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Frictional Contact Problems for Thin Elastic
Structures and Weak Solutions of Sweeping

Processes

Patrick Ballard

Abstract

The linearized equilibrium equations for straight elastic strings, beams, mem-
branes or plates do not couple tangential and normal components. In the quasi-static
evolution occurring above a fixed rigid obstacle with Coulomb dry friction, the nor-
mal displacement is governed by a variational inequality, whereas the tangential
displacement is seen to obey a sweeping process, the theory of which was exten-
sively developed by Moreau in the 1970s. In some cases, the underlying moving
convex set has bounded retraction and, in these cases, the sweeping process can
be solved by directly applying Moreau’s results. However, in many other cases,
the bounded retraction condition is not fulfilled and this is seen to be connected
to the possible event of moving velocity discontinuities. In such a case, there are
no strong solutions and we have to cope with weak solutions of the underlying
sweeping process.

1. Motivation and outline

1.1. Background

The frictionless equilibrium of linearly elastic strings and beams (or membranes
and plates) above a fixed rigid obstacle provides an archetypical example of varia-
tional inequality, the theory of which was extensively developed in the 1970s. This
paper deals with the situation where Coulomb dry friction between the elastic struc-
ture and the obstacle should be assumed to occur in addition. More specifically, it
focuses here on cases where the linearized equilibrium equation can be used and
consider the quasi-static evolution problem given by the usual Coulomb friction
law. Surprisingly, this seems to be the first time this class of problems has been
investigated. One specific (and comfortable) feature of these problems is the fact
that the linearized equilibrium equations do not couple the normal and tangential
components of the displacement. The problem that governs the normal displace-
ment is, therefore, the same as that arising in the frictionless situation, that is, a
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variational inequality at every instant. Solving this variational inequality at every
instant gives the normal component of the reaction force exerted by the obstacle
and therefore gives the threshold for the friction law, which generally depends on
the time and the position. The evolution problem that governs the tangential dis-
placement is shown to provide an archetypical example of a sweeping process in a
Hilbert space, the theory of which was developed in the seventies by Moreau [10]
with a view to applying it to elastoplastic systems.

The fact that the linearized equilibrium equations do not couple the normal and
tangential components of the displacement lend the situation under consideration
some similarity to perfect plasticity. Also, the moving tangential velocity discon-
tinuities that will be exhibited in this paper should certainly be brought alongside
the velocity discontinuities that are well known to spontaneously occur in perfect
plasticity [11].

This uncoupling is a specific feature of the straight thin elastic structures that are
the only ones considered in this paper. The situation is rather different in the more
usual situation where a massive elastic body is considered. Indeed, in that case, the
linearized equilibrium equations couple normal and tangential components so that
monotonicity is lost. This raises important mathematical difficulties in the analysis.
An existence result for the corresponding evolution problem (quasi-static contact
problem in linear elasticity with Coulomb friction) was obtained only in 2000 by
Andersson [2] using the approach developed in the pioneering work of Jarušek
[7]. Very little is known about uniqueness, but the lack of monotonicity makes
the situation tricky [3]. For a recent survey on the analysis of frictional contact
problems for massive bodies, the reader is referred to [6].

1.2. The basic evolution problem

Let us consider a straight elastic string which is uniformly tensed in its reference
configuration and an orthonormal basis (ex, ey) with ex chosen along the direction
of the string. A fixed rigid obstacle is described by the function y = ψ(x). The
string is loaded with a given body force f ex+g ey and displacements up

0 ex+vp
0 ey ,

up
1 ex + vp

1 ey are prescribed at extremities x = 0, 1. Let u ex + v ey denote the dis-
placement field in the string and r ex + s ey denote the reaction force exerted by
the obstacle on the string. Assuming that the linearized equilibrium equations can
be used, one finds that the quasi-static evolution of that string above the obstacle
with unilateral contact condition and Coulomb dry friction during the time interval
[t0, T ] is governed by

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u′′ + f + r = 0, in ]0, 1[ × [t0, T ],
r(û − u̇)+ μs

(|û| − |u̇|) � 0, ∀û ∈ R, in ]0, 1[ × [t0, T ],
u(0) = up

0, u(1) = up
1, on [t0, T ],

v′′ + g + s = 0, in ]0, 1[ ,

v − ψ � 0, s � 0, s(v − ψ) ≡ 0, in ]0, 1[ × [t0, T ],
v(0) = v

p
0, v(1) = v

p
1, on [t0, T ].

(1)

where μ is the friction coefficient, which is assumed to be given.
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The last three lines of system (1) govern the normal component v of the dis-
placement, and are not coupled with the other equations of system (1). Therefore,
at every instant, v obeys the same variational inequality as that governing the more
usual frictionless situation. Assuming that this problem has been solved, the normal
component s of the reaction is now supposed to be given in the study of the tangen-
tial problem, that is, the first three lines of system (1). It is necessary of course to
know what regularity s can be expected to show, and this question requires detailed
analysis of the normal problem governed by the variational inequality. As we will
see, the regularity of s is crucial to the analysis of the tangential problem.

Introducing for every t ∈ [t0, T ], the closed, convex subset of H 1(0, 1; R)

defined by

C(t) =
{

u ∈ H1
∣
∣ u(x = 0) = up

0, u(x = 1) = up
1,

and ∀ϕ ∈ H1
0 ,
〈

u′′ + f, ϕ
〉

H−1,H1
0

� 〈μs, |ϕ|〉H−1,H1
0

}

, (2)

and equipping H1 with the scalar product

(ϕ | ψ)H1 =
∫ 1

0
ϕ′(x) ψ ′

(x) dx + ϕ(0) ψ(0)+ ϕ(1) ψ(1),

taking

ϕ(x) = ϕ(x)− ϕ(0)− x (ϕ(1)− ϕ(0)) ∈ H1
0 ,

the evolution problem that governs the tangential displacement u can be written in
the following concise form:

−u̇(t) ∈ ∂ IC(t) [u(t)] ,

after eliminating the unknown reaction force r (see section 4 for details). In this
differential inclusion, IC(t)[·] denotes the indicatrix function of C(t) (which equals
0 at any point of C(t) and +∞ elsewhere), and ∂ IC(t)[·] its subdifferential in the
sense of the above scalar product in H1, that is, the cone of all the outward normals
to C(t) (which is empty at any point not belonging to C(t), and reduces to {0} at an
interior point, if any).

1.3. Weak solutions of sweeping processes

Let H be a Hilbert space and C(t) a set-valued mapping defined on a time inter-
val [t0, T ] and the values of which are closed, convex and nonempty. A sweeping
process is the evolution problem defined by

∣
∣
∣
∣
∣

−u̇(t) ∈ ∂ IC(t) [u(t)] , in [t0, T ],
u(t0) = u0,

with the given initial condition u0 ∈ C(t0). This abstract evolution problem was
introduced and studied by Jean Jacques Moreau [10] with a view to using it in the
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analysis of elastoplastic systems. In kinematic terms, C(t) is a moving convex set
and u(t) a point in that set (u(t) ∈ C(t) since ∂ IC(t)[·] is empty at any point which
does not belong to C(t)). The evolution problem under consideration, therefore,
has a geometrical interpretation, which is especially clear if C(t) has a non-empty
interior. Indeed, whenever u(t) is an interior point, ∂ IC(t)[u(t)] reduces to {0} and
the point u(t) must remain at rest until meeting the boundary of C(t). It then pro-
ceeds in an inward normal direction, as if it were pushed by the boundary so as to
go on belonging to C(t). The name “sweeping process”, which was coined by Jean
Jacques Moreau, refers to this vivid mechanical interpretation.

To discuss the existence of solutions to the sweeping process, some regularity
assumptions about the set-valued mapping C(t)must be made. Actually, regularity
is needed only when the set retracts, thus effectively sweeping the point u(t). Jean
Jacques Moreau defined and extensively studied the class of set-valued mappings
C(t) with bounded retraction (see [9] or appendix A). In particular, set-valued
mappings C(t) with bounded retraction admit a left limit C(t−), in the sense of
Kuratowski (see appendix A), at any t ∈]t0, T ] and a right limit C(t+) at any
t ∈ [t0, T [.

Taking an arbitrary subdivision P (finite partition into intervals of any sort) of
[t0, T ] and denoting by Ii the corresponding intervals (which are indexed according
to their successive order) with origin ti (left extremity, which does not necessarily
belong to Ii ), one can build the piecewise constant set-valued mapping CP with
closed convex values by using the following definition:

CP (Ii ) = Ci =
∣
∣
∣
∣

C(ti ) if ti ∈ Ii ,

C(ti+) if ti 	∈ Ii .

Given the initial condition u0 ∈ C(t0), the “catching-up algorithm” is based on the
inductive projections given by

ui+1 = proj (ui , Ci+1)

to build a step function u P : [t0, T ] → H , defined by

u P (Ii ) = ui .

