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ABSTRACT

The spatial region that is in the vicinity of an interface and
actually affects the interface response, and hence the reflect-
ed wavefield, is of particular interest for the characterization
of reflectors from a seismic viewpoint. This region is repre-
sented by a volume of integration of medium properties
above and below the interface whose maximum lateral extent
corresponds to the lateral extent of the interface Fresnel zone,
and whose maximum vertical extent is equal to a thickness
we evaluate approximately for subcritical incidence angles
for a plane interface as well as for curved interfaces of anti-
cline and syncline type. The maximum vertical extent might
be larger than the seismic wavelengths for subcritical inci-
dence angles close to the critical angle and for a strong
impedance contrast at the interface. Although the part of the
reflector volume lying below the interface and affecting trav-
eltime measurements actually is smaller than described in
previous studies, the whole part of the reflector volume that
affects the amplitude of the reflected wavefield is larger than
estimates in previous studies, which considered only the spa-
tial region below the interface. For a syncline �respectively,
an anticline�, it is larger �respectively, smaller� than de-
scribed for a plane interface. In addition to providing more
physical insights into the wave reflection process, this study
might have significant implications for seismic interpretation
using amplitude-variation-with-angle methodologies.

INTRODUCTION

The basis of many seismic studies is ray theory �Červený, 2001�.
evertheless, as measured seismic data have a finite low-frequency

ontent, it is accepted that seismic wave propagation is not limited to
n infinitely narrow line called ray but is extended to a finite volume
f space around the raypath �i.e., the first Fresnel volume� �Kravtsov
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nd Orlov, 1990�, which contributes to the received wavefield for
ach frequency. The first Fresnel volume �FV� and its intersection
ith an interface, called the interface Fresnel zone �IFZ�, have re-

eived wide attention in past decades. These concepts are being de-
eloped continually, and they have found so many applications in
eismology and seismic exploration that it is impossible here to re-
iew all the books and articles that consider them in relation to seis-
ic wave propagation �Schleicher et al., 1997; Spetzler and Snieder,

004; Zhou et al., 2005�. Nevertheless, we will mention the works
ompiled in Červený �2001�.

Červený and his coauthors have suggested two methods that in-
lude FV parameter calculations into the ray-tracing procedure in
omplex 2D and 3D structures. The first method, called Fresnel vol-
me ray tracing �Červený and Soares, 1992�, combines the paraxial
ay approximation with dynamic ray tracing and is applicable only to
ero-order waves �direct, reflected, and transmitted waves�, whereas
he second method, more accurate than the first, is based on network
ay tracing �Kvasnička and Červený, 1994�. Unfortunately, the sec-
nd method can be applied only to waves arriving at receivers in first
rrivals.

Kvasnička and Červený �1994, 1996a, 1996b� have derived ana-
ytic expressions for FVs of seismic body waves and for IFZ for sim-
le structures with plane interfaces, offering deeper insight into the
roperties of FV and IFZ. It is interesting to note that FV boundaries
ith corresponding FZ also can be estimated by using the method of

sochron rays �Iversen, 2004�.
Of particular interest are the size of the IFZ and size of the volume

f the reflector involved in reflection time measurements �Hage-
oorn, 1954� because each can be related to horizontal and vertical
esolutions of seismic methods �Sheriff, 1980; Lindsey, 1989�. Until
ow, only the IFZ and penetration depth of the FV below the inter-
ace have been considered thus in studies. If seismic amplitudes at
eceivers must be evaluated, the interface reflectivity must be deter-
ined. It is well known that except for mathematical convenience,

nterfaces are not infinitely thin. The underlying question then is:
onsidering an isolated interface, how thick are the spatial regions,
bove and below the interface, that actually might affect the inter-

uly 2008; published online 29 December 2008.
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T14 Favretto-Cristini et al.
ace response and hence the reflected wavefield measured at the re-
eivers? In other words, what is a reflector like from a seismic view-
oint? That question is the focus of this paper.

As noted above, as most seismic wave propagation studies have
inematic objectives, only the IFZ and penetration depth of the FV
elow the interface have received special attention in recent years.
hey have been evaluated approximately by analytic expressions for

he case of a plane homogeneous interface �i.e., a plane interface
ith no lateral change in its physical properties� �Kvasnička and
ervený, 1996a� or by using network ray tracing �Kvasnička and
ervený, 1994�. Unfortunately, to our knowledge, the spatial region
bove the plane interface in the incidence medium, which also af-
ects the interface response, has never been identified. In addition,
ery few works are devoted to computations of the IFZ at a curved
nterface. Moreover, most of these works are mainly concerned with
he case of normal wave incidence onto the interface �Lindsey, 1989;
versen, 2006�.

