D
structures, such as a low-velocity body with a slightly curved shape
embedded in a higher-velocity medium (Kvasni¢ka and Cerveny,
1994). Contrary to the work of Hubral and his coworkers (Hubral et
al., 1993; Schleicher et al. 1997), knowledge of the velocity model
is required for computations. Kvasni¢ka and Cerveny (1994) have
concluded that the FV penetrates inside the low-velocity body with
a penetration distance equal to the penetration distance for head
waves.

Gelchinsky (1985) derived symmetrized invariant formulas for
the computation of the IFZ and FV for media of complex structure
(e.g., an inhomogeneous medium with curvilinear interfaces), the
restriction being that the medium is considered locally homoge-
neous in the vicinity of the FZ center. The formulas for the IFZ were
obtained with the help of the Kirchhoff approximation and expres-
sions for the Fresnel size for a particular case, and on the basis of the
reciprocity relation. Lindsey (1989) studied changes in the IFZ size
for normal wave incidence when the reflector is either a syncline or
an anticline, as compared with the IFZ size for a plane reflector. Un-
fortunately, all these formulas do not provide insights on the size of
the volume of the curved reflector involved in reflection time and
amplitude measurements. We propose to address this issue.

We extend Lindsey’s study to the case of oblique wave incidence
onto a spherically shaped interface of anticline or syncline type. We
derive analytic expressions for the size of the IFZ. In addition, we es-
timate analytically the maximum vertical extension of the volume
that actually contributes to seismic amplitude. This estimation is val-
id in the symmetry plane between the source and receiver and for
subcritical incidence angles. The derived formulas are obtained by
using the curvature transmission and reflection laws of Hubral and
Krey (1980). The case of a plane interface being viewed as a special
case of a spherically shaped interface, we derive the expression for
the vertical extent of the effective reflection volume, valid in the
symmetry plane between the source and receiver and for subcritical
incidence angles. In addition, we propose an approximate analytic
expression for penetration depth of the FV below the plane interface,

which provides more accurate results than the analytic expressions
given in Kvasnitka and Cerveny (1996a).

The paper is organized in three sections. The first section provides
overviews of the FV and IFZ concepts. The maximum lateral extent
of the (curved or plane) reflector volume (i.e., the size of the IFZ) is
determined as a function of the incidence angle, and as a function of
the interface curvature for the two types of curved interface. In the
second section, the size of the spatial regions above and below a
(curved or plane) homogeneous interface, which actually affect the
interface response and hence the reflected wavefield, is evaluated as
a function of the incidence angle for subcritical incidence angles.
The third section presents some illustrative results for a given medi-
um configuration and for the three types of interface (e.g., plane, an-
ticline, and syncline).

The influence of the wave incidence onto the interface, and the in-
fluence of the interface curvature, on the size of the reflector volume
are investigated more particularly. The influence of the impedance
contrast at a plane interface on the penetration depth of the FV is
studied also. To check accuracy, the results are compared with ana-
lytically exact results and approximate results obtained by Kvas-
ni¢ka and Cerveny (1996a) for a given medium configuration. We
find that, although the part of the reflector volume lying below the in-
terface and affecting the traveltime measurements actually is smaller
than described in previous studies, the whole part of the reflector vol-
ume, which affects the amplitude of the reflected wavefield, is larger
than previously estimated. We also find that for the syncline, the part
of the reflector volume that actually affects the reflected wavefield is
larger than that described for a plane interface, whereas for an anti-
cline itis smaller.

For the remainder of this paper, we assume that the interface of in-
terest is isolated from all others. We mean that the distance between
this interface and another interface is much larger than V/2B, where
V is the medium velocity and B is the frequency bandwidth of the
source. In addition, we consider only the P-Preflection.

MAXIMUM LATERAL EXTENT OF A REFLECTOR

We consider two homogeneous isotropic elastic half-spaces in
welded contact at a curved interface. The spherically shaped inter-
face, which can be of anticline or syncline type, is tangent at the point
M (0,0,z,,) to the plane z = z,;, which represents the plane interface
of interest in this study. The xy-plane includes the point source S
(—x5,0,0) and receiver R (x5,0,0). The vertical z-axis is directed
downward. A spherical wave with a constant amplitude is generated
by the source in the upper half-space. The spherical wave can be de-
composed into an infinite sum of plane waves (PW) synchronous
with each other at the time origin.

We consider the harmonic PW with frequency f, which propa-
gates in the upper half-space with the velocity Vp, from S to R, after
being reflected by the interface at the point M in a specular direction
6 with respect to the normal to the interface (Figure 1). Let the trav-
eltime of the specular reflected wave be gz, which is the sum of the
wave traveltime 7y, from the source S to the point M and the wave
traveltime #,,; from the point M to the receiver R.

The set of all possible rays SM ;R with constant traveltime 7, de-
fines the isochrone for the source-receiver pair (S,R) relative to the
specular reflection SMR. This isochrone describes an ellipsoid of
revolution tangent to the interface at M, and whose rotational axis
passes through S and R, defined by
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This equation is valid whatever the curvature of the interface. The
frequency-dependent spatial region that actually affects the reflected
wavefield is known to be the Fresnel volume (FV) corresponding to
the pair (S,R) and associated with the wave reflection at M.