This is simply a version of the implicit Euler algorithm for ordinary differential
equations adapted to the differential inclusion involved. Assuming that C(t) has
bounded retraction, Moreau [10] proved that the net u P (P covering all the sub-
divisions of [t0, T ]) converges strongly in H , uniformly on t ∈ [t0, T ], towards a
function u : [t0, T ] → H , which Moreau calls a weak solution of the sweeping
process. He then proved that this weak solution u : [t0, T ] → H has bounded var-
iation and solves the sweeping process in the sense of “differential measures” (see
[10] or appendix B). If C(t) has not only bounded retraction, but absolutely con-
tinuous retraction, it turns out that the weak solution u : [t0, T ] → H is absolutely
continuous and is a strong solution of the sweeping process, that is

−u̇(t) ∈ ∂ IC(t) [u(t)] , for a. a. t ∈ [t0, T ].
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The quasi-static evolution of the elastic string above the rigid obstacle when
Coulomb friction is taken into account provides some natural examples of sweeping
processes in the Hilbert space H = H1. Some of these examples will be given in
this paper, in cases where the underlying sweeping process has bounded retraction
and Moreau’s theory provides a unique weak solution which is also a solution in
the sense of differential measures. In some of these examples, this solution also
turns out to be a strong solution, but this is not always the case. More interestingly,
it is easy to design an evolution problem for the elastic string where the under-
lying sweeping process turns out not to have bounded retraction. Sticking to the
standpoint of the numerical computations, such examples require an extension of
the definition of weak solutions for sweeping processes to a more general class of
set-valued mappings C(t) than that of bounded retraction. Since the catching-up
algorithm requires the existence of a right limit C(t+) in the sense of Kuratowski,
it turns out that the class of C(t), which is suitable for defining weak solutions
of sweeping processes in general, seems to be the class of so-called Wijsman-reg-
ulated set-valued mappings which is exactly the class of those C(t) with closed
convex values that admit a left limit C(t−), in the sense of Kuratowski, at any
t ∈ ]t0, T ], and a right limit C(t+) at any t ∈ [t0, T [. Wijsman-regulated C(t) are
also characterized by the condition that for every x ∈ H , the function:

t �→ proj [x; C(t)]

is regulated (that is, is the uniform limit of a sequence of step functions, or, equiv-
alently, admits a left and a right limit at every t). The name given to this class
of set-valued mappings originates from the fact that the class of all closed non-
empty subsets of H can be equipped with a complete metrizable topology called
the Wijsman topology. This is the weakest topology generated by the set functions
C → d(x,C)when x covers H (here d(x,C) denotes the distance of the point x to
the set C). Wijsman-regulated C(t) are exactly those set-valued mappings that are
regulated in the sense defined by the Wijsman topology on the class of all closed
non-empty subsets in H .

Weak solutions of sweeping processes associated with Wijsman-regulated C(t),
when they exist, are proved to enjoy the same general properties as those estab-
lished by Moreau in the case of weak solutions of sweeping processes based on
C(t) with bounded retraction. Some examples of weak solutions of sweeping pro-
cesses based on Wijsman-regulated C(t) that do not have bounded retraction are
displayed in this paper. As we will see, these weak solutions do not necessarily
have bounded variation. Examples will also be given of sweeping processes based
on Wijsman-regulated C(t) that do not have any weak solution at all.

1.4. Frictional contact problems for the elastic string

Recalling that the tangential displacement of elastic strings obeys a sweeping
process based on the set-valued mapping (2), a sufficient condition for C(t) to have
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bounded retraction is proved to be:

up
0, up

1 ∈ BV ([t0, T ]; R) ,

f ∈ BV
(

[t0, T ]; H−1
)

, (3)

s ∈ BV ([t0, T ];M) .

Here, BV stands for “Bounded Variation” and M denotes the Banach space of the
Radon measures on [0, 1], that is, the topological dual of C0([0, 1]; R). The first
two lines in (3) give regularity assumptions about the data involved in the evolu-
tion problem, but the last line refers to the regularity of the solution of the normal
problem governed by the variational inequality and therefore can not be controlled
directly. It may occur that these regularity conditions are met and a detailed exam-
ple is discussed in Section 4.3. In such a case, Moreau’s results provide a unique
solution:

u ∈ BV
(

[t0, T ]; H 1
)

,

and if the regularity that is met with the data is not only that of functions with
“bounded variation” in time, but that of “absolutely continuous” functions, then
the same will be true of u, which is a strong solution of the sweeping process. In
such a circumstance, the tangential velocity u̇ will belong to H1(0, 1; R), at almost
all values of t ∈ [t0, T ], and will therefore be spatially continuous.

However, it may occur that the condition s ∈ BV([t0, T ];M) is not fulfilled. A
simple example of this occurrence is that of a string with a reference configuration
lying on a rectilinear rigid obstacle (see Fig. 2). The data of the evolution problem
are defined by up

0 = v
p
0 = v

p
1 ≡ 0, up

1 is the function which takes the value 0 at
t = 0 and 1 at every t > 0, and f = δx=1/2−t , g ≡ 0 (the body force is a “moving
transverse punctual force”). The unique solution of the normal problem is given by
v ≡ 0, which entails s ≡ − f . Since for all t1 < t2 ∈ ]0, 1[,

∥
∥δt2 − δt1

∥
∥M = 2,

the normal reaction s : [t0, T ] → M is neither a function with bounded variation
nor a continuous function. Assuming for the sake of convenience that μ > 2, one
still can arbitrarily subdivide the time interval [0, 1/3] and perform the successive
projections of Moreau’s catching-up algorithm. It then can be seen that the cor-
responding approximating step functions u P converge strongly in H1, uniformly
with respect to t ∈ [0, 1/3], towards the following function:

u(x, t) =
∣
∣
∣
∣
∣
∣

0, if 0 � x � 1/2 − t,
x + t − 1/2

t + 1/2
, if 1/2 − t � x � 1.

The graph of this function, together with that of the velocity u̇, is plotted in Fig. 3.
The velocity can be seen to show a moving discontinuity; therefore, it does not
belong to H1 at any t . Consequently, the underlying C(t) does not have bounded
retraction; however, it is Wijsman-regulated and the function u is a weak solution of
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the underlying sweeping process (in the sense of the Definition 9 in Appendix B). It
is worth noting that since the velocity is discontinuous, its value at the point of the
string just below the load is not defined. One therefore cannot check if the Coulomb
friction law is satisfied by the solution in the strong sense (that is, pointwise). The
picture looks like that of perfect plasticity [11] where the spontaneous occurrence
of velocity discontinuities requires to cope with weak solutions only. Extending
Moreau’s definition of weak solutions for sweeping processes to the case of Wi-
jsman-regulated set-valued mappings leads to the appropriate definition of what
should be called a weak solution of the frictional contact problem. This definition
sticks to the standpoint of computational approximations. Another approach would
consist of using a regularization procedure. A natural regularization method which
could be used in the example under consideration would consist of “spreading out”
the moving load a little bit by performing a spatial convolution. For example, the
Dirac measure at x can be approximated by the function taking the value 1/(2ε) at
]x−ε,x+ε[ and 0 elsewhere. This suffices for the underlying Cε(t) to have bounded
retraction. The unique solution uε of the corresponding sweeping process is given
explicitly in Section 4.4. It can therefore be seen that uε converges strongly in H1

uniformly with respect to t ∈ [0, 1/3], towards the previously calculated weak
solution u.

1.5. Replacing the string by a beam

Replacing the string by an elastic beam in the evolution problem (1) requires
changing only the last three lines governing the normal displacement v, whereas
the tangential problem governed by the first three lines remains unchanged. In par-
ticular, the equilibrium equation satisfied by v is now an equation of order 4. The
normal component s of the reaction force, which is now obtained after solving a
variational inequality associated with the biharmonic operator, is therefore seen to
be possibly a “moving Dirac measure” even in cases where all the data of the nor-
mal problem are C∞ in space and time. This means that moving tangential velocity
discontinuities should generically be expected to occur in the case of the beam, and
the underlying sweeping process should be expected to admit only weak solutions,
even when arbitrarily smooth data are involved.

In this paper, it is proved that it suffices to require that the data,

up
0, up

1, v
p
0, v

p
1 : [t0, T ] → R,

f, g : [t0, T ] → H−1,

should be regulated functions (that is, are the uniform limit of a sequence of step
functions, or, equivalently, admit a left and a right limit at every t) to ensure that
the moving set C(t) associated with the sweeping process governing the tangen-
tial problem will be Wijsman-regulated, so as to be able to speak about possible
weak solutions. This claim, which relies on regularity analysis on the variational
inequalities associated with the harmonic and biharmonic operators, holds true for
strings as well as for beams.

However, these regularity assumptions are too weak to systematically ensure
the existence of a weak solution to the underlying sweeping process. An example is
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provided that shows, in particular, that sweeping processes based on Wijsman-reg-
ulated set-valued mappings need not have weak solutions. The question as to what
regularity assumptions about the data should be required to ensure the existence of
a weak solution to the frictional contact problem is left open in this paper.

2. Statement of the evolution problem for an elastic string

The orthonormal basis (ex, ey) will be used here in the affine Euclidean plane.
Let us consider a string having the segment [0, 1] × {0} as its reference configu-
ration. This configuration undergoes some homogeneous tension T0 > 0 and is an
equilibrium configuration when the string is free of body forces.

Next, let us consider the given external body force,

f ex + g ey.

Taking

u ex + v ey,

to denote the displacement field in the string, one finds that the linearized equa-
tions that govern the equilibrium of the string, which is assumed to be elastic with
stiffness k, will read as follows:

∣
∣
∣
∣
∣
∣
∣
∣

k u′′ + f = 0, in ]0, 1[ ,
u(0) = up

0, u(1) = up
1,

T0 v
′′ + g = 0, in ]0, 1[ ,

v(0) = v
p
0, v(1) = v

p
1,

where up
0 ex +vp

0 ey and up
1 ex +vp

1 ey are the prescribed displacements at both ends
x = 0 and x = 1.

A fixed rigid obstacle is also considered and described by the function:

y = ψ(x).

The reaction force possibly exerted by this obstacle on the string will be written

r ex + s ey.

In the above expression, r and s are, respectively, the tangential and normal com-
ponents of the reaction force with respect to a reference configuration. It should
be underlined here that, in the linearized framework that has been adopted here, r
and s cannot be distinguished in this approximation from the tangential and normal
components of the reaction force with respect to the deformed configuration, since
the difference is of higher order.
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Assuming that the contact between the string and the obstacle obeys the dry
friction Coulomb law with a friction coefficient denoted byμ, one can read the equa-
tions that govern the quasi-static evolution of the elastic string above the obstacle
formally as follows:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

k u′′ + f + r = 0, in ]0, 1[ × [t0, T ],
r(û − u̇)+ μs

(|û| − |u̇|) � 0, ∀û ∈ R, in ]0, 1[ × [t0, T ],
u(0) = up

0, u(1) = up
1, on [t0, T ],

T0 v
′′ + g + s = 0, in ]0, 1[ ,

v − ψ � 0, s � 0, s(v − ψ) ≡ 0, in ]0, 1[ × [t0, T ],
v(0) = v

p
0, v(1) = v

p
1, on [t0, T ].