We mention that Hubral and his coworkers found the projected FZ
f a zero-offset reflection onto the subsurface reflector using a stan-
ard 3D common-midpoint �CMP� traveltime analysis, without
nowing the reflector overburden �Hubral et al., 1993; Schleicher et
l., 1997�. We refer also to the work of Kvasnička and Červený
1994�. Using network ray tracing, they performed FV and IFZ pa-
ameter calculations for the wave transmission process in simple 2D
tructures, such as a low-velocity body with a slightly curved shape
mbedded in a higher-velocity medium �Kvasnička and Červený,
994�. Contrary to the work of Hubral and his coworkers �Hubral et
l., 1993; Schleicher et al. 1997�, knowledge of the velocity model
s required for computations. Kvasnička and Červený �1994� have
oncluded that the FV penetrates inside the low-velocity body with
penetration distance equal to the penetration distance for head
aves.
Gelchinsky �1985� derived symmetrized invariant formulas for

he computation of the IFZ and FV for media of complex structure
e.g., an inhomogeneous medium with curvilinear interfaces�, the
estriction being that the medium is considered locally homoge-
eous in the vicinity of the FZ center. The formulas for the IFZ were
btained with the help of the Kirchhoff approximation and expres-
ions for the Fresnel size for a particular case, and on the basis of the
eciprocity relation. Lindsey �1989� studied changes in the IFZ size
or normal wave incidence when the reflector is either a syncline or
n anticline, as compared with the IFZ size for a plane reflector. Un-
ortunately, all these formulas do not provide insights on the size of
he volume of the curved reflector involved in reflection time and
mplitude measurements. We propose to address this issue.

We extend Lindsey’s study to the case of oblique wave incidence
nto a spherically shaped interface of anticline or syncline type. We
erive analytic expressions for the size of the IFZ. In addition, we es-
imate analytically the maximum vertical extension of the volume
hat actually contributes to seismic amplitude. This estimation is val-
d in the symmetry plane between the source and receiver and for
ubcritical incidence angles. The derived formulas are obtained by
sing the curvature transmission and reflection laws of Hubral and
rey �1980�. The case of a plane interface being viewed as a special

ase of a spherically shaped interface, we derive the expression for
he vertical extent of the effective reflection volume, valid in the
ymmetry plane between the source and receiver and for subcritical
ncidence angles. In addition, we propose an approximate analytic
xpression for penetration depth of the FV below the plane interface,
hich provides more accurate results than the analytic expressions
iven in Kvasnička and Červený �1996a�.

The paper is organized in three sections. The first section provides
verviews of the FV and IFZ concepts. The maximum lateral extent
f the �curved or plane� reflector volume �i.e., the size of the IFZ� is
etermined as a function of the incidence angle, and as a function of
he interface curvature for the two types of curved interface. In the
econd section, the size of the spatial regions above and below a
curved or plane� homogeneous interface, which actually affect the
nterface response and hence the reflected wavefield, is evaluated as
function of the incidence angle for subcritical incidence angles.
he third section presents some illustrative results for a given medi-
m configuration and for the three types of interface �e.g., plane, an-
icline, and syncline�.

The influence of the wave incidence onto the interface, and the in-
uence of the interface curvature, on the size of the reflector volume
re investigated more particularly. The influence of the impedance
ontrast at a plane interface on the penetration depth of the FV is
tudied also. To check accuracy, the results are compared with ana-
ytically exact results and approximate results obtained by Kvas-
ička and Červený �1996a� for a given medium configuration. We
nd that, although the part of the reflector volume lying below the in-

erface and affecting the traveltime measurements actually is smaller
han described in previous studies, the whole part of the reflector vol-
me, which affects the amplitude of the reflected wavefield, is larger
han previously estimated. We also find that for the syncline, the part
f the reflector volume that actually affects the reflected wavefield is
arger than that described for a plane interface, whereas for an anti-
line it is smaller.

For the remainder of this paper, we assume that the interface of in-
erest is isolated from all others. We mean that the distance between
his interface and another interface is much larger than V/2B, where

is the medium velocity and B is the frequency bandwidth of the
ource. In addition, we consider only the P-P reflection.

AXIMUM LATERAL EXTENT OF A REFLECTOR

We consider two homogeneous isotropic elastic half-spaces in
elded contact at a curved interface. The spherically shaped inter-

ace, which can be of anticline or syncline type, is tangent at the point
�0,0,zM� to the plane z � zM, which represents the plane interface

f interest in this study. The xy-plane includes the point source S
�xS,0,0� and receiver R �xS,0,0�. The vertical z-axis is directed
ownward. A spherical wave with a constant amplitude is generated
y the source in the upper half-space. The spherical wave can be de-
omposed into an infinite sum of plane waves �PW� synchronous
ith each other at the time origin.
We consider the harmonic PW with frequency f , which propa-

ates in the upper half-space with the velocity VP1 from S to R, after
eing reflected by the interface at the point M in a specular direction
with respect to the normal to the interface �Figure 1�. Let the trav-

ltime of the specular reflected wave be tSMR, which is the sum of the
ave traveltime tSM from the source S to the point M and the wave

raveltime tMR from the point M to the receiver R.
The set of all possible rays SMiR with constant traveltime tSMR de-

nes the isochrone for the source-receiver pair �S,R� relative to the
pecular reflection SMR. This isochrone describes an ellipsoid of
evolution tangent to the interface at M, and whose rotational axis
asses through S and R, defined by
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x2

� zM

cos �
�2 �

y2 � z2

zM
2 � 1 � 0. �1�

his equation is valid whatever the curvature of the interface. The
requency-dependent spatial region that actually affects the reflected
avefield is known to be the Fresnel volume �FV� corresponding to

he pair �S,R� and associated with the wave reflection at M.
By definition, the FV is formed by virtual diffraction points F so

hat the waves passing through these points inter-
ere constructively with the specular reflected
ave. This condition is fulfilled when the path-

ength difference is less than one-half of the
avelength �1 � VP1/f corresponding to the
ominant frequency f of the narrow-band source
ignal �Kravtsov and Orlov, 1990�

�lSF � lFR � �lSM � lMR�� �
�1

2
, �2�

r

�tSF � tFR � �tSM � tMR�� �
1

2f
, �3�

he quantity lXY denoting the distance between the
oint X and point Y, and tXY denoting the travel-
ime from X to Y.