—1=0. (1)

The IFZ is defined as the extent of intersection of the FV by the in-
terface, which here is spherically shaped. Unlike the case of a plane
interface (Kvasni¢ka and Cerveny, 1996a), the IFZ is not represent-
ed by an ellipse centered at the reflection point M when the source §
and receiver R are situated at the same distance from the interface.
Depending on whether the interface is of anticline or syncline type,
the IFZ alters in shape appropriately, and its size might not be deter-
mined in the same way for both types. Following Hubral and Krey

By definition, the FV is formed by virtual diffraction points F so

that the waves passing through these points inter-
fere constructively with the specular reflected
wave. This condition is fulfilled when the path-
length difference is less than one-half of the
wavelength A; = Vp/f corresponding to the
dominant frequency f of the narrow-band source
signal (Kravtsov and Orlov, 1990)

A
llsp + lpr — (sy + Lyp)| = El, (2)

or

A3)

— P
ltsp + tpr — (tsp + typ)| = Y
the quantity /xy denoting the distance between the
point X and point Y, and tyy denoting the travel-
time from Xto Y.

As is well known, the main contribution to the
wavefield comes from the first FV as the rapid os-
cillatory responses of the higher-order FVs and
Fresnel zones cancel out and give minor contribu-
tions to the wavefield (Born and Wolf, 1999). In
our work, we restrict ourselves to the first FV,
which is referred to simply as FV. The FV is rep-
resented by only the part of the volume bounded
by two ellipsoids of revolution with foci at S and
R, which are tangent to fictitious planes parallel to
the plane z = z), and located at a distance A,/4
below and above the plane z = z,, (Figure 1),
which is situated above the interface of interest
(e.g., plane, anticline, or syncline) in the upper
half-space. The two ellipsoids of revolution are
defined by

2
BN
cos 4
2 2
+
+ yA 2Z
iM 1 2 2
+ — - tan~ 0
(cos 6 4 ) 1t
- 1=0. (4)

In fact, as seismic wavefields are transient and
large band, it is generally necessary to decompose
the source signal into narrow-band signals for
which monochromatic FV can be constructed for
the prevailing frequency of the signal spectrum
(Knapp, 1991).

(1980), the radius of the interface curvature Ry, is positive if the in-
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Figure 1. Representation, in the xz-plane, of the Fresnel volume involved in the wave re-
flection at the point M at a curved interface of anticline or syncline type under the inci-
dence angle 6 = 35°. The source S and receiver R are situated at a distance zj
= 3000 m from the xy-plane tangent to the interface at the point M. The radius of the in-
terface curvature is Ry, = 5000 m (positive for the anticline, negative for the syn-
cline). Velocities of the upper and lower half-spaces are Vp; = 2000 m/s and Vp,
= 2800 m/s, respectively, and the frequency f = 25 Hz. Seismic wavelengths in the up-
per and lower half-spaces then are A; = 80 mand A, = 112 m, respectively. The critical
angle is equal to 8- = 45.58°. (a) The Fresnel volume is given by the volume between
the ellipsoids of revolution with foci at S and R and located in the upper half-space (see
the text for more details). (b) Focus on the Fresnel volume in the vicinity of the interfaces.
The dashed line describes the isochron for the source-receiver pair (S,R) relative to the
specular reflection SMR. The interface Fresnel zone, characterized by the extent of inter-
section of the Fresnel volume by the interfaces, is larger for the syncline than for the anti-
cline.
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terface appears convex to the incident wave. The radius Ry, then is
chosen positive for an anticline and negative for a syncline. This
study extends the analysis by Lindsey (1989), who considered only
the case of normal wave incidence onto the curved interface.

For Lindsey, the critical parameter that influences the size of the
IFZ for a syncline is the ratio between the depth z,, of the reflection
point M and radius of the interface curvature R;,. Note that the criti-
cal parameter actually is the ratio between the radius of curvature R;,
of the ellipsoid of revolution describing the isochrone for the pair
(S,R) relative to the specular reflection SMR and radius of the inter-
face curvature R;,, the radius R;,, being equal to the depth z,, for nor-
mal wave incidence. Depending on whether this ratio is less or larger
than unity, the size of the IFZ is defined as the extent of intersection
of the ellipsoid of revolution located at the distance A,/4 either above
or below the plane z = z,, by the syncline.

On the contrary, the size of the IFZ for an anticline is defined as the
extent of intersection of the ellipsoid of revolution located at the dis-
tance A,/4 below the plane z = z,, by the anticline, whatever the
value of its radius of curvature R;,. For the sake of brevity, only the
most relevant equations necessary for determining the size of the
IFZ for an anticline are presented hereafter. Equations relative to the
syncline can be derived easily from equations relative to the anti-
cline by replacing the (positive) radius of the anticline curvature Ry,
by the (negative) radius of the syncline curvature Ry.