It can be easily checked that the pointwise weak formulation of the Coulomb law
used here is equivalent to the usual pointwise formulation. It is worth noting that
the equations that govern the transverse component v of the displacement are not
coupled with the ones that govern the tangential component.

By changing the value μ of the friction coefficient, one can always suppose
T0 = k = 1. This choice will be made systematically in what follows.

3. Analysis of the “normal problem” for the string

The problem that governs the transverse component v of the displacement will
be solved first. This problem is the same as that arising in the more usual friction-
less situation. At every instant, the problem is classically governed by a variational
inequality, which is solved using standard tools (see for example [8]). The purpose
of the following theorem is to express how the regularity of the dependence of the
data on time can be transferred to the solution, in order to obtain some information
on the regularity of the normal component s(t) of the reaction force as it will be
used as input data in the analysis of the “tangential problem”.

Theorem 1. Let us assume that ψ ∈ H1(0, 1; R), g : [t0, T ] → H−1 and that the
functions vp

0, v
p
1 : [t0, T ] → R satisfy the strong compatibility condition,

inf
t∈[t0,T ] v

p
0(t) > ψ(0), inf

t∈[t0,T ] v
p
1(t) > ψ(1), (4)

setting the following:

K (t) =
{

ϕ ∈ H1 (0, 1; R)
∣
∣ ϕ(0) = v

p
0(t), ϕ(1) = v

p
1(t),

∀x ∈ ]0, 1[ , ϕ(x) � ψ(x)
}

,

then there exists a unique function v : [t0, T ] → H 1 (0, 1; R) such that

• ∀ t ∈ [t0, T ], v(t) ∈ K (t),

• ∀ t ∈ [t0, T ], ∀ϕ ∈ K (t),
∫ 1

0
v′ (ϕ′ − v′) �

〈

g, ϕ − v
〉

H−1,H1
0
.
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Moreover, if vp
0, v

p
1 : [t0, T ] → R and g : [t0, T ] → H−1 are regulated (with

bounded variation, absolutely continuous, and Lipschitz-continuous, respectively),
then the same is true of the function v : [t0, T ] → H 1, and therefore of the function

−v′′ − g
def= s : [t0, T ] → H−1.

Also, for every t ∈ [t0, T ], s(t) is a positive measure with support contained in
[α, β] ⊂ ]0, 1[ (α, β independent of t), and its total mass is a bounded function of
t .

Proof. Step 1. Existence of v(t).
For every t ∈ [t0, T ], we take w(·, t) ∈ H1(0, 1; R) to denote the solution of

the linear problem:
∣
∣
∣
∣

w′′ + g = 0, in ]0, 1[ ,
w(0) = v

p
0, w(1) = v

p
1 .

It can be readily checked that if vp
0, v

p
1 : [t0, T ] → R and g : [t0, T ] → H−1 are

regulated (with bounded variation, absolutely continuous, and Lipschitz-continu-
ous, respectively), then the same will be true of the function w : [t0, T ] → H 1.

Let us then proceed by changing the unknown function

v(x, t) = v(x, t)− w(x, t).

Setting

K (t) =
{

ϕ ∈ H1
0

∣
∣ ∀x ∈ ]0, 1[ , ϕ(x) � ψ(x)− w(x, t)

}

,

one must now prove the existence of a unique function v : [t0, T ] → H 1
0 (0, 1; R),

having the required regularity in time and satisfying

• ∀ t ∈ [t0, T ], v(t) ∈ K (t),

• ∀ t ∈ [t0, T ], ∀ϕ ∈ K (t),
∫ 1

0
v′ (ϕ′ − v′) � 0.

For every t ∈ [t0, T ], the use of the Lions–Stampacchia theorem [8] associated
with the Poincaré inequality gives a unique v(t) ∈ K (t).
Step 2. Properties of the function s : [t0, T ] → H−1.

It is deduced from the variational inequality satisfied by v(t) that at every t , the
distribution s(t) = −v′′(t) is non-negative (that is, it takes a non-negative value at
every C∞ compactly supported non-negative test function). This classically entails
that the distribution s(t) is actually a measure.

Sincew is a regulated function on [t0, T ] into H1 ⊂ C0, given the compactness
of the sets {0}×[t0, T ], {1}×[t0, T ] and the conditions (4), one can findα, β ∈]0, 1[
such that

∀x ∈ [0, α] , ∀t ∈ [t0, T ], ψ(x)− w(x, t) < 0,

∀x ∈ [β, 1] , ∀t ∈ [t0, T ], ψ(x)− w(x, t) < 0.
(5)

The support of the measure s(t) is therefore contained in [α, β].
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It now remains necessary only to prove that the total mass of this measure
is bounded with respect to t . Take s = −v′′ to denote the measure s(t) at an
arbitrarily fixed t . For any compact subset K ∈]0, 1[, there exists a non-negative
function ξ ∈ C∞

0 (]0, 1[), which is identically 1 in K . For this function

s(K ) �
∫

ξ ds �
∥
∥ξ ′∥∥

L2

∥
∥v′∥∥

L2 .

Since
∫ 1

0

(

v′)2 =
∫

[0,1]
(ψ − w) ds �

∥
∥
∥

〈

ψ − w
〉+∥∥
∥

L∞ s
(

supp
〈

ψ − w
〉+)

,

where 〈x〉+ = max{x, 0}, adopting K1 = supp 〈ψ − w〉+ yields
∫ 1

0

(

v′)2 �
∥
∥
∥

〈

ψ − w
〉+∥∥
∥

L∞
∥
∥ξ ′

1

∥
∥

L2

∥
∥v′∥∥

L2 ,

that is
∥
∥v′∥∥

L2 �
∥
∥
∥

〈

ψ − w
〉+∥∥
∥

L∞
∥
∥ξ ′

1

∥
∥

L2 .

It then suffices to take K2 = [α, β] to obtain the required estimate of the total mass
of the non-negative measure s,

s (]0, 1[) = s ([α, β]) �
∥
∥ξ ′

1

∥
∥

L2

∥
∥ξ ′

2

∥
∥

L2

∥
∥
∥

〈

ψ − w
〉+∥∥
∥

L∞ ,

since
∥
∥w(t)
∥
∥

L∞ � C
{∣
∣v

p
0(t)
∣
∣+ ∣∣vp

1(t)
∣
∣+ ∥∥g(t)∥∥H−1

}

,

and since any regulated function is bounded.
Step 3. Regularity of the function v : [t0, T ] → H 1

0 (0, 1; R).
The claimed regularity of the dependence of the solution on t will be ensured

if there exists a constant C which is independent of t1, t2 ∈ [t0, T ], and such that
∥
∥v(t2)− v(t1)

∥
∥

H1
0

� C
∥
∥w(t2)− w(t1)

∥
∥

H1 . (6)

Taking arbitrary t1, t2 ∈ [t0, T ] and recalling (5), we set the following:

ψ i (λα) = λ [ψ(α)− w(α, ti )]

ψ i (λα + (1 − λ)β) = ψ (λα + (1 − λ)β)− w (λα + (1 − λ)β, ti ) ,

ψ i (λβ + (1 − λ)) = λ [ψ(β)− w(β, ti )] ,

for all λ ∈ [0, 1] and i ∈ {1, 2}. The functions ψ i defined in this way belong to H1
0

and satisfy
∥
∥ψ

′
2 − ψ

′
1

∥
∥

L2 � C
∥
∥w(t2)− w(t1)

∥
∥

H1 ,

where C is a real constant which is independent of t1, t2. Moreover, the functions
ψ i ∈ H1

0 differ from ψ(·) − w(·, ti ) only at those x where ψ(x) − w(x, ti ) < 0.

11



Also, the two functions v(ti ) are concave, since their second derivatives are non-
positive measures. As they vanish at both ends, these functions are non-negative.
Therefore, the function v(ti ), which solves the obstacle problem associated with
ψ − w(ti ), is also the solution of the obstacle problem associated with ψ i . From
the variational inequalities satisfied by v(t1) and v(t2), respectively, one deduces
the following:

∫ 1

0
v′(t1)
[

v′(t2)− ψ
′
2 + ψ

′
1 − v′(t1)

]

� 0,

∫ 1

0
v′(t2)
[

v′(t1)− ψ
′
1 + ψ

′
2 − v′(t2)

]

� 0.

Taking the sum of these two inequalities, we obtain
∫ 1

0

[

v′(t2)− v′(t1)
]2 �
∫ 1

0

[

v′(t2)− v′(t1)
] [

ψ
′
2 − ψ

′
1

]

,

and, therefore, reach the desired conclusion (6) by the Cauchy–Schwarz inequality.

4. Analysis of the “tangential problem”

4.1. Structure of the evolution problem

Once the transverse problem has been solved, the function s : [t0, T ] → M
becomes part of the input data in the study on the tangential problem. We now
examine the structure of the corresponding evolution problem.

After the unknown r has been eliminated, the problem now consists of finding
u : [t0, T ] → H 1 such that

• u(x, t = 0) = u0(x),

• u(x = 0, t) = up
0(t), u(x = 1, t) = up

1(t),

• ∀ϕ ∈ {u̇} + H1
0 ,

〈

u′′ + f, ϕ − u̇
〉

H−1,H1
0

�
〈

μs, |ϕ| − |u̇|
〉

H−1,H1
0

.

For ϕ ∈ H1(0, 1; R), one can set

ϕ(x) = ϕ(x)− ϕ(0)− x (ϕ(1)− ϕ(0)) ∈ H1
0 .