As is well known, the main contribution to the
avefield comes from the first FV as the rapid os-

illatory responses of the higher-order FVs and
resnel zones cancel out and give minor contribu-

ions to the wavefield �Born and Wolf, 1999�. In
ur work, we restrict ourselves to the first FV,
hich is referred to simply as FV. The FV is rep-

esented by only the part of the volume bounded
y two ellipsoids of revolution with foci at S and
, which are tangent to fictitious planes parallel to

he plane z � zM and located at a distance �1/4
elow and above the plane z � zM �Figure 1�,
hich is situated above the interface of interest

e.g., plane, anticline, or syncline� in the upper
alf-space. The two ellipsoids of revolution are
efined by

x2

� zM

cos �
�

�1

4
�2

�
y2 � z2

� zM

cos �
�

�1

4
�2

� zM
2 tan2 �

� 1 � 0. �4�

n fact, as seismic wavefields are transient and
arge band, it is generally necessary to decompose
he source signal into narrow-band signals for
hich monochromatic FV can be constructed for

he prevailing frequency of the signal spectrum
Knapp, 1991�.
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The IFZ is defined as the extent of intersection of the FV by the in-
erface, which here is spherically shaped. Unlike the case of a plane
nterface �Kvasnička and Červený, 1996a�, the IFZ is not represent-
d by an ellipse centered at the reflection point M when the source S
nd receiver R are situated at the same distance from the interface.
epending on whether the interface is of anticline or syncline type,

he IFZ alters in shape appropriately, and its size might not be deter-
ined in the same way for both types. Following Hubral and Krey

1980�, the radius of the interface curvature Rint is positive if the in-
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T16 Favretto-Cristini et al.
erface appears convex to the incident wave. The radius Rint then is
hosen positive for an anticline and negative for a syncline. This
tudy extends the analysis by Lindsey �1989�, who considered only
he case of normal wave incidence onto the curved interface.

For Lindsey, the critical parameter that influences the size of the
FZ for a syncline is the ratio between the depth zM of the reflection
oint M and radius of the interface curvature Rint. Note that the criti-
al parameter actually is the ratio between the radius of curvature Riso

f the ellipsoid of revolution describing the isochrone for the pair
S,R� relative to the specular reflection SMR and radius of the inter-
ace curvature Rint, the radius Riso being equal to the depth zM for nor-
al wave incidence. Depending on whether this ratio is less or larger

han unity, the size of the IFZ is defined as the extent of intersection
f the ellipsoid of revolution located at the distance �1/4 either above
r below the plane z � zM by the syncline.

On the contrary, the size of the IFZ for an anticline is defined as the
xtent of intersection of the ellipsoid of revolution located at the dis-
ance �1/4 below the plane z � zM by the anticline, whatever the
alue of its radius of curvature Rint. For the sake of brevity, only the
ost relevant equations necessary for determining the size of the

FZ for an anticline are presented hereafter. Equations relative to the
yncline can be derived easily from equations relative to the anti-
line by replacing the �positive� radius of the anticline curvature Rint

y the �negative� radius of the syncline curvature Rint.
First we define the maximum lateral semiextent xmax of the IFZ

ollowing the x-axis in the xz-plane. In this plane, the anticline with
he curvature center C��0,zM � Rint� is represented by a circle de-
ned by

x2 � �z � �zM � Rint��2 � Rint
2 . �5�

eplacing the variable x by its expression obtained from the formu-
ation of the ellipsoid of revolution, equation 4, and keeping only the
ign � in the term �zM /cos � � �1/4�2,

x2 � a2�1 �
z2

b2� , �6�

here a � zM /cos � � �1/4 and b � �a2 � zM
2 tan2 � �1/2, we obtain

n equation of the second degree in the unknown z whose solutions
1 and z2 are

z1,2 �
zM � Rint � �1/2

1 �
a2

b2

, �7�

here � � �zM � Rint�2 � �1 � a2/b2��a2 � zM�zM � 2Rint�� is al-
ays positive. Keeping only the solution z1 or z2 for which the ine-
uality 1 � z2/b2 �0 is satisfied, and hence for which the variable x
s positive, we deduce the maximum lateral semiextent xmax of the
FZ following the x-axis in the plane of incidence from equation 6 so
hat

xmax � a�1 �
z1,2

2

b2 	1/2

. �8�

In the yz-plane, the ellipsoid of revolution located at the distance
1/4 below the plane z � zM is reduced to a circle defined by

y2 � z2 � b2, �9�

hereas the anticline is a circle defined by
y2 � �z � �zM � Rint��2 � Rint
2 . �10�

he maximum lateral semiextent ymax of the IFZ following the y-axis
n the yz-plane, i.e., in the direction perpendicular to the plane of in-
idence, then is given by the intersection of these two circles,

ymax � �b2 � 
zM �
�1

4
� zM

cos �
�

�1

8
��zM

� Rint��1�2	1/2
, �11�

here the quantity in the square root bracket is always positive.
The characteristics xmax and ymax of the IFZ at the surface of the an-

icline depend on the position of the source-receiver pair and on the
ncidence angle � of the ray SM. The IFZ becomes larger in the inci-
ence plane than in the transverse plane as the angle � increases.
oreover, larger portions of the interface are involved for low-fre-