First we define the maximum lateral semiextent x,,,, of the IFZ
following the x-axis in the xz-plane. In this plane, the anticline with
the curvature center C* (0,2, + Ry, is represented by a circle de-
fined by

x2 + [Z - (ZM + Rinl)]2 = Riznt' (5)
Replacing the variable x by its expression obtained from the formu-
lation of the ellipsoid of revolution, equation 4, and keeping only the
sign + in the term (z,,/cos 6 + A;/4),

ZZ
P=dl- W) (6)
where a = z),/cos 8 + A/4andb = (a* — 72, tan? 6)', we obtain
an equation of the second degree in the unknown z whose solutions
z,and z, are

Zy + Ry £ A2
12 = Ml—maz, (7)
e

where A = (z), + Rin)* — (1 — a?/b?)[a® + zy(zy + 2R;y)] is al-
ways positive. Keeping only the solution z; or z, for which the ine-
quality 1 — z2/b*>>0 is satisfied, and hence for which the variable x
is positive, we deduce the maximum lateral semiextent x,,, of the
IFZ following the x-axis in the plane of incidence from equation 6 so
that
2.2
Xpax = @) 1 — 31;2 . (8)

In the yz-plane, the ellipsoid of revolution located at the distance
A/4 below the plane z = z,,is reduced to a circle defined by

v+ = b )

whereas the anticline is a circle defined by

y:+ [z — (zy + R = R, (10)

The maximum lateral semiextent y,,,, of the IFZ following the y-axis
in the yz-plane, i.e., in the direction perpendicular to the plane of in-
cidence, then is given by the intersection of these two circles,

M zZm )‘1>
max = 107 — |2 + —(— + =
Yma {ZM 4 \cos 0 8 (2

2112
+ Ry ! , (11)

where the quantity in the square root bracket is always positive.

The characteristics X, and y ., of the IFZ at the surface of the an-
ticline depend on the position of the source-receiver pair and on the
incidence angle € of the ray SM. The IFZ becomes larger in the inci-
dence plane than in the transverse plane as the angle 6 increases.
Moreover, larger portions of the interface are involved for low-fre-
quency than for high-frequency components of the wavefield. The
characteristics X, and y,,, of the IFZ also depend on the radius of
the interface curvature R;,. For the anticline, the IFZ becomes larger
in the incidence plane than in the transverse plane as the radius of the
interface curvature R;, increases. For sufficiently great radius Ry,
the IFZ for the anticline is identical to the IFZ for the plane interface
z = zy. Itisrepresented by an ellipse centered at the reflection point
M whose in-plane semiaxis X, and transverse semiaxis y,, are ex-
pressed as (Kvasni¢ka and Cerveny, 1996a)

2, tan® 0 —12

Xmax = Ymax 1 - < Zn /\1>2 > Ymax
+ P——
cos 6 4

172
Pl
2 \cos 6 8

Here, we must clarify some important points. Use is made in many
papers of the classical representation of the FV, which is an ellipsoid
of revolution with foci located at the receiver R and at the image
source S” situated symmetrically to the source S on the other side of
the plane interface (Figure 2). This representation, mainly based on
transmission considerations, is suitable to account for heterogene-
ities of the medium body located in the vicinity of the rays SM and
MR, whereas the FV representation we use is more appropriate to ac-
count for heterogeneities of the interface, as itis connected strictly to
the wave reflection process.

Moreover, unlike the classical one, this representation allows in a
straightforward manner the definition of volumes above and below
the interface, which characterize the reflector. The following section
is focused on this definition. Note that the two FV representations are
complementary and must be combined if wave propagation in media
with heterogeneities in the medium body and at the interface is in-
vestigated.

MAXIMUM VERTICAL EXTENT
OF A REFLECTOR

Itis well known that the FV of the reflected wave is not limited by
the interface, but penetrates across the interface in the lower half-
space (Hagedoorn, 1954). The penetration depth can be evaluated
approximately in an analytic way following traveltime measure-
ments (Kvasnitka and Cerveny, 1996a) or in a numerical way, using
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network ray tracing (Kvasni¢ka and Cerveny, 1994). We propose to
derive analytically, in a straightforward manner, an approximate
expression for the penetration depth of the FV across the curved
interface, valid in the plane of symmetry between S and R and for
subcritical incidence angles. This new expression provides more ac-
curate results than those obtained by Kvasni¢ka and Cerveny.