The isomorphism
{

H1 → H1
0 × R × R

ϕ �→ (ϕ, ϕ(0), ϕ(1))

together with the Poincaré inequality can then be used to endow H1 with the scalar
product defined by

(ϕ | ψ)H1 =
∫ 1

0
ϕ′(x) ψ ′

(x) dx + ϕ(0) ψ(0)+ ϕ(1) ψ(1). (7)

12



Let us consider the function � : H1 → R defined by

�(ϕ) =
〈

μ s, |ϕ|
〉

H−1,H1
0

−
〈

f, ϕ
〉

H−1,H1
0

− up
0 ϕ(0)− up

1 ϕ(1).

This definition is meaningful since it was noted in the proof of Theorem 1 that
supp s ⊂ [α, β] ⊂]0, 1[. The function � is clearly convex and continuous on H1.
With these notations, one can rewrite the evolution inequality as follows:

∀ϕ ∈ H1,
〈

u′′, ϕ − u̇
〉

H−1,H1
0

− u(0) (ϕ(0)− u̇(0))− u(1) (ϕ(1)− u̇(1))

� �(ϕ)−�(u̇),

that is, since u′′ = u′′:

∀ϕ ∈ H1,

−
∫ 1

0
u′ (ϕ′ − u̇

′)− u(0) (ϕ(0)− u̇(0))− u(1) (ϕ(1)− u̇(1))

� �(ϕ)−�(u̇),

which, in terms of the subdifferential of the function �, simply amounts to

−u(t) ∈ ∂� [u̇(t)] ,

where the subdifferential is understood in the sense of the scalar product (7). Since
� is positively homogeneous of degree 1, the conjugate function �∗ is the indica-
trix (in the sense of convex analysis) function of some closed convex set −C(t). It
can then be easily calculated that

C(t) =
{

u ∈ H1
∣
∣ ∀ϕ ∈ H1,

∫ 1

0
u′ ϕ′ + u(0)ϕ(0)+ u(1)ϕ(1)+�(ϕ) � 0

}

,

=
{

u ∈ H1
∣
∣ u(x = 0) = up

0, u(x = 1) = up
1,

and ∀ϕ ∈ H1
0 ,
〈

u′′ + f, ϕ
〉

H−1,H1
0

�
〈

μs, |ϕ|
〉

H−1,H1
0

}

,

and the problem to be solved is equivalent to that of finding u : [t0, T ] → H 1 such
that

• u(t0) = u0,

• −u̇(t) ∈ ∂ IC(t) [u(t)] , for a.a. t ∈ [t0, T ],
where the subdifferential should be understood with respect to the scalar prod-
uct (7). The tangential problem, therefore, obeys a sweeping process (see appendix
B) in the Hilbert space H1.
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4.2. Existence and uniqueness of strong solutions

In this section, it is established that the sweeping process that governs the tan-
gential problem can be solved, in some restrictive circumstances, using the results
obtained by Moreau (cf. [10] or Appendix B).

Theorem 2. Let f, s : [t0, T ] → H−1, and up
0, up

1 : [t0, T ] → R. Let us assume
that for every t ∈ [t0, T ], s(t) is a non-negative measure with support contained
in some fixed compact interval [α, β] ⊂]0, 1[, and let us consider the set-valued
mapping defined by

C(t) =
{

u ∈ H 1
∣
∣ u(x = 0) = up

0, u(x = 1) = up
1,

and ∀ϕ ∈ H1
0 ,
〈

u′′ + f, ϕ
〉

H−1,H1
0

�
〈

μs, |ϕ|
〉

H−1,H1
0

}

,

Some initial condition u0 ∈ C(0) is also given.
If the functions up

0, up
1 : [t0, T ] → R, f : [t0, T ] → H−1, s : [t0, T ] → M

have bounded variation and are right continuous at every t ∈ [t0, T [, then the
set-valued mapping C(t) has bounded retraction, and there exists a unique weak
solution u ∈ BV([t0, T ]; H 1) of the sweeping process based on C(t) which agrees
with the initial condition u0. This weak solution is also the unique solution in the
sense of “differential measures”, which is right-continuous at every t ∈ [t0, T [
(see Appendix B).

If, in addition, the functions up
0, up

1 : [t0, T ] → R, f : [t0, T ] → H−1,
s : [t0, T ] → M are absolutely continuous (respectively Lipschitz-continuous),
then the set-valued mapping C(t) has absolutely continuous (respectively Lips-
chitz-continuous) retraction, the solution u : [t0, T ] → H 1 is absolutely contin-
uous (respectively Lipschitz-continuous) and is the unique strong solution of the
sweeping process in the sense that

• u(t0) = u0,

• − u̇(t) ∈ ∂ IC(t) [u(t)] , for a.a. t ∈ [t0, T ].
Proof. Taking e(·, ·) to denote the “excess” (see Appendix A) associated with the
scalar product (7) on H 1, in order to prove all the claims about the retraction of
C(t), one can prove that at all t1 � t2 ∈ [t0, T ]

e (C(t1), C(t2)) � C
{∣
∣up

0(t2)− up
0(t1)
∣
∣+ ∣∣up

1(t2)− up
1(t1)
∣
∣

+∥∥ f (t2)− f (t1)
∥
∥

H−1 + ∥∥μs(t2)− μs(t1)
∥
∥M
}

,

for some real constant independent of t1, t2. We take wi (i = 1, 2) to denote the
unique solution in H1 of the linear problem

∣
∣
∣
∣

w′′
i + f (ti ) = 0,

wi (0) = up
0(ti ), wi (1) = up

1(ti ),

si = μs(ti ), and
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Ci =
{

u ∈ H1
0

∣
∣ ∀ϕ ∈ H1

0 ,
〈

u′′, ϕ
〉

H−1,H1
0

�
〈

si , |ϕ|〉H−1,H1
0

}

,

so that, according to these notations

C(ti ) = {wi
}+ Ci .

Since the “excess” obeys a triangle inequality (see Proposition 2 in Appendix
A):

e (C(t1), C(t2)) �
∥
∥w2 − w1

∥
∥

H1 + e
(C1, C2

)

.

The desired inequality will, therefore, be proved provided by

e
(C1, C2

)

� C
∥
∥s2 − s1

∥
∥M,

that is, arbitrarily choosing some u1 ∈ C1:

d
(

u1, C2
)

� C
∥
∥s2 − s1

∥
∥M,

or

inf
v∈C2

∥
∥u′

1 − v′∥∥
L2 � C

∥
∥s2 − s1

∥
∥M. (8)

Since u1 ∈ C1, u′′
1 is a measure with support contained in [α, β], and we take v0 to

denote the unique function in H1
0 such that

v′′
0 = inf

{

sup
{

u′′
1, 0
}

, s2

}

+ sup
{

inf
{

u′′
1, 0
}

,−s2

}

,

where the “inf” and “sup” should be understood with respect to the partial order in
the space of measures. From

−s2 � v′′
0 � s2,

we get v0 ∈ C2 and

−∣∣s2 − s1
∣
∣ � v′′

0 − u′′
1 �
∣
∣s2 − s1

∣
∣,

which yields
∥
∥
∥v

′′
0 − u′′

1

∥
∥
∥M =

∥
∥
∥

∣
∣v′′

0 − u′′
1

∣
∣

∥
∥
∥M �

∥
∥
∥

∣
∣s2 − s1

∣
∣

∥
∥
∥M =

∥
∥
∥s2 − s1

∥
∥
∥M.

Since the imbedding of M in H−1 is continuous (in dimension one),
∥
∥u′

1 − v′
0

∥
∥

L2 � C
∥
∥s2 − s1

∥
∥M,

for a constant C which is independent of v0 and u1. The desired conclusion (8) has
now been reached.

Theorem 2 is now a straightforward consequence of Moreau’s results (Theo-
rems 8 and 10) as regards the solvability of sweeping processes based on set-valued
mappings with bounded retraction.
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Fig. 1. Elastic string in frictional contact with a wedge-shaped obstacle

4.3. An example of an explicit solution

Let us consider the case of the evolution of a string above a fixed rigid wedge-
shaped obstacle.

At instant t = 0, the middle of the string undergoes grazing contact with the
top of the obstacle. Between instants t = 0 and t = 1, a “vertical” displacement of
amplitude y = −1/4 is imposed on both ends of the string. Then, between instants
t = 1 and t = 2, a right “horizontal” displacement of the extremities of the string
is prescribed at a constant speed (see Fig. 1).

More specifically, this amounts to studying the quasi-static evolution problem
for the string associated with the data ψ(x) = −|x − 1/2|, and

up
0(t) = 0, v

p
0(t) = − t

4
,

up
1(t) = 0, v

p
1(t) = − t

4
,

for 0 � t � 1,

up
0(t) = t − 1

4
, v

p
0(t) = −1

4
,

up
1(t) = t − 1

4
, v

p
1(t) = −1

4
,

for 1 � t � 2,

It is easily checked that the unique solution of this evolution problem is given by

v(x, t) = − t

2

∣
∣x − 1

2

∣
∣, u(x, t) = 0,

s = t δx=1/2, r = 0,

at 0 � t � 1,

v(x, t) = −1

2

∣
∣x − 1

2

∣
∣, u(x, t) = t − 1

2

∣
∣x − 1

2

∣
∣,

s = δx=1/2, r = (1 − t) δx=1/2,

at 1 � t � min(2, 1 + μ), and in the case μ < 1:

v(x, t) = −1

2

∣
∣x − 1

2

∣
∣, u(x, t) = 1

4
(t − 1 − μ)+ μ

2

∣
∣x − 1

2

∣
∣,

s = δx=1/2, r = −μ δx=1/2,

at 1 + μ � t � 2. Thanks to Theorem 2, the underlying set-valued mapping C(t)
has absolutely continuous (and even Lipschitz-continuous) retraction, and u is a
strong solution of the underlying sweeping process.
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Since dry friction is rate-independent, it is natural to attempt to concentrate
the episodes of motion prescribed on extremities of the string during the isolated
instants t = 0, 1. Setting up

0(0) = up
1(0) = v

p
0(0) = v

p
1(0) = 0, one considers the

following data

up
0(t) = 0, v

p
0(t) = −1

4
,

up
1(t) = 0, v

p
1(t) = −1

4
,

for 0 < t < 1,

up
0(t) = 1

4
, v

p
0(t) = −1

4
,

up
1(t) = 1

4
, v

p
1(t) = −1

4
,

for 1 � t � 2.