uency than for high-frequency components of the wavefield. The
haracteristics xmax and ymax of the IFZ also depend on the radius of
he interface curvature Rint. For the anticline, the IFZ becomes larger
n the incidence plane than in the transverse plane as the radius of the
nterface curvature Rint increases. For sufficiently great radius Rint,
he IFZ for the anticline is identical to the IFZ for the plane interface
� zM. It is represented by an ellipse centered at the reflection point
whose in-plane semiaxis xmax and transverse semiaxis ymax are ex-

ressed as �Kvasnička and Červený, 1996a�

xmax � ymax�1 �
zM

2 tan2 �

� zM

cos �
�

�1

4
�2

�1/2

, ymax

� 
�1

2
� zM

cos �
�

�1

8
��1/2

. �12�

Here, we must clarify some important points. Use is made in many
apers of the classical representation of the FV, which is an ellipsoid
f revolution with foci located at the receiver R and at the image
ource S� situated symmetrically to the source S on the other side of
he plane interface �Figure 2�. This representation, mainly based on
ransmission considerations, is suitable to account for heterogene-
ties of the medium body located in the vicinity of the rays SM and

R, whereas the FV representation we use is more appropriate to ac-
ount for heterogeneities of the interface, as it is connected strictly to
he wave reflection process.

Moreover, unlike the classical one, this representation allows in a
traightforward manner the definition of volumes above and below
he interface, which characterize the reflector. The following section
s focused on this definition. Note that the two FV representations are
omplementary and must be combined if wave propagation in media
ith heterogeneities in the medium body and at the interface is in-
estigated.

MAXIMUM VERTICAL EXTENT
OF A REFLECTOR

It is well known that the FV of the reflected wave is not limited by
he interface, but penetrates across the interface in the lower half-
pace �Hagedoorn, 1954�. The penetration depth can be evaluated
pproximately in an analytic way following traveltime measure-
ents �Kvasnička and Červený, 1996a� or in a numerical way, using
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etwork ray tracing �Kvasnička and Červený, 1994�. We propose to
erive analytically, in a straightforward manner, an approximate
xpression for the penetration depth of the FV across the curved
nterface, valid in the plane of symmetry between S and R and for
ubcritical incidence angles. This new expression provides more ac-
urate results than those obtained by Kvasnička and Červený.

The curvature transmission law described in Hubral and Krey
1980, p. 43�,

2 � K1
VP2

VP1
� cos �

cos � �
�2

�
Kint

cos � �
�VP2

VP1

cos �

cos � �
� 1� , �13�

onnects the curvature K2 of the transmitted
avefront to the curvature K1 of the incident
avefront and to the interface curvature Kint. The

ransmission angle � � is connected to the inci-
ence angle � through Snell’s law, and VP2

enotes the velocity in the lower half-space. In
he case of a curved interface, because the inter-
ace curvature Kint is different from zero, the cur-
ature transmission law, equation 13, becomes in
erms of radii of curvature R2 and R1 of the trans-

itted and incident wavefronts, respectively,

1

R2
�

1

R1

VP2

VP1
� cos �

cos � �
�2

�
1

Rint cos � �
�VP2

VP1

cos �

cos � �
� 1� ,

�14�

here Rint denotes the radius of the interface cur-
ature.

By substituting the radii of curvature R1 and R2

or their respective expressions zM /cos � and
S�/cos � �, we get the position zS� of the new ficti-
ious source-receiver pair �S�,R�� with respect to
he plane z � zM, as a function of the incidence
ngle � ,

S�

�
zMVP1 cos3� �

VP2 cos3 � �
zM

Rint

�VP2 cos��VP1 cos� ��
.

�15�

he pair �S�,R�� can be viewed as an image of the
air �S,R� for the transmission process �Figure 3�.
hat means that this fictitious source-receiver
air provides the same wavefront curvature as the
air �S,R�. Unlike the real transmission process,
hich involves the upper and lower half-spaces,

he wavefront relative to �S�,R�� propagates en-
irely in the lower half-space as if the upper half-
pace did not exist. This procedure is similar to
he well-known procedure applied for the reflec-
ion process, which consists of replacing the pair
S,R� by its mirror image �S�,R�� �Figure 2�.

0

1000

2000

3000

4000

5000

6000

D
ep

th
(m

)

Figure 2. Repr
flection at the
source S and r
classical repre
foci located at
associated wit
between the e
more details�.

0

1000

2000

3000

4000

–4000

D
ep

th
(m

)

Figure 3. Rep
wave reflectio
tious source-r
viewed as an
wavefront cur
per half-space
As above, by considering the ellipsoid of revolution with foci S�
nd R� tangent to the plane z � zM at M �Figure 3�,

x2

� zS�

cos � �
�2 �

y2 � z2

zS�
2 � 1 � 0, �16�

nd the new ellipsoids that bound the FV associated with the reflec-
ion S�MR�,

0S R

S'' R''

M Interface z = zM

x

z

θ

0 –2000 0 2000 4000

Offset (m)

tions, in the xz-plane, of the Fresnel volume involved in the wave re-
M at the plane interface under the incidence angle � � 35°. The
r R are situated at a distance zM � 3000 m from the interface. The
on of the Fresnel volume is based on the ellipsoid of revolution with
at the mirror image S�.Another representation of the Fresnel volume
flection SMR is given by the volume located in the upper half-space

ds of revolution with foci at S and R �see the text and Figure 1 for
legend of Figure 1 for medium properties.
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tion, in the xz-plane, of the Fresnel volume involved in the fictitious
point M at a plane interface under the incidence angle � �. The ficti-
pair �S�,R�� located at a distance zS� from the interface plane can be

of the pair �S,R� for the transmission process. It provides the same
as �S,R� and propagates entirely in the lower half-space, as if the up-
t exist. See the legend of Figure 1 for medium properties.
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x2