The curvature transmission law described in Hubral and Krey
(1980, p.43),

T17

As above, by considering the ellipsoid of revolution with foci S’
and R’ tangent to the plane z = z,, at M (Figure 3),

2 2 2
X + z
Y > —1=0,

+

2
( s’ ) g
cos 6’

and the new ellipsoids that bound the FV associated with the reflec-
tion S’MR',

(16)

Ve[ cos 6 \? K, Vp, cos 6
K2 = Kl_ ; + mt, - y 1 5 (13)
Vpi \cos 6 cos '\ Vp;cos 6

connects the curvature K, of the transmitted
wavefront to the curvature K, of the incident 0 (/ S 0 R i X
wavefront and to the interface curvature K. The “,‘
transmission angle 6’ is connected to the inci- 1000
dence angle 6 through Snell’s law, and Vp, 0
denotes the velocity in the lower half-space. In
the case of a curved interface, because the inter- _ 2000
face curvature K, is different from zero, the cur- 3
vature transr.r}ission law, equation 13, becomes in £ 3000 M| Interface 7 =2y
terms of radii of curvature R, and R, of the trans- 2
mitted and incident wavefronts, respectively, 4000

1 ivpz( cos 0 )2 5000

R, R;Vp \cos b’

6000 Z "
S R
1 Vp, cos 6
R cos 0 \ Vo cos 0 L, -4000 ~2000 0 2000 4000
int Pl Offset (m)

(14)

Figure 2. Representations, in the xz-plane, of the Fresnel volume involved in the wave re-

where R;,, denotes the radius of the interface cur-
vature.

By substituting the radii of curvature R; and R,
for their respective expressions z,/cos 6 and
zs:/cos 6, we get the position zg: of the new ficti-
tious source-receiver pair (S’,R’) with respect to

flection at the point M at the plane interface under the incidence angle 8 = 35°. The
source S and receiver R are situated at a distance z;; = 3000 m from the interface. The
classical representation of the Fresnel volume is based on the ellipsoid of revolution with
focilocated at R and at the mirror image S”. Another representation of the Fresnel volume
associated with the reflection SMR is given by the volume located in the upper half-space
between the ellipsoids of revolution with foci at S and R (see the text and Figure 1 for
more details). See the legend of Figure 1 for medium properties.

the plane z = z,, as a function of the incidence
angle 6,
S 0 R X
0
st
= N
2y Vpy cos®6’ TN
= . 1000
3 im ’
Vpycos® 6 + ——(Vpycos @ — Vp cos 6') T
int ~
< e
(15) T 2000
[
a
The pair (S",R") can be viewed as an image of the 3000
pair (S,R) for the transmission process (Figure 3). M Intert sz
That means that this fictitious source-receiver nienace £=<u
pair provides the same wavefront curvature as the 4000 z
pair (S,R). Unlike the real transmission process, 24000 —3000 2000 —1000 0 1000 —2000 —3000  —4000
which involves the upper and lower half-spaces, Offset (m)

the wavefront relative to (S’,R’) propagates en-
tirely in the lower half-space as if the upper half-
space did not exist. This procedure is similar to
the well-known procedure applied for the reflec-
tion process, which consists of replacing the pair
(S,R) by its mirror image (S”,R") (Figure 2).

Figure 3. Representation, in the xz-plane, of the Fresnel volume involved in the fictitious
wave reflection at the point M at a plane interface under the incidence angle 8'. The ficti-
tious source-receiver pair (S’,R’) located at a distance zg from the interface plane can be
viewed as an image of the pair (S,R) for the transmission process. It provides the same
wavefront curvature as (S,R) and propagates entirely in the lower half-space, as if the up-
per half-space did not exist. See the legend of Figure 1 for medium properties.
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2 2 2
+
x — N ):\ 2Z _1
gt Zqr
( S,i—z) ( S,i—2> — 25, tan? @’
cos 0 4 cos 0 4
=0, (17)

it is straightforward to evaluate approximately the maximum pene-
tration depth D,, in the lower half-space, of the FV associated with
the specular reflection SMR,

2 12
< )‘2) 2
D, = + — | —z, tan” 0’ — Zor
: <cos 9~ 4 s S
ArZer AZ)I/Z
2 2¢8 2

=&+ —— + 2] —z. 18
(ZS 2 cos 0’ 16 ‘s (18)

Because this expression is evaluated locally in the plane of sym-
metry between S and R and for subcritical incidence angles 6, it is
valid whatever the radius of the interface curvature R;,. Neverthe-
less, the expression for the position zg of the fictitious pair (S’,R’),
equation 15, differs following the radius of the interface curvature
Ri- The penetration depth out of the plane of symmetry between S
and R also can be evaluated in the same way from the envelope of the
ellipsoids of revolution with foci §” and R’ moving along caustics.
Nevertheless, for postcritical incidence angles, we cannot define the
penetration depth of the FV below the interface by using the curva-
ture transmission law, because total reflection occurs.

Note that equation 18 provides only approximate evaluation of
the actual penetration depth of the FV below the interface because
the derivation based upon the curvature transmission law of Hubral
and Krey (1980) does not take into account the fact that the incidence
angle for the penetrating rays is not identical to the incidence angle
of the central specular reflected ray. Expansion of equation 18 shows
that for the values of the incidence angle 8 close to zero, and then for
great position zg/, the first-order approximation to penetration depth
D, with respect to 1/z;,(A,z5/2 cos ' + A,/8) corresponds to the
approximation given by equation 38 in Kvasnitka and Cerveny
(1996a),

Ay
D, = —"——. 19
2 4cos B’ (19)