The motion of the string is now given by

v(x, t) = −1

2

∣
∣x − 1

2

∣
∣, u(x, t) = 0,

s = δx=1/2, r = 0,

at 0 < t < 1, and then in the case where μ � 1 by

v(x, t) = −1

2

∣
∣x − 1

2

∣
∣, u(x, t) = 1

2

∣
∣x − 1

2

∣
∣,

s = δx=1/2, r = −δx=1/2,

at 1 � t � 2, and in the case where μ � 1 by

v(x, t) = −1

2

∣
∣x − 1

2

∣
∣, u(x, t) = 1

4
(1 − μ)+ μ

2

∣
∣x − 1

2

∣
∣,

s = δx=1/2, r = −μ δx=1/2,

for 1 � t � 2. In this situation, the moving set C(t) moves only by translation, but
this translation involves two steps. The set-valued mapping C(t) has right-contin-
uous retraction, the retraction is no longer absolutely continuous, and the function
u is a solution of the sweeping process only in the sense of differential measures
(see Definition 10).

4.4. Another example that eludes the theory

Let us consider the example of a string tightly stretched just above a rigid recti-
linear ground. First, a punctual downward force of unit amplitude is applied to the
middle of the string. Assuming that the friction coefficient is large (greater than 2),
a right displacement of unit amplitude is prescribed on the right extremity of the
string. The punctual force then starts to move to the left at a constant speed (see
Fig. 2).

More specifically, this amounts to studying the quasi-static evolution problem
for the string associated with the following data: ψ ≡ 0, up

0 = v
p
0 = v

p
1 ≡ 0 and up

1
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Fig. 2. Frictional contact between an elastic string and a rigid floor

is the function which takes the value 0 at t = 0 and 1 at every t > 0. In addition,
the body force,

f = δx=1/2−t ,

has to be taken into account. The unique solution of the transverse problem is given
by v ≡ 0, which entails s ≡ − f . Since at all t1 < t2 ∈ ]0, 1[:

∥
∥δt2 − δt1

∥
∥M = 2,

∥
∥δt2 − δt1

∥
∥

H−1 = √
t2 − t1

√

1 − (t2 − t1),

we have the following regularity for s:

s /∈ BV ([0, 1/3];M) , s /∈ BV
(

[0, 1/3]; H−1
)

,

s /∈ C0 ([0, 1/3];M) , s ∈ C0
(

[0, 1/3]; H−1
)

.

This regularity is not sufficiently strong to be able to use Theorem 2 to solve the
underlying sweeping process by means of Moreau’s results. However, one can con-
sider subdividing [t0, T ], performing the successive projections of the catching-up
algorithm, and then attempting to take a limit as the size of the largest interval of the
subdivision tends to zero. In the example under consideration, strong convergence
in H1 occurring uniformly with respect to time is obtained, giving the following
weak solution (in line with Definition 9) of the sweeping process:

u(x, t) =
∣
∣
∣
∣
∣
∣

0, if 0 � x � 1/2 − t,
x + t − 1/2

t + 1/2
, if 1/2 − t � x � 1.

However, the associated velocity,

u̇(x, t) =
∣
∣
∣
∣
∣
∣

0, if 0 � x < 1/2 − t,
1 − x

(t + 1/2)2
, if 1/2 − t < x � 1,

shows spatial discontinuity just below the load (see Fig. 3). Therefore, this weak
solution does not belong to BV ([0, 1/3]; H1), and the underlying set-valued map-
ping C(t) cannot have bounded retraction in the Hilbert space H1 (see Theorem 8).
Note, incidentally, that the value of the velocity just below the load is not defined, so
that pointwise formulation of the Coulomb law cannot be checked in this problem.
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Fig. 3. Longitudinal displacement and velocity at the initial instant as well as at some later
instant (dashed lines)

The concept of the weak solution corresponds to subdividing the time interval
and introducing the discrete locations of the load associated with the subdivisions.
Another way of proceeding would be to “spread out” the load a little bit, by means
of a spatial convolution with an approximation of the identity. This is enough to
make the underlying set-valued mapping have absolutely continuous (and even
Lipschitz-continuous) retraction, and thus to ensure the existence of a strong solu-
tion, with a spatially continuous velocity field, in particular. This naturally raises
the question as to the existence of a limit, as the regularization tends to identity and
the possibility that this limit may coincide with the weak solution, that is, the limit
of the solutions of the time-discretized problems.

As an example, let us look at the load, which is homogeneous over the spatial
interval [1/2 − t − ε, 1/2 − t + ε], and of amplitude 1/(2ε), where 0 < ε < 1/6. It
can be easily confirmed that the strong solution of the underlying sweeping process
is

uε(x, t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

0, if 0 � x � xε(t),
μ

4ε
(x − xε(t))

2 , if xε(t) � x � 1

2
− t + ε,

1 + μ

2ε

(
1

2
− t + ε − xε(t)

)

(x − 1), if
1

2
− t + ε � x � 1.

where

xε(t) = 1 −
√
(

1

2
+ t − ε

)2

+ 4ε

μ
∈
[

1

2
− t − ε,

1

2
− t + ε

]

.

It is worth noting in this example that uε converges towards u as ε tends to 0, in a
strong sense: strong convergence in H1, uniformly with respect to t ∈ [0, 1/3].

The solution uε provides an explanation of a surprising feature of the solution
u of the non-regularized problem. Although the friction coefficient chosen was
large enough to prevent any slipping, the elastic energy associated with u decreases
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with respect to time. This fact can be explained as follows. The solution uε of the
regularized problem always shows some slipping, and it can be checked that the
accumulated dissipation (the time integral of the power of the friction force) tends,
as ε → 0, not towards zero, but towards some finite value. It is, therefore, logical
that the weak solution u of the “limit” problem should keep some memory of this
dissipation, although showing no slipping itself.

4.5. Weak solutions

In this section it is proved, after adopting some fairly general regularity hypoth-
eses about the data involved in the frictional problem, that the set-valued mapping
of the underlying sweeping process is Wijsman-regulated. This enables us to state
the problem of the possible existence of a weak solution of the frictional contact
problem. However, the question of existence of such a weak solution is left open
at the moment.

More specifically, we propose to prove that the regularity obtained for the func-
tion s(t) by solving the normal problem yields a Wijsman-regulated set-valued
mapping C(t).

Proposition 1. Let f, s : [t0, T ] → H−1, as well as up
0, up

1 : [t0, T ] → R. Let us
assume that for every t ∈ [t0, T ], s(t) is a non-negative measure having a support
which is contained in a fixed compact interval [α, β] ⊂ ]0, 1[, and a total mass
bounded independently of t . Let us consider the set-valued mapping defined by

C(t) =
{

u ∈ H1
∣
∣ u(x = 0) = up

0, u(x = 1) = up
1,

and ∀ϕ ∈ H1
0 ,
〈

u′′ + f, ϕ
〉

H−1,H1
0

�
〈

μs, |ϕ|
〉

H−1,H1
0

}

,

If the functions f, s : [t0, T ] → H−1, up
0, up

1 : [t0, T ] → R are regulated, then
the set-valued mapping C(t) is Wijsman-regulated.

Proof. As in the proof of Theorem 2, w(t) is defined as the unique solution (at
fixed t) of the linear problem

∣
∣
∣
∣

w′′ + f (t) = 0,
w(0) = up

0(t), w(1) = up
1(t),

and

C(t) =
{

u ∈ H1
0

∣
∣ ∀ϕ ∈ H1

0 ,

∫ 1

0
u′ ϕ′ �

〈

s(t), |ϕ|〉H−1,H1
0

}

.

According to these notations

C(t) = {w(t)}+ C(t).
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It should be clear that if the three functions f : [t0, T ] → H−1, up
0, up

1 : [t0, T ] →
R are regulated, then the same will be true of the function w : [t0, T ] → H1.
Setting

Cn =
{

u ∈ H1
0

∣
∣ ∀ϕ ∈ H1

0 ,

∫ 1

0
u′ ϕ′ �

〈

sn, |ϕ|〉H−1,H1
0

}

,

C =
{

u ∈ H1
0

∣
∣ ∀ϕ ∈ H1

0 ,

∫ 1

0
u′ ϕ′ �

〈

s, |ϕ|〉H−1,H1
0

}

,

(where sn and s are non-negative measures with their support in [α, β], having a
total mass which is bounded independently of n) and taking into account Theo-
rem 4, one must now prove that if the sequence (sn) converges strongly towards s
in H−1, then limn→∞ Cn = C, in the sense of Kuratowski.

Choosing u ∈ lim supn→∞ Cn arbitrarily, one finds that there exists a subse-
quence of (sn), which is still denoted by (sn), and a sequence (un) in H1

0 such that
(u′

n) converges strongly towards u′ in L2 and

∀ϕ ∈ H1
0 , ∀n ∈ N,

∫ 1

0
u′

n ϕ
′ �
〈

sn, |ϕ|〉H−1,H1
0
.