� zS�

cos � �
�

�2

4
�2 �

y2 � z2

� zS�

cos � �
�

�2

4
�2

� zS�
2 tan2 � �

� 1

� 0, �17�

t is straightforward to evaluate approximately the maximum pene-
ration depth D2, in the lower half-space, of the FV associated with
he specular reflection SMR,

D2 � 
� zS�

cos � �
�

�2

4
�2

� zS�
2 tan2 � ��1/2

� zS�

� �zS�
2

�
�2zS�

2 cos � �
�

�2
2

16
�1/2

� zS�. �18�

Because this expression is evaluated locally in the plane of sym-
etry between S and R and for subcritical incidence angles � , it is

alid whatever the radius of the interface curvature Rint. Neverthe-
ess, the expression for the position zS� of the fictitious pair �S�,R��,
quation 15, differs following the radius of the interface curvature

int. The penetration depth out of the plane of symmetry between S
nd R also can be evaluated in the same way from the envelope of the
llipsoids of revolution with foci S� and R� moving along caustics.
evertheless, for postcritical incidence angles, we cannot define the
enetration depth of the FV below the interface by using the curva-
ure transmission law, because total reflection occurs.

Note that equation 18 provides only approximate evaluation of
he actual penetration depth of the FV below the interface because
he derivation based upon the curvature transmission law of Hubral
nd Krey �1980� does not take into account the fact that the incidence
ngle for the penetrating rays is not identical to the incidence angle
f the central specular reflected ray. Expansion of equation 18 shows
hat for the values of the incidence angle � close to zero, and then for
reat position zS�, the first-order approximation to penetration depth

2 with respect to 1/zS�
2 ��2zS�/2 cos � � � �2/8� corresponds to the

pproximation given by equation 38 in Kvasnička and Červený
1996a�,

D2 �
�2

4 cos � �
. �19�

Following the same reasoning, it seems clear that a region above
he interface in the upper half-space also contributes to the interface
esponse, and hence to the reflected wavefield. The maximum thick-
ess D1 of this region can be evaluated in the plane of symmetry be-
ween S and R and for subcritical incidence angles � in the same way
s above, the pair �S�,R�� being viewed as a mirror image of the pair
S,R� with respect to the plane z � zM �Figure 2�,

D1 � �zS�
2

�
�1zS�

2 cos �
�

�1
2

16
�1/2

� zS�. �20�

We must determine the position zS� of the pair �S�,R��. The curva-
ure reflection law in Hubral and Krey �1980, p. 43�,

K2 � K1 �
2Kint

cos �
, �21�
ecomes, in terms of radii of curvature R2 and R1,

1

R2
�

1

R1
�

2

Rint cos �
. �22�

y substituting the radii of curvature R1 and R2 for their respective
xpressions zM /cos � and zS�/cos � , we get the position zS� of the new
ctitious source-receiver pair �S�,R�� with respect to the plane z

zM, as a function of the incidence angle � ,

zS� �
zMRint cos2 �

2zM � Rint cos2 �
. �23�

For the case of a plane interface, the radius of the interface curva-
ure Rint tends to infinity, and the position zS� is equal to zM. Unlike the
enetration depth D2, we can evaluate exactly the thickness D1 for a
lane interface, in the plane of symmetry between S and R, whatever
he incidence angle � , except for grazing angles. We also can evalu-
te exactly the distance D1 out of the plane of symmetry in the same
ay as above because the caustics along which the foci S� and R�

ove are degenerate and then are reduced to points. Unlike the case
f the plane interface, however, we no longer can evaluate exactly
he thickness D1 above a curved interface for subcritical incidence
ngles � in the plane of symmetry between S and R, because the
austics along which the foci S� and R� move are no longer degener-
te and thus are not reduced to points.

We can define now what a reflector is like from the seismic view-
oint. A reflector is a volume of integration of medium properties
bove and below the interface. This volume is represented by spatial
egions with the maximum thicknesses D1 and D2 evaluated in the
lane of symmetry between the source and receiver �Figure 4�. Its
aximum lateral extent corresponds to the lateral extent of the IFZ,

nd its maximum vertical extent corresponds to the thickness D
D1 � D2. In this work, we consider that the elastic media in con-

act are homogeneous and isotropic, which is an ideal case. The pres-
nce of heterogeneities or anisotropy in the media body might modi-
y the size of the reflector volume, and more specifically the expres-

x

z

D1

D2
Xmax

Plane
interface

igure 4. Schematic description of a seismic plane reflector in the
z-plane, i.e., the spatial region in the vicinity of the interface, which
ctually affects the interface response. The in-plane semiextent of
he interface Fresnel zone is denoted by xmax. The distance D1 is the
aximum thickness of the region above the interface in the upper

alf-space, whereas the distance D2 characterizes the penetration
istance of the Fresnel volume �associated with the reflected wave
MR� below the interface in the lower half-space. These distances
re evaluated in the plane of symmetry between the source and re-
eiver and for subcritical incidence angles.



s
t
fl

f
c
�
c
t
a
�
T
a
t
a
h
r
�

f
i
u
s
f
i
v
t
e
t
p

c
b
w
p
s
s
fl
u
I
o
g
l
m
t
c
t
d
c
l
�

t
r
w

t
p

w
s
t
p

s
t

legend

What is a seismic reflector like? T19
ions for the IFZ and thicknesses D1 and D2. It would be interesting
o analyze the effect of anisotropy of the media on the size of the re-
ector volume. Our future contributions will focus on this topic.