Following the same reasoning, it seems clear that a region above
the interface in the upper half-space also contributes to the interface
response, and hence to the reflected wavefield. The maximum thick-
ness D, of this region can be evaluated in the plane of symmetry be-
tween S and R and for subcritical incidence angles 6 in the same way
as above, the pair (S”,R") being viewed as a mirror image of the pair
(S,R) with respect to the plane z = z,, (Figure 2),

AZ” ){2>1/2
2 18 1
D =g+ ——+ ] -z 20
! (ZS 2cosf 16 s (20)

We must determine the position zg of the pair (S”,R"). The curva-
ture reflection law in Hubral and Krey (1980, p. 43),

2K.
K, =K, + ﬁ, (21)

becomes, in terms of radii of curvature R, and R,

1 1 2
— =+ —. (22)
R;, cos 0

By substituting the radii of curvature R, and R, for their respective
expressions z,,/cos € and zg/cos 6, we get the position zg» of the new
fictitious source-receiver pair (S”,R") with respect to the plane z
= 7y, as afunction of the incidence angle 6,

2Ry cOS 6

—_— . 23
22y + Ry cos® 60 @3

Igm =

For the case of a plane interface, the radius of the interface curva-
ture R;, tends to infinity, and the position zg» is equal to z,,. Unlike the
penetration depth D,, we can evaluate exactly the thickness D, for a
plane interface, in the plane of symmetry between S and R, whatever
the incidence angle 6, except for grazing angles. We also can evalu-
ate exactly the distance D, out of the plane of symmetry in the same
way as above because the caustics along which the foci §” and R”
move are degenerate and then are reduced to points. Unlike the case
of the plane interface, however, we no longer can evaluate exactly
the thickness D, above a curved interface for subcritical incidence
angles 6 in the plane of symmetry between S and R, because the
caustics along which the foci $” and R” move are no longer degener-
ate and thus are not reduced to points.

We can define now what a reflector is like from the seismic view-
point. A reflector is a volume of integration of medium properties
above and below the interface. This volume is represented by spatial
regions with the maximum thicknesses D, and D, evaluated in the
plane of symmetry between the source and receiver (Figure 4). Its
maximum lateral extent corresponds to the lateral extent of the IFZ,
and its maximum vertical extent corresponds to the thickness D
= D, + D,. In this work, we consider that the elastic media in con-
tact are homogeneous and isotropic, which is an ideal case. The pres-
ence of heterogeneities or anisotropy in the media body might modi-
fy the size of the reflector volume, and more specifically the expres-

—
X
z
Dy Plane
l\ interface
[
Xnax D,

Figure 4. Schematic description of a seismic plane reflector in the
xz-plane, i.e., the spatial region in the vicinity of the interface, which
actually affects the interface response. The in-plane semiextent of
the interface Fresnel zone is denoted by x,,,,. The distance D; is the
maximum thickness of the region above the interface in the upper
half-space, whereas the distance D, characterizes the penetration
distance of the Fresnel volume (associated with the reflected wave
SMR) below the interface in the lower half-space. These distances
are evaluated in the plane of symmetry between the source and re-
ceiver and for subcritical incidence angles.
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sions for the IFZ and thicknesses D, and D,. It would be interesting
to analyze the effect of anisotropy of the media on the size of the re-
flector volume. Our future contributions will focus on this topic.

RESULTS AND DISCUSSION

To illustrate the theoretical derivations, two cases of curved inter-
faces and one case of plane interface between elastic half-spaces are
chosen. The source-receiver plane is located at a distance z,
= 3000 m from the plane tangent to the curved interfaces, which
can be of anticline or syncline type. The radius of the interface curva-

the incidence plane is increased in size, as compared with that for a
plane interface, approximately by the factor

2 —1
FS:<1 4 M B ) , (24)

Rin B% — 73, tan’ @

with negative radius R;, and B8 = zj,/cos 6 = A,/4, the sign + (re-
spectively, —) corresponding to the choice of the ellipsoid of revolu-
tion located at the distance A,/4 below (respectively, above) the
plane z = zy,.

For the anticline, the IFZ in the incidence plane is decreased in
size, as compared with that for a plane interface, approximately by
the factor

ture Ry, is equal to =5000 m. It is positive for an
anticline and negative for a syncline. The plane z
= z), represents the plane interface of interest.
The velocities of the upper and lower half-spaces
are Vp; = 2000 m/s and Vp, = 2800 m/s, respec-
tively. The frequency f being chosen is 25 Hz,
and seismic wavelengths in the upper and lower
half-spaces thenare A, = 80 mand A, = 112 m,
respectively. The critical angle is equal to 6.
= 45.58°.

Figure 5 depicts the variation in size of the IFZ
for an anticline and a syncline, as a function of the
incidence angle 6, for the given value of the radi-
us of the interface curvature R;,. The variation in
size of the IFZ for a plane reflector also is shown
for comparison. For § = 0 and fora given type of
interface, the in-plane semiextent x,,,, and trans-
verse semiextent y,., are equal. Following the
type of interface, the IFZ then is represented by
either a plane or a curved disk. With increasing 6,
the IFZ becomes larger and larger in the incidence
plane than in the transverse plane.