If n tends to infinity, it can be seen that u ∈ C; hence, lim supn→∞ Cn ⊂ C.
Now let us take arbitrary u ∈ C. Noting that u′′ is a measure with support in

[α, β], set

u′′
n = inf

{

sup
{

u′′, 0
}

, sn

}

+ sup
{

inf
{

u′′, 0
}

,−sn

}

,

where the infimum and supremum should be understood in terms of the partial
ordering in the space of measures. As

−sn � u′′
n � sn,

we obtain un ∈ Cn . Now, remember that a sequence ( fn) in the dual space X ′ of a
Banach space X converges weakly-star towards f if and only if ‖ fn‖ is bounded,
and if 〈 fn,x〉 → 〈 f,x〉 for every x in a dense subset of X (see [13], theorem 10,
p.125). Since the total mass of sn is bounded and since the restrictions of func-
tions in H1

0 to the interval [α, β] are dense in C0([α, β]), it is deduced that the
strong convergence of sn towards s in H−1 entails the weak-star convergence of
sn towards s in M([α, β]). From the definition of u′′

n in terms of u ∈ C, then we
have the weak-star convergence of u′′

n towards u′′ in M([α, β]). First, this entails
pointwise convergence almost everywhere of u′

n towards u′, and then, by dominated
convergence, strong convergence in L2 of u′

n towards u′; hence u ∈ lim infn→∞ Cn .
Upon combining all these elements, we obtain

lim sup
n→∞

Cn ⊂ C ⊂ lim inf
n→∞ Cn,

which is the conclusion we were looking for.
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5. Replacing the string by a beam

Let us consider a straight beam which is simply supported at both ends and has
as its initial configuration the segment [0, 1] × {0}. The linearized equations that
govern the equilibrium of the beam, which is assumed to be elastic, read as follows:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

k u′′ + f = 0, in ]0, 1[ ,
u(0) = up

0, u(1) = up
1,

l v′′′′ − g = 0, in ]0, 1[ ,
v(0) = v

p
0, v(1) = v

p
1,

v′′(0) = v′′(1) = 0,

where the traction stiffness k and the flexion stiffness l will equal 1 in what follows
by choosing the unit appropriately, and up

0 ex + v
p
0 ey and up

1 ex + v
p
1 ey are the

prescribed displacements at extremities x = 0 and x = 1, respectively.
The equations governing the quasi-static evolution of the beam above a fixed

rigid obstacle of equation y = ψ(x) with Coulomb dry friction of coefficient
denoted by μ, can be written as follows:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u′′ + f + r = 0, in ]0, 1[ × [t0, T ],
r
(

û − u̇
)+ μs

(|û| − |u̇|) � 0, ∀û ∈ R, in ]0, 1[ × [t0, T ],
u(0) = up

0, u(1) = up
1, on [t0, T ],

v′′′′ − g − s = 0, in ]0, 1[ ,
v − ψ � 0, s � 0, s (v − ψ) ≡ 0, in ]0, 1[ × [t0, T ],
v(0) = v

p
0, v(1) = v

p
1, on [t0, T ],

v′′(0) = v′′(1) = 0, on [t0, T ].
The equations governing the normal component v of the displacement are still
uncoupled with those governing the tangential component.

5.1. Another example

It could seem at first sight that the case of the beam brings nothing more to
the case of the string, except that the order of the differential operator in the vari-
ational inequality that governs the normal displacement is 4 instead of 2, whereas
the problems governing the tangential displacement remains formally the same in
both cases.

This is true, but the fact that the operator governing the normal displacement is
now of order 4 has some important effects. In particular, one can expect the solu-
tions of the underlying sweeping process be be weak solutions, even when arbitrarily
smooth data are available. This can be confirmed by analysing the problem with the
geometry shown in Fig. 4. In the initial configuration, the beam undergoes grazing
contact with a smooth obstacle. The amplitude of the force is made to increase
gradually with time t . It can easily be checked that the contact zone in the solution
reduces to a single point, provided the amplitude of the force is small enough, and
that this punctual contact zone is associated with a point on the obstacle that moves
to the left of the figure with time. Consequently, the normal reaction s is a Dirac
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Fig. 4. Frictional contact of a simply supported beam

measure whose support moves with time, as in the example given in Fig. 2. This
fact will be true even in cases where the external force is “spread out” a little bit so
as to be as smooth as desired. Therefore, one cannot expect to obtain

s ∈ BV ([t0, T ];M) ,

by requiring the data to be smooth. The tangential problem will, therefore, generally
have only weak solutions, even with smooth data.

5.2. About weak solutions

In this section, the regularity that can be expected to occur with the function
s(t), and therefore with the set-valued mapping C(t), will be analysed in the case
of beams, where the variational inequality is associated with the biharmonic oper-
ator instead of the harmonic one. It is worth noting that under the same regularity
assumptions about the data, the function s(t) shows the same regularity here as
in Theorem 1. This is stated in the following theorem, in which combines several
regularity results that are known for variational inequalities associated with the
biharmonic operator.

Once Theorem 3 has been proved, Proposition 1 ensures that the underlying
set-valued mapping C(t) is Wijsman-regulated, provided the data f, g : [t0, T ] →
H−1, up

0, v
p
0, up

1, v
p
1 : [t0, T ] → R are regulated functions.

Theorem 3. Let us assume that ψ ∈ H 3(0, 1; R), g : [t0, T ] → H−1 and that the
functions vp

0, v
p
1 : [t0, T ] → R satisfy the strong compatibility condition,

inf
t∈[t0,T ] v

p
0(t) > ψ(0), inf

t∈[t0,T ] v
p
1(t) > ψ(1),

setting:

K (t) =
{

v̂ ∈ H2 (0, 1; R)
∣
∣ v̂(0) = v

p
0(t), v̂(1) = v

p
1(t),

∀x ∈ ]0, 1[ , v̂(x) � ψ(x)
}

,

then there exists a unique function v : [t0, T ] → H 2(0, 1; R) such that

• ∀t ∈ [t0, T ], v(t) ∈ K (t),

• ∀t ∈ [t0, T ], ∀v̂ ∈ K (t),
∫ 1

0
v′′ (v̂′′ − v′′) �

〈

g, v̂ − v
〉

H−1,H1
0

.
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Moreover, if vp
0, v

p
1 : [t0, T ] → R and g : [t0, T ] → H−1 are regulated, then the

same will be true of the function v : [t0, T ] → H 3, and, therefore, of the function

v′′′′ − g
def= s : [t0, T ] → H−1.

Also, for every t ∈ [t0, T ], s(t) is a non-negative measure with support con-
tained in [α, β] ⊂ ]0, 1[(α, β are independent of t), whose total mass is a bounded
function of t .

Proof. This additional regularity (H3 instead of H2) shown by the solutions of
the obstacle problem associated with the biharmonic operator is a well-known fact.
Here we reproduce the proof by penalization displayed in [8, p. 270] (the reader
will find there the bibliographical references on the subject), because it can readily
be transposed to higher space dimensions and, in particular, to the case of the plate.
To prove that the mapping v : [t0, T ] → H 3 thus defined is regulated, we shall use
the fact that a mapping with values in a complete metric space is regulated if and
only if it admits a left limit and a right limit at every point. Thus, the problem is
made to focus on the stability of the solution to the biharmonic obstacle problem
with respect to the data. This stability problem was studied by Adams [1], whose
results are very similar to those needed here. Our method of proof is on very similar
lines to those used in [1].
Step 1. Existence and uniqueness of the function v : [t0, T ] → H 2.

At every t ∈ [t0, T ], we take w(·, t) ∈ H2(0, 1; R) to denote the solution of
the linear problem

∣
∣
∣
∣
∣
∣

w′′′′ − g = 0, in ]0, 1[ ,
w(0) = v

p
0, w(1) = v

p
1,

w′′(0) = w′′(1) = 0.

It should be clear that w(·, t) ∈ H3(0, 1; R) and that the linear mapping

{

R × R × H−1 → H3
(

v
p
0(t), v

p
1(t), g(t)

) �→ w(t)

is continuous. In particular, if the data are regulated functions of the variable t , then
the same will be true of the function w : [t0, T ] → H3. Next, we proceed with
changing the unknown function

v(x, t) = v(x, t)− w(x, t),

and set

K (t) =
{

v̂ ∈ H1
0 ∩ H2

∣
∣ ∀x ∈ ]0, 1[ , v̂(x) � ψ(x)− w(t,x)

}

.

By the Lions–Stampacchia theorem, there exists a unique v(t) ∈ K (t) such that

∀v̂ ∈ K (t),
∫ 1

0
v′′ (v̂′′ − v′′) � 0, (9)
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provided that the bilinear form (v,w) → ∫ 1
0 v

′′w′′ is coercive on the Hilbert space
H1

0 ∩ H2 equipped with the norm

‖v‖H1
0 ∩H2 =

√

‖v′‖2
L2

+ ‖v′′‖2
L2
.

Take v ∈ H1
0 ∩ H2 ⊂ C1. There exists x0 ∈]0, 1[ such that v′(x0) = 0. We obtain

[

v′(x)
]2 = 2

∫ x

x0

v′ v′′ � 2

√
∫ 1

0
v′2
√
∫ 1

0
v′′2,

which entails
√
∫ 1

0
v′2 � 2

√
∫ 1

0
v′′2, (10)

(this is, in fact, the desired coerciveness); therefore, the existence of a unique
v(t) ∈ K (t) solving the variational inequality.

It is now proposed to prove that it is always possible to reduce the problem to
the case where the obstacle is described by a function which vanishes at the extrem-
ities x = 0, 1. The function ψ(x) will be constructed as in the proof of Theorem 1.
Since w : [t0, T ] → H3 is regulated, by the conditions pertaining in (4), one can
find α, β ∈]0, 1[ such that

∀x ∈ [0, α] , ∀t ∈ [t0, T ], ψ(x)− w(x, t) < 0,

∀x ∈ [β, 1] , ∀t ∈ [t0, T ], ψ(x)− w(x, t) < 0.