RESULTS AND DISCUSSION

To illustrate the theoretical derivations, two cases of curved inter-
aces and one case of plane interface between elastic half-spaces are
hosen. The source-receiver plane is located at a distance zM

3000 m from the plane tangent to the curved interfaces, which
an be of anticline or syncline type. The radius of the interface curva-
ure Rint is equal to �5000 m. It is positive for an
nticline and negative for a syncline. The plane z

zM represents the plane interface of interest.
he velocities of the upper and lower half-spaces
re VP1 � 2000 m/s and VP2 � 2800 m/s, respec-
ively. The frequency f being chosen is 25 Hz,
nd seismic wavelengths in the upper and lower
alf-spaces then are �1 � 80 m and �2 � 112 m,
espectively. The critical angle is equal to � C

45.58°.
Figure 5 depicts the variation in size of the IFZ

or an anticline and a syncline, as a function of the
ncidence angle � , for the given value of the radi-
s of the interface curvature Rint. The variation in
ize of the IFZ for a plane reflector also is shown
or comparison. For � � 0 and for a given type of
nterface, the in-plane semiextent xmax and trans-
erse semiextent ymax are equal. Following the
ype of interface, the IFZ then is represented by
ither a plane or a curved disk. With increasing � ,
he IFZ becomes larger and larger in the incidence
lane than in the transverse plane.

This feature is more pronounced for the syn-
line, the maximum size in the incidence plane
eing reached at a particular incidence angle � ,
here the radius of the interface curvature Rint ap-
roaches the radius of curvature Riso of the ellip-
oid of revolution describing the isochrone for the
ource-receiver pair relative to the specular re-
ection SMR. This is shown more clearly in Fig-
re 6, which depicts the variation in size of the
FZ for an anticline and a syncline, as a function
f the radius of the interface curvature Rint, for a
iven incidence angle � . When the radius Riso is
arger than the threshold value leading to the

aximum size of the IFZ in the incidence plane,
he in-plane semiextent xmax then decreases be-
ause the IFZ no longer is defined as the intersec-
ion of the ellipsoid of revolution located at the
istance �1/4 below the plane z � zM by the syn-
line, but rather as the intersection of the ellipsoid
ocated at the distance �1/4 above the plane z

zM by the syncline �Figure 1�.
As suggested above, the critical parameter

herefore is the ratio between the radius Riso and
adius Rint. We can show easily after straightfor-
ard calculations that for the syncline, the IFZ in
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to 30°. See the
he incidence plane is increased in size, as compared with that for a
lane interface, approximately by the factor

FS � �1 �
zM

Rint

� 2

� 2 � zM
2 tan2 �

��1

, �24�

ith negative radius Rint and � � zM /cos � � �1/4, the sign � �re-
pectively, 	� corresponding to the choice of the ellipsoid of revolu-
ion located at the distance �1/4 below �respectively, above� the
lane z � zM.

For the anticline, the IFZ in the incidence plane is decreased in
ize, as compared with that for a plane interface, approximately by
he factor

10 15 20 25 30 35 40

Incidence angle ( )

the size of the interface Fresnel zone at the surface of an anticline
yncline �dash-dot line�, as a function of the incidence angle � , as

esults for a plane interface �solid line�. Light curves are associated
iextent xmax �in the incidence plane�; bold curves represent the varia-
semiextent ymax �in the plane perpendicular to the incidence plane�.
ure 1 for medium properties.
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ed lines� of the interface Fresnel zone at the surface of an anticline
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the radius of interface curvature Rint. The incidence angle � is equal
of Figure 1 for medium properties.
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FA � �1 �
zM

Rint

a2

a2 � zM
2 tan2 �

��1

, �25�

ith positive radius Rint and a � zM /cos � � �1/4. The factors FS

nd FA tend to those given in Lindsey �1989� when the wave inci-
ence is normal to the interface.

Similar conclusions can be drawn for the variation in the maxi-
um semiextent ymax of the IFZ in the transverse plane for the anti-

line and syncline. The critical parameter that influences the length
max is the ratio between the radius of curvature Riso of the ellipsoid of
evolution describing the isochrone for the source-receiver pair rela-
ive to the specular reflection SMR in the transverse plane �i.e., the
epth zM of the reflection point M� and radius of the interface curva-
ure Rint. For the anticline �respectively, the syncline�, the IFZ in the
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igure 7. Variation in the penetration depth D2 as a function of the in
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ee the legend of Figure 1 for medium properties.
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igure 8. Variation in the penetration depth D2 as a function of the inc
lane interface. Comparison of results provided by our approximatio
xact solution �solid line� and results predicted by the approximatio
ervený �1996a� �dash-dot line�.
ransverse plane is decreased �respectively, increased� in size, as
ompared with that for a plane interface, approximately by the factor

F � �1 �
zM

Rint
��1

, �26�

ith positive radius Rint for the anticline and negative radius Rint for
he syncline. Note in Figure 6 that when the value of the radius of the
nterface curvature Rint tends to infinity, the size of the IFZ for a
urved interface tends to that for a plane interface.