This feature is more pronounced for the syn-
cline, the maximum size in the incidence plane
being reached at a particular incidence angle 6,
where the radius of the interface curvature Ry, ap-
proaches the radius of curvature R, of the ellip-
soid of revolution describing the isochrone for the
source-receiver pair relative to the specular re-
flection SMR. This is shown more clearly in Fig-
ure 6, which depicts the variation in size of the
IFZ for an anticline and a syncline, as a function
of the radius of the interface curvature R;,, for a
given incidence angle #. When the radius Rj, is
larger than the threshold value leading to the
maximum size of the IFZ in the incidence plane,
the in-plane semiextent x,,,, then decreases be-
cause the IFZ no longer is defined as the intersec-
tion of the ellipsoid of revolution located at the
distance A;/4 below the plane z = z,, by the syn-
cline, but rather as the intersection of the ellipsoid
located at the distance A,/4 above the plane z
= z,, by the syncline (Figure 1).

As suggested above, the critical parameter
therefore is the ratio between the radius R;,, and
radius R;,. We can show easily after straightfor-
ward calculations that for the syncline, the IFZ in
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Figure 5. Variation in the size of the interface Fresnel zone at the surface of an anticline
(dashed line) and a syncline (dash-dot line), as a function of the incidence angle 6, as
compared with the results for a plane interface (solid line). Light curves are associated
with the in-plane semiextent x,,, (in the incidence plane); bold curves represent the varia-
tion in the transverse semiextent y,,, (in the plane perpendicular to the incidence plane).
See the legend of Figure 1 for medium properties.
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Figure 6. Variation in the in-plane semiextent X, (solid lines) and in the transverse
semiextent y,, (dashed lines) of the interface Fresnel zone at the surface of an anticline
(positive radius of interface curvature) and a syncline (negative radius of interface curva-
ture), as a function of the radius of interface curvature R;,. The incidence angle @ is equal
to 30°. See the legend of Figure 1 for medium properties.
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2
F, = (1 4 ¢ (25)

) -1
Ry a* — z,zw tan> 9/

with positive radius Ry, and a = z/cos 6 + A,/4. The factors Fg
and F, tend to those given in Lindsey (1989) when the wave inci-
dence is normal to the interface.

Similar conclusions can be drawn for the variation in the maxi-
mum semiextent y,,,, of the IFZ in the transverse plane for the anti-
cline and syncline. The critical parameter that influences the length
Ymax 18 the ratio between the radius of curvature R;,, of the ellipsoid of
revolution describing the isochrone for the source-receiver pair rela-
tive to the specular reflection SMR in the transverse plane (i.e., the
depth z,, of the reflection point M) and radius of the interface curva-
ture R;,.. For the anticline (respectively, the syncline), the IFZ in the
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transverse plane is decreased (respectively, increased) in size, as
compared with that for a plane interface, approximately by the factor

-1
F = <1 + Z—M) ,
Rim

with positive radius R;, for the anticline and negative radius R;, for
the syncline. Note in Figure 6 that when the value of the radius of the
interface curvature R, tends to infinity, the size of the IFZ for a
curved interface tends to that for a plane interface.

Figure 7 shows the variation in penetration depth D, as a function
of the incidence angle 6, for a given value of the radius of the inter-
face curvature R;, for the anticline and syncline, whereas Figure 8
presents the variation in penetration depth D, as a function of the in-
cidence angle 6 for a plane interface. To check the accuracy of our
approximation, the approximate results provided
by equation 18 were compared with the exact val-

(26)

Penetration depth (m)

20

ues (Appendix A) for the anticline and syncline.
For 6 = 0°, the penetration depth D, equals the
well-known value A,/4 (Kvasni¢ka and Cerveny,
19964a), as for the plane interface (Figure 8).
Inspection of Figure 7 shows that the penetra-
tion depth D, increases with increasing subcriti-
cal angle 6, but it is always less than the seismic
wavelength A,. For the syncline, it can be larger
than the seismic wavelength A, for subcritical in-
cidence angles 6 close to the critical angle 6.
= 45.58°. Moreover, the values for the depth D,
provided by our approximation deviate only
slightly from the exact values for the syncline, the
discrepancies being less than 0.01% up to the an-
gle # = 43°, whichis in the vicinity of the critical

0 5 10 15 20 25 30
Incidence angle (°)

Figure 7. Variation in the penetration depth D, as a function of the incidence angle 6 for
an interface of anticline (light curves) or syncline (bold curves) type. Comparison of re-
sults provided by our approximation (dashed lines) with the exact solution (solid lines).

See the legend of Figure 1 for medium properties.

35

40 angle 6. For the anticline, however, the discrep-

ancies do not exceed 0.01% up to the angle 6
= 40° and 7.5% up to the angle § = 43°, our ap-
proximation underestimating the exact value for
the penetration D,.