The function ψ(x, t) can then be defined by

ψ (λα, t) =
[

λ3 − 3λ2 + 3λ
]

[ψ(α)− w(α, t)]

−
[

λ3 − 3λ2 + 2λ
] [

ψ ′(α)− ∂w

∂x
(α, t)

]

α

+
[

λ3 − 2λ2 + λ
] [

ψ ′′(α)− ∂2w

∂x2 (α, t)

]
α2

2
,

ψ (λα + (1 − λ)β, t) = ψ (λα + (1 − λ)β)− w (λα + (1 − λ)β, t) ,

ψ (λβ + (1 − λ), t) =
[

λ3 − 3λ2 + 3λ
]

[ψ(β)− w(β, t)]

−
[

λ3 − 3λ2 + 2λ
] [

ψ ′(β)− ∂w

∂x
(β, t)

]

(1 − β)

+
[

λ3 − 2λ2 + λ
] [

ψ ′′(β)− ∂2w

∂x2 (β, t)

]
(1 − β)2

2
,

for every λ ∈ [0, 1]. It can be readily checked that ψ(t) ∈ H1
0 ∩ H3 and that

∥
∥ψ(t)
∥
∥

H3 � C
∥
∥ψ − w(t)

∥
∥

H3 , (11)
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for a real constant C which depends only on α and β (and is therefore independent
of t and w(t)). Moreover, v′′ is convex and vanishes at extremities x = 0, 1. It is
therefore non-positive, and v(t) is a concave function of x. Hence, it is non-nega-
tive. Since the function ψ(·, t) differs from ψ(·) − w(·, t) only at those values of
x where the latter is negative, this entails that v, which solves the obstacle problem
associated with ψ − w, also solves the obstacle problem associated with ψ .
Step 2. H3 regularity of the solution at every instant.

In step 2, an arbitrary t in [t0, T ] is fixed once for all.
Define g = ψ

′′′′ ∈ H−1 to be able to proceed with changing the unknown
function:

v = v − ψ,

so that, setting

K =
{

v̂ ∈ H1
0 ∩ H2

∣
∣ ∀x ∈ ]0, 1[ , v̂(x) � 0

}

,

one obtains v ∈ K and

∀v̂ ∈ K ,
∫ 1

0
v

′′ (
v̂′′ − v

′′) �
〈

g, v̂ − v
〉

H−1,H1
0

.

As in [8, p. 270], for every ε > 0, the penalized function pε is defined as the
unique solution in H2(0, 1; R) of the linear boundary problem

∣
∣
∣
∣

pε − εp′′
ε = v, in ]0, 1[ ,

pε(0) = pε(1) = 0.

It can be readily seen that

• pε ∈ H4(0, 1; R),

• p′′
ε (0) = p′′

ε (1) = 0.

Moreover, if pε(x0) = min[0,1] pε for some x0 ∈]0, 1[, then p′′
ε (x0) � 0; therefore,

pε(x0) � v(x0) � 0. This entails

∀ε > 0, pε ∈ K .

But, for all v̂ ∈ K ,

∫ 1

0
v̂′′ (v̂′′ − v

′′) �
∫ 1

0
v

′′ (
v̂′′ − v

′′) �
〈

g, v̂ − v
〉

H−1,H1
0

.

Applying this inequality to the case v̂ = pε, one gets

∫ 1

0
p′′′′
ε p′′

ε �
〈

g, p′′
ε

〉

H−1,H1
0

.
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But g = −G ′ for some G ∈ L2, and one obtains
∫ 1

0
p′′′′
ε p′′

ε �
∫ 1

0
G p′′′

ε ,

that is,
∫ 1

0

(

p′′′
ε

)2 � −
∫ 1

0
G p′′′

ε ,

and as a result:
∥
∥p′′′

ε

∥
∥

L2 �
∥
∥G
∥
∥

L2 = ∥∥g∥∥H−1 .

By Poincaré inequality
∥
∥p′′

ε

∥
∥

L2 � C
∥
∥p′′′

ε

∥
∥

L2 ,

for a constant C independent of ε. Recalling pε ∈ H1
0 ∩ H2 and inequality (10),

one obtains

∀ε > 0,
∥
∥pε
∥
∥

H3 � C
∥
∥g
∥
∥

H−1 , (12)

for a constant C independent of ε, as well as of g. This inequality yields
∥
∥p′′

ε

∥
∥

L2 �
C
∥
∥g
∥
∥

H−1 , first, and
∥
∥pε − v

∥
∥

L2 � Cε
∥
∥g
∥
∥

H−1 , then, which shows that pε tends
towards v strongly in L2, as ε tends to 0+. Also, by virtue of (12), there exists
a subsequence converging weakly in H3. Since weak convergence in H3 is, in
particular, strong convergence in L2, the limit must be v, which therefore belongs
to H3.
Step 3. Regularity of the dependence of the solution on time.

Since a function with values in a complete metric space is regulated if and
only if it admits a left limit and a right limit at every point, it suffices to prove the
following stability result:

lim
n→+∞

∥
∥w − wn

∥
∥

H3 = 0 �⇒ lim
n→+∞

∥
∥v − vn

∥
∥

H3 = 0,

where v (respectively vn) is the solution of inequality (9) involving the data w
(respectively wn).

The proof of this stability result is largely inspired by Adams’ technique [1].
Denote sn = v′′′′

n (respectively, s = v′′′′). These distributions are non-nega-
tive (that is, they take non-negative values at every C∞ test-function with compact
support), and there are, therefore, some measures. A double integration by parts
yields
∫ 1

0

(

v′′ − v′′
n

)2 =
∫ 1

0
(v − vn) d (s − sn) �

∫ 1

0
(wn − w) d (s − sn) ,

since vn = ψ −wn on supp sn (v = ψ −w on supp s) and vn � ψ −wn on [0, 1]
(v � ψ − w on [0, 1]). This entails

lim
n→+∞

∥
∥v − vn

∥
∥

H2 = 0, (13)
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provided the total mass of the non-negative measure sn = v′′′′
n is bounded indepen-

dently of n. To prove this, take [α, β] ⊂]0, 1[ such thatψ−wn < 0 on ]0, 1[\[α, β].
Since vn � 0, supp sn ⊂ [α, β]. Moreover, for every compact set K ∈]0, 1[, one
can find a non-negative function ξ ∈ C∞

0 (]0, 1[), which equals 1 identically on K .
This entails

sn(K ) �
∫

ξ dsn �
∥
∥ξ ′′∥∥

L2

∥
∥v′′

n

∥
∥

L2 .

Since
∫ 1

0

(

v′′
n

)2 =
∫

[0,1]
(ψ − wn) dsn �

∥
∥
∥

〈

ψ − wn
〉+∥∥
∥

L∞ sn

(

supp
〈

ψ − wn
〉+)

,

where 〈x〉+ = max{x, 0}, the choice K = supp 〈ψ − wn〉+ yields
∫ 1

0

(

v′′
n

)2 �
∥
∥
∥

〈

ψ − wn
〉+∥∥
∥

L∞
∥
∥ξ ′′

1

∥
∥

L2

∥
∥v′′

n

∥
∥

L2 ,

that is
∥
∥v′′

n

∥
∥

L2 �
∥
∥
∥

〈

ψ − wn
〉+∥∥
∥

L∞
∥
∥ξ ′′

1

∥
∥

L2 .

It then suffices to set K = [α, β] to obtain the desired estimate of the total mass of
the non-negative measure sn :

sn (]0, 1[) = sn ([α, β]) �
∥
∥ξ ′′

1

∥
∥

L2

∥
∥ξ ′′

2

∥
∥

L2

∥
∥
∥

〈

ψ − wn
〉+∥∥
∥

L∞ . (14)

Next, from inequalities (11) and (12), we find that
∥
∥vn
∥
∥

H3 � C,

for some real constant C independent of n. Consequently, there exists a subse-
quence of (vn) converging weakly in H3. But in view of (13), this weak limit must
be v. Recalling that the weak topology of a closed ball in a separable Hilbert space
is metrizable and that a sequence with values in a compact metric space having
a unique cluster value must converge towards it, one can deduce that the whole
sequence vn converges weakly towards v in H3. we now propose to prove that this
convergence is actually strong. One has

∫ 1

0

(

v′′′
n − v′′′)2 = −

∫ 1

0

(

v′′
n − v′′) (dsn − ds) .

But, since v′′
n(0) = v′′(0) = 0 and the sequence vn converges weakly towards v in

H3, the sequence v′′
n − v′′ must converge pointwise towards 0 and be bounded by

a constant C which is independent of x and n. By Egoroff’s theorem, there exists
a measurable subset M of [0, 1] such that the sequence v′′

n − v′′ converges towards
0 uniformly on [0, 1] \ M , where s(M) is as small as desired. Thus

∫

[0,1]\M

∣
∣v′′

n − v′′∣∣ (dsn + ds) � ε [s ([0, 1])+ sn ([0, 1])] ,
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which is controlled by estimate (14). Moreover
∫

M

∣
∣v′′

n − v′′∣∣ (dsn + ds) �
[∥
∥v′′

n

∥
∥

L∞ + ∥∥v′′∥∥
L∞
]

[s (M)+ sn (M)] .

Since ‖v′′
n‖L∞ is bounded, the desired conclusion will be reached as soon as

lim
n→+∞ sn (M) = s (M) ,

has been proved. But, it suffices to establish that for all functions ξ ∈ C∞
0 (]0, 1[),

one has

lim
n→+∞

∫

]0,1[
ξ dsn =

∫

]0,1[
ξ ds.

And, since
∫

]0,1[
ξ dsn = −

∫ 1

0
ξ ′ v′′′

n ,

this is a consequence of the weak convergence in H3 of vn towards v.

6. Existence of weak solutions and related open problems

The following example is presented to show that, with the regularity that was
proved above of the friction threshold s (Theorems 1 and 3), there may exist no weak
solution to the frictional quasi-static problem. Incidentally, this example shows that
a sweeping process associated with an arbitrary Wijsman-regulated set-valued map-
ping need not have any weak solution.