Figure 7 shows the variation in penetration depth D2 as a function
f the incidence angle � , for a given value of the radius of the inter-
ace curvature Rint for the anticline and syncline, whereas Figure 8
resents the variation in penetration depth D2 as a function of the in-
idence angle � for a plane interface. To check the accuracy of our

approximation, the approximate results provided
by equation 18 were compared with the exact val-
ues �Appendix A� for the anticline and syncline.
For � � 0°, the penetration depth D2 equals the
well-known value �2/4 �Kvasnička and Červený,
1996a�, as for the plane interface �Figure 8�.

Inspection of Figure 7 shows that the penetra-
tion depth D2 increases with increasing subcriti-
cal angle � , but it is always less than the seismic
wavelength �2. For the syncline, it can be larger
than the seismic wavelength �1 for subcritical in-
cidence angles � close to the critical angle � C

� 45.58°. Moreover, the values for the depth D2

provided by our approximation deviate only
slightly from the exact values for the syncline, the
discrepancies being less than 0.01% up to the an-
gle � � 43°, which is in the vicinity of the critical
angle � C. For the anticline, however, the discrep-
ancies do not exceed 0.01% up to the angle �
� 40° and 7.5% up to the angle � � 43°, our ap-
proximation underestimating the exact value for
the penetration D2.

Note that whatever the type of interface, the
penetration depth D2 has the same values for inci-
dence angle � lying between 0° and approximate-
ly 30°. For subcritical angles lying above 30°, the
penetration depth D2 for the syncline is, however,
larger than that for the anticline. By comparing
the curves obtained for the curved interfaces �Fig-
ure 7� and those obtained for the plane interface
�Figure 8�, we can note that the penetration depth
D2 for the syncline is increased in length, as com-
pared with that for a plane interface, by approxi-
mately 16%, whereas the penetration depth D2 for
the anticline is decreased by approximately 10%.

Figure 8 shows the variations in the penetration
depth D2 as a function of the incidence angle �
provided by our approximation �equation 18�,
compared with the values obtained with the ap-
proximation of Kvasnička and Červený �1996a�
�equation 19� and with the exact values �Appen-
dix A�. With increasing subcritical angle � , the
penetration depth D2 increases, but it is always
less than the seismic wavelength �2. Moreover,
the values for D2 provided by our approximation
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eviate only slightly from the exact values. The discrepancies be-
ween them do not exceed 0.44% up to the angle � � 40° and 4% up
o the angle � � 43°, which is in the vicinity of the critical angle � C

45.58°.
On the contrary, the discrepancies between values for D2 given by

he approximation of Kvasnička and Červený �1996a� and the exact
olution strongly increase with increasing angle � , more particularly
or angles above 30°. For � � 43° the discrepancies exceed 23%.As
consequence, the part of a reflector below the interface, which ac-

ually affects the interface response and hence the reflected wave-
eld, is smaller than previous estimates. This conclusion has been
ound to come true whatever the medium configuration chosen.
evertheless, for a given incidence angle � the discrepancies be-

ween the values for D2 provided by our approximation and those
iven by the approximation of Kvasnička and Červený �1996a� de-
rease with decreasing impedance contrast at the
nterface, as shown in Figure 9. For instance, for
he impedance contrast equal to 1.2 and the inci-
ence angle � � 30°, the discrepancy does not
xceed 0.27%.

Figure 10 displays the variation in the thick-
ess D1 above the interface in the upper half-
pace, as a function of the incidence angle � , for
he given value of the radius of the interface
urvature Rint for the anticline and syncline. To
heck the accuracy of our approximation, the ap-
roximate results provided by equation 20 were
ompared with the exact values �Appendix B�.
pproximate values for D1 deviate only slightly

rom the exact values, the discrepancies between
hem lying below 0.05% up to the angle � � 43°.

Figure 10 also depicts the variation in the dis-
ance D1, as a function of the incidence angle � ,
or a plane interface. In this case, as mentioned
bove, the distance D1 provided by equation 20 is
valuated exactly. Whatever the type of interface
nd for the normal wave incidence �� � 0°�, the
istance D1 equals the value �1/4. The thickness
1 increases with increasing incidence angles � ,
ut it is always less than the seismic wavelength
1 and penetration depth D2. Moreover, the thick-
ess D1 is not much influenced by the interface
urvature, the dicrepancies between the curves
ssociated with the syncline and anticline being
ess than 1%.

In this work, we have identified the zone in the
icinity of a �plane or curved� interface that actu-
lly affects the interface reflectivity, and we have
stablished the spatial limits of this effective
eflector volume, which merits further investiga-
ion. Although these spatial limits might vary fol-
owing the properties of the bulk media in contact
esulting, for instance, from anisotropy or from
he presence of heterogeneities, defining these
imits for an ideal case �e.g., homogeneous and
sotropic media in contact� enables us to fix ideas
nd provide a road map for future applications to
eal media.

In addition to providing more physical insights
nto the wave reflection process, our study could
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ave significant implications for seismic interpretation using ampli-
ude-variation-with-angle �AVA� methodologies. On the one hand,
hen amplitude measurements are considered, we must evaluate the

nterface reflectivity by considering the effective reflector volume
hat actually affects it, and by accounting for heterogeneities located
ithin this volume. More specifically, we must select heterogene-

ties whose characteristic length, along with their spatial distribution
ithin the reflector volume, might interact with properties of the in-

ident wave, so as to derive a model of the effective behavior of the
eflector volume.