Note that whatever the type of interface, the
penetration depth D, has the same values for inci-

100

90

Penetration depth (m)
B a (2] ~ [o2)
o o o o o

w
o

dence angle 6 lying between 0° and approximate-
ly 30°. For subcritical angles lying above 30°, the
penetration depth D, for the syncline is, however,
larger than that for the anticline. By comparing
the curves obtained for the curved interfaces (Fig-
ure 7) and those obtained for the plane interface
(Figure 8), we can note that the penetration depth
D, for the syncline is increased in length, as com-
pared with that for a plane interface, by approxi-
mately 16%, whereas the penetration depth D, for
the anticline is decreased by approximately 10%.

Figure 8 shows the variations in the penetration
depth D, as a function of the incidence angle 6
provided by our approximation (equation 18),
compared with the values obtained with the ap-

20
0 5 10 15 20 25 30

Incidence angle (°)

Figure 8. Variation in the penetration depth D, as a function of the incidence angle 6 for a
plane interface. Comparison of results provided by our approximation (dashed line) with
exact solution (solid line) and results predicted by the approximation of Kvasni¢ka and

Cerveny (1996a) (dash-dot line).

35

proximation of Kvasni¢ka and Cerveny (1996a)
(equation 19) and with the exact values (Appen-
dix A). With increasing subcritical angle 6, the
penetration depth D, increases, but it is always
less than the seismic wavelength A,. Moreover,
the values for D, provided by our approximation

40
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deviate only slightly from the exact values. The discrepancies be-
tween them do not exceed 0.44% up to the angle § = 40° and 4% up
to the angle # = 43°, which is in the vicinity of the critical angle 6.
= 45.58°.

On the contrary, the discrepancies between values for D, given by
the approximation of Kvasni¢ka and Cerveny (1996a) and the exact
solution strongly increase with increasing angle 6, more particularly
for angles above 30°. For 6 = 43° the discrepancies exceed 23%. As
a consequence, the part of a reflector below the interface, which ac-
tually affects the interface response and hence the reflected wave-
field, is smaller than previous estimates. This conclusion has been
found to come true whatever the medium configuration chosen.
Nevertheless, for a given incidence angle 6 the discrepancies be-
tween the values for D, provided by our approximation and those
given by the approximation of Kvasni¢ka and Cerveny (1996a) de-
crease with decreasing impedance contrast at the

have significant implications for seismic interpretation using ampli-
tude-variation-with-angle (AVA) methodologies. On the one hand,
when amplitude measurements are considered, we must evaluate the
interface reflectivity by considering the effective reflector volume
that actually affects it, and by accounting for heterogeneities located
within this volume. More specifically, we must select heterogene-
ities whose characteristic length, along with their spatial distribution
within the reflector volume, might interact with properties of the in-
cident wave, so as to derive a model of the effective behavior of the
reflector volume.

A structural description of multiscaled heterogeneities located
within the reflector volume must be considered, therefore, as a pre-
liminary step toward the modeling of the interface response. Our fu-
ture contributions will focus on this topic. However, we specify that
in the absence of heterogeneity located within the reflector volume,

interface, as shown in Figure 9. For instance, for 140
the impedance contrast equal to 1.2 and the inci-

dence angle # = 30°, the discrepancy does not 120
exceed 0.27%.

Figure 10 displays the variation in the thick-
ness D; above the interface in the upper half-
space, as a function of the incidence angle 6, for
the given value of the radius of the interface
curvature Ry, for the anticline and syncline. To
check the accuracy of our approximation, the ap-
proximate results provided by equation 20 were
compared with the exact values (Appendix B).
Approximate values for D, deviate only slightly
from the exact values, the discrepancies between
them lying below 0.05% up to the angle 8 = 43°.

100

Penetration depth (m

Figure 10 also depicts the variation in the dis- 1.0
tance D, as a function of the incidence angle 6,
for a plane interface. In this case, as mentioned

1.2 1.3 14 1.5 1.6 1.7 1.8 1.9
Impendance contrast

above, the distance D, provided by equation 20 is
evaluated exactly. Whatever the type of interface
and for the normal wave incidence (6 = 0°), the
distance D, equals the value A;/4. The thickness
D, increases with increasing incidence angles 6,
but it is always less than the seismic wavelength
A, and penetration depth D,. Moreover, the thick-
ness D; is not much influenced by the interface
curvature, the dicrepancies between the curves
associated with the syncline and anticline being
less than 1%.

In this work, we have identified the zone in the
vicinity of a (plane or curved) interface that actu-
ally affects the interface reflectivity, and we have
established the spatial limits of this effective
reflector volume, which merits further investiga-
tion. Although these spatial limits might vary fol-
lowing the properties of the bulk media in contact
resulting, for instance, from anisotropy or from
the presence of heterogeneities, defining these
limits for an ideal case (e.g., homogeneous and
isotropic media in contact) enables us to fix ideas
and provide a road map for future applications to
real media.