Example. Let us consider the initial condition defined by u0(x) = 1 − 2|x − 1/2|
with x ∈]0, 1[. The displacements prescribed at the extremities, as well as the body
forces, are assumed to vanish identically up

0 ≡ up
1 ≡ 0, f ≡ 0. Assuming that the

friction coefficient is larger than 2 in order to prevent any slipping, one assumes
the measure s(t) to be a “moving Dirac measure” δp(t) at position x = p(t). The
position p(t) will be an oscillating function around x = 1/2, which is continuous
but shows unbounded variation. To define the function p(t), take a sequence αn in
]0, 1/4[ converging towards 0 such that

∑∞
n=0 αn = ∞. Then set

p(0) = 1/2,

p(t) =

∣
∣
∣
∣
∣
∣
∣

1/2 + (−1)n22n+2αn

∣
∣
∣t − 1/22n+2

∣
∣
∣ if t ∈ [1/22n+2, 1/22n+1

]

,

1/2 + (−1)n22n+1αn

∣
∣
∣t − 1/22n

∣
∣
∣ if t ∈ [1/22n+1, 1/22n

]

.

It can be readily checked that the support of the measure δp(t) is contained in
[1/4, 3/4], its total mass equals 1, and δp(t) ∈ C0([0, 1]; H−1). From Proposi-
tion 1, it follows that the set-valued mapping C(t) associated with the underlying
sweeping process is Wijsman-regulated.

29



Next, set

sn(t) =
∣
∣
∣
∣

δ1/2 if t ∈ [0, 1/22n
]

,

s(t) if t ∈ [1/22n, 1
]

,

so that the sweeping process based on the associated Cn(t) admits a weak solution
un(t), which can be explicitly computed. It can easily be checked that for all m � n:

∀t � 1

22m
, ∀x ∈ [0, 1], 0 � un(x, t) � 3

2

n
∏

k=m

(
1 − 2αk

1 + 2αk

)2

.

This estimate entails

lim
n→∞ un(t) = 0,

at all t ∈]0, 1]. If we go back to the sweeping process based on C(t), and taking
u P (t) to denote the piecewise constant function associated with a given subdivision
P by use of the catching-up algorithm, it can be readily checked that the net u P (t)
converges pointwise towards the following function:

u(t) =
∣
∣
∣
∣
∣

u0 if t = 0,

0 if t ∈ ]0, 1] .

The convergence cannot be uniform on [0, 1], because otherwise the limit would
be right-continuous at 0, in view of Proposition 11. The sweeping process based
on C(t), which was found above to be Wijsman-regulated, therefore does not have
any weak solution in the sense of Definition 9.

It might seem that pointwise convergence of the net u P (t) could be allowed by
weakening the definition of a weak solution. However, one can model a rigid motion
of a segment C(t) in R

2 such that C(t) is Wijsman-regulated and the corresponding
net u P (t) does not converge, even pointwisely. Our Definition 9 of weak solutions
of sweeping processes by Wijsman-regulated set-valued mapping therefore seems
to be appropriate. However, since a weak solution does not necessarily exist, some
problems still remain to be solved.

Open problem 1. Find regularity assumptions about s(t) compatible with a “mov-
ing Dirac measure”, where the existence of a weak solution to the underlying
sweeping process could be proved. Of course, the regularity assumptions will have
to be weak enough to be ensured by requiring that the data involved in the “normal
problem” show some regularity.

Open problem 2. In cases where regularizing s(t) by performing spatial convolu-
tion with a mollifier gives a set-valued mapping C(t) with bounded retraction, is
it true that the corresponding solutions of the associated sweeping processes con-
verge uniformly with t towards a limit? If so and a weak solution of the sweeping
process based on C(t) does exist, are both limits necessarily equal?

Open problem 3. In cases where the sweeping process based on C(t) admits a
weak solution u(t), is it true that u̇ is a function of bounded variation of x at every
t?
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Appendix A: Set-valued mappings that are of bounded retraction or
Wijsman-regulated

Let E be an arbitrary metric space whose distance function is denoted by d.

Definition 1. The excess of a subset A of E over a subset B is defined as

e(A, B) = sup
a∈A

inf
b∈B

d(a, b),

where the supremum should be understood with respect to the order on [0,+∞],
so that

∀B ∈ P(E), e(∅, B) = 0,

∀A ∈ P(E) \ {∅}, e(A,∅) = +∞.

The Hausdorff “distance” between the two subsets A and B of E is defined by

h(A, B) = max
{

e(A, B), e(B, A)
} ∈ [0,+∞].

A key fact, which is recalled in the following proposition, is that the excess
gives rise to a triangular inequality.

Proposition 2. For all A, B,C ⊂ E, we have

(i) e(A, B) = 0 ⇐⇒ A ⊂ B,

(ii) h(A, B) = 0 ⇐⇒ A = B,

(iii) e(A,C) � e(A, B)+ e(B,C),

(iv) h(A,C) � h(A, B)+ h(B,C).

The class of all non-empty closed bounded subsets of E equipped with the Haus-
dorff distance is a metric space. Hence, the Hausdorff distance defines a notion of
limit for sequences Cn : N → P(E) of subsets of E .

Definition 2. A sequence Cn : N → P(E) of subsets of E will be said to converge
in the sense of Hausdorff towards a closed subset L ⊂ E if

lim
n→∞ h(Cn, L) = 0.

In practice, convergence in the sense of Hausdorff is often too strong, as seen
in the following example.

Example. In Euclidean R
2, let us consider the sequence Cn : N → P(R2) defined

by

Cn =
{

(x, y) ∈ R
2
∣
∣ y � x2

n + 1

}

,

and take �+ to denote the closed half-space y � 0. As:

∀n ∈ N, h
(

Cn,�
+) = +∞,

the sequence Cn does not converge in the sense of Hausdorff towards �+.
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Definition 3. Let Cn : N → P(E) be a sequence of subsets of E . The two closed
sets (possibly empty) defined by

lim inf
n→∞ Cn =

{

x ∈ E
∣
∣ lim sup

n→∞
d(x,Cn) = 0

}

,

lim sup
n→∞

Cn =
{

x ∈ E
∣
∣ lim inf

n→∞ d(x,Cn) = 0
}

,

always satisfy:

lim inf
n→∞ Cn ⊂ lim sup

n→∞
Cn .

When these two sets equal a set L (necessarily closed), it will be said that the
sequence Cn converges in the sense of Kuratowski towards L , which will be writ-
ten:

lim
n→∞ Cn = L .

Definition 4. A sequence Cn : N → P(E) of subsets of E will be said to converge
in the sense of Wijsman towards a closed set L ⊂ E if

∀x ∈ E, lim
n→∞ d(x,Cn) = d(x, L).

The interest of convergence in the sense of Wijsman is that it is induced by a
natural topology in the class of all nonempty closed subsets of E : the weak topol-
ogy generated by the family of functions d(x, ·), when x covers E , which is called
Wijsman’s topology.

Theorem 4. [4] Let (E, d) be a complete separable metric space. Then the class of
nonempty closed subsets of E equipped with Wijsman’s topology is separable, and
there is a complete metric compatible with the topology.

A link between convergence in the sense of Hausdorff and convergence in the
sense of Kuratowski is provided by the following proposition (a proof of which can
be found in [9]).

Proposition 3. Let Cn : N → P(E) be a sequence of subsets of E, and L a closed
set. If Cn converges towards L in the sense of Hausdorff, then Cn converges towards
L in the sense of Kuratowski:

lim
n→∞ h(Cn, L) = 0 �⇒ lim

n→∞ Cn = L .

If all the Cn are contained in a fixed compact set K ⊂ E (∀n ∈ N,Cn ⊂ K ), then
the converse is true.

A link between convergence in the sense of Kuratowski and convergence in the
sense of Wijsman is provided by the following proposition.

Proposition 4. Let Cn : N → P(E) be a sequence of subsets of E, and L a closed
set. If Cn converges towards L in the sense of Wijsman, then Cn will converge
towards L in the sense of Kuratowski.
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Proof. This is a straightforward consequence of following two simple statements:

∀x ∈ E, d(x, L) � lim sup
n→∞

d(x,Cn) �⇒ L ⊂ lim inf
n→∞ Cn,

∀x ∈ E, d(x, L) � lim inf
n→∞ d(x,Cn) �⇒ L ⊃ lim sup

n→∞
Cn .

Definition 5. [9] A set-valued mapping C : [t0, T ] → P(E) will be said to have
bounded retraction if

ret (C; t0, T )
def= sup

n
∑

i=1

e (C(ti−1),C(ti )) < ∞,

where the supremum is taken over all the finite sequences t0 � t1 � t2 � · · · �
tn = T . The function t �→ ret (C; t0, t) thus defined is non-decreasing.

Theorem 5. [9] Let C : [t0, T ] → P(E) be a set-valued mapping with bounded
retraction. Then, C(t) admits a left limit C(t−) in the sense of Kuratowski at every
t ∈]t0, T ], and a right limit C(t+), at every t ∈ [t0, T [.
Definition 6. A set-valued mapping C : [t0, T ] → P(E) will be said to have
absolutely continuous retraction if, for all ε > 0, some η > 0 can be found such
that for all finite collection ]σi , τi [⊂ [t0, T ] of non-overlapping open intervals, the
following statement:

∑

i

(τi − σi ) < η �⇒
∑

i

e (C(σi ),C(τi )) < ε,

holds true, and to show Lipschitz-continuous retraction if there exists L � 0 such
that

∀s � t ∈ [t0, T ], e (C(s),C(t)) � L(t − s).

The following proposition accounts for the terminology used here.

Proposition 5. [9] Let C : [t0, T ] → P(E) be a set-valued mapping. The following
two claims are then equivalent:

(i) C has absolutely continuous (respectively Lipschitz-continuous) retraction.
(ii) C has bounded retraction and the non-decreasing real-valued function τ �→

ret (C; t0, τ ) is absolutely continuous (respectively Lipschitz-continuous).

On similar lines, we have the following proposition:

Proposition 6. [9] Let C : [t0, T ] → P(E) be a set-valued mapping