A structural description of multiscaled heterogeneities located
ithin the reflector volume must be considered, therefore, as a pre-

iminary step toward the modeling of the interface response. Our fu-
ure contributions will focus on this topic. However, we specify that
n the absence of heterogeneity located within the reflector volume,
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e must account for only the IFZ for modeling the interface re-
ponse. In a previous work �Favretto-Cristini et al., 2007�, we point-
d out the consequences of ignoring the IFZ in forward modeling of
eismic wave reflection. More specifically, for wide-angle AVA
ethodologies and near the critical incidence angle, the geometric

preading compensation no longer is sufficient to reduce the point-
ource amplitudes to plane-wave �PW� amplitudes predicted by
oeppritz equations. The additional application of the IFZ concept

o the PW theory is necessary to obtain the reflected P-wave ampli-
udes measured at receivers.

These results have significant implications for seismic interpreta-
ion using amplitudes:Assuming that theAVAcurves corresponding
o real measured data might be described well by the PW theory
eads to biased estimations of the media properties, even in the ideal
ase of homogeneous isotropic media. Our present work is focused
recisely on this particular aspect and will be reported later. On the
ther hand, when only traveltime measurements are considered, for
nstance for locating reflectors in the media, there is no need to define
he region above the interface with the thickness D1, because this re-
ion is already included in the classical representation of the FV,
hich is the ellipsoid of revolution with foci located at the receiver R

nd at the image source S� �Figure 2�. In this case, only the region be-
ow the interface with the thickness D2 must be considered.

CONCLUSION

We have identified the zone in the vicinity of an interface that ac-
ually affects the interface reflectivity and hence the reflected wave-
eld. Our work extends previous studies to the case of the oblique
ave incidence onto a plane interface, or onto a curved interface of

nticline or syncline type, between two homogeneous and isotropic
edia. We have derived analytic expressions for evaluating approxi-
ately the spatial limits of the effective reflector volume.
A comparison with exact results has shown that our expressions

rovide more accurate results than those given in previous works.
he effective reflector volume has its maximum lateral extent equal

o the lateral extent of the interface Fresnel zone, and its maximum
ertical extent equal to a thickness that might be larger than the seis-
ic wavelength of the incident wave for great incidence angles close

o the critical angle. Although the part of the reflector volume lying
elow the interface and affecting traveltime measurements actually
s smaller than described in previous studies, the whole part of the re-
ector volume affecting the amplitude of the reflected wavefield is

arger than previous estimates.
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APPENDIX A

EXACT DERIVATION OF THE PENETRATION
DEPTH D2 OF THE FRESNEL VOLUME FOR

SUBCRITICAL INCIDENCE ANGLES

We consider the case of a spherically shaped interface of anti-
line type with the center of curvature C and radius of curvature Rint.
s the source S and receiver R are located at the same distance from

he plane tangent to the curved interface, the penetration zone of the
V is symmetrical, and its deepest point M� is located in the plane of
ymmetry between S and R �Figure A-1�. The penetration distance

2, which corresponds to the maximum distance D of the point M�
rom the reflection point M, can be determined mathematically by
olving the optimization problem

D2 � max



�D� , �A-1�

here

D � 
��1

4
� lSA � lSM�2�VP2

VP1
�2

� Rint
2 cos2 
�1/2

� Rint�1 � sin 
� , �A-2�

btained from the definition of the Fresnel zone:

lSA

VP1
�

lAM�

VP2
�

lSM

VP1
�

1

4f
, �A-3�

here lSA� ��zM tan � �Rint cos 
�2� �zM �Rint�1�sin 
��2�1/2,
SM �zM /cos � , and lAM�� �Rint

2 cos2 
 � �D�Rint�1�sin 
��2�1/2.
In the case of a plane interface, the penetration distance D2 corre-

ponds to the maximum distance D of M� from the interface plane z
zM. As above, it can be determined mathematically by solving the

ptimization problem

D2 � max
X

�D� , �A-4�

here X � lAM and D � ���1/4 � lSA � lSM�2�VP2/VP1�2 � X2�1/2,

S 0 R

M"

M

M'

C
z

A

R

A'

x

z = zM

θ

�

igure A-1. Schematic description of the configuration for deriving
he penetration depth D2 of the Fresnel volume in the lower half-
pace and the thickness D1 in the upper half-space for the case of a
pherically shaped interface of anticline type with the center of cur-
ature C and radius of curvature R .
int
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What is a seismic reflector like? T23
btained from the definition of the Fresnel zone with lSA

��zM tan � � X�2 � zM
2 �1/2 and lAM� � �X2 � D2�1/2.

APPENDIX B

EXACT DERIVATION OF THE MAXIMUM
THICKNESS D1 FOR SUBCRITICAL INCIDENCE

ANGLES

Considering the configuration depicted in Figure A-1, the maxi-
um thickness D1, which corresponds to the maximum distance D�

f the point M� from the reflection point M, can be determined math-
matically by solving the optimization problem

D1 � max



�D�� , �B-1�

here

D� � 
��1

4
� lSA � lSM�2

� Rint
2 cos2 
�1/2

� Rint�1

� sin 
� , �B-2�

btained from the definition of the FZ with lAM� � �Rint
2 cos2 


�D � Rint�1 � sin 
��2�1/2, the distances lSM and lSA being given
nAppendix A.
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