In addition to providing more physical insights
into the wave reflection process, our study could

Figure 9. Variation in the penetration depth D, as a function of the impedance contrast at a
plane interface for the incidence angle § = 30°. Comparison of results provided by our
approximation (solid line) with results predicted by the approximation of Kvasnitka and
Cerveny (1996a) (dashed line).
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Figure 10. Variation in the maximum thickness D, as a function of the incidence angle 6
for an interface of anticline (light curves) or syncline (bold curves) type and for a plane in-
terface (dotted line). Comparison of results provided by our approximation (dashed line)
with the exact solution (solid line). See the legend of Figure 1 for medium properties.
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we must account for only the IFZ for modeling the interface re-
sponse. In a previous work (Favretto-Cristini et al., 2007), we point-
ed out the consequences of ignoring the IFZ in forward modeling of
seismic wave reflection. More specifically, for wide-angle AVA
methodologies and near the critical incidence angle, the geometric
spreading compensation no longer is sufficient to reduce the point-
source amplitudes to plane-wave (PW) amplitudes predicted by
Zoeppritz equations. The additional application of the IFZ concept
to the PW theory is necessary to obtain the reflected P-wave ampli-
tudes measured at receivers.

These results have significant implications for seismic interpreta-
tion using amplitudes: Assuming that the AVA curves corresponding
to real measured data might be described well by the PW theory
leads to biased estimations of the media properties, even in the ideal
case of homogeneous isotropic media. Our present work is focused
precisely on this particular aspect and will be reported later. On the
other hand, when only traveltime measurements are considered, for
instance for locating reflectors in the media, there is no need to define
the region above the interface with the thickness D, because this re-
gion is already included in the classical representation of the FV,
which is the ellipsoid of revolution with foci located at the receiver R
and at the image source S” (Figure 2). In this case, only the region be-
low the interface with the thickness D, must be considered.

CONCLUSION

We have identified the zone in the vicinity of an interface that ac-
tually affects the interface reflectivity and hence the reflected wave-
field. Our work extends previous studies to the case of the oblique
wave incidence onto a plane interface, or onto a curved interface of
anticline or syncline type, between two homogeneous and isotropic
media. We have derived analytic expressions for evaluating approxi-
mately the spatial limits of the effective reflector volume.

A comparison with exact results has shown that our expressions
provide more accurate results than those given in previous works.
The effective reflector volume has its maximum lateral extent equal
to the lateral extent of the interface Fresnel zone, and its maximum
vertical extent equal to a thickness that might be larger than the seis-
mic wavelength of the incident wave for great incidence angles close
to the critical angle. Although the part of the reflector volume lying
below the interface and affecting traveltime measurements actually
is smaller than described in previous studies, the whole part of the re-
flector volume affecting the amplitude of the reflected wavefield is
larger than previous estimates.
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APPENDIX A

EXACT DERIVATION OF THE PENETRATION
DEPTH D, OF THE FRESNEL VOLUME FOR
SUBCRITICAL INCIDENCE ANGLES

We consider the case of a spherically shaped interface of anti-
cline type with the center of curvature C and radius of curvature Ry,.
As the source S and receiver R are located at the same distance from
the plane tangent to the curved interface, the penetration zone of the
FV is symmetrical, and its deepest point M’ is located in the plane of
symmetry between S and R (Figure A-1). The penetration distance
D,, which corresponds to the maximum distance D of the point M’
from the reflection point M, can be determined mathematically by
solving the optimization problem

D, = max{D}, (A-1)

where

/\1 )2(VP2>2 5 5 172
D= — I+l (2] K
|:( 4 SA SM VP] int COS™ @

+ Ri(1 — sin a), (A-2)
obtained from the definition of the Fresnel zone:
l Lame l 1
ﬂ_}___s_:_, (A-3)
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where [g = [(z) tan 8 + Ry, cos @) + (24 + Rin(1 — sin @))?]"2,
Ly = zy/cos 0, and Ly =[R2, cos® a + (D — Ry, (1 — sin a))?]"2.

In the case of a plane interface, the penetration distance D, corre-
sponds to the maximum distance D of M’ from the interface plane z
= zy.As above, it can be determined mathematically by solving the
optimization problem

D, = max{D}, (A-4)
X

where X = Iy, and D = [(A/4 — Iy + Ls)*(Vpo! V)2 — X2]'2,
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Figure A-1. Schematic description of the configuration for deriving
the penetration depth D, of the Fresnel volume in the lower half-
space and the thickness D, in the upper half-space for the case of a
spherically shaped interface of anticline type with the center of cur-
vature C and radius of curvature R;,,.
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obtained from the definition of the Fresnel zone with [,
= [(zytan  — X)? + 72,12 and Iy, = (X* + D?)'2,

APPENDIX B

EXACT DERIVATION OF THE MAXIMUM
THICKNESS D, FOR SUBCRITICAL INCIDENCE
ANGLES

Considering the configuration depicted in Figure A-1, the maxi-
mum thickness D;, which corresponds to the maximum distance D’
of the point M” from the reflection point M, can be determined math-
ematically by solving the optimization problem

D, = max{D'}, (B-1)

A 2 12
r 1 2 2
D' = [( o lgy + ZSM) — R;, cos a} — Ry,(1

— sin @), (B-2)

obtained from the definition of the FZ with I, = [R% cos®

+ (D + Ry (1 — sin @))?]', the distances [gy; and I, being given
in Appendix A.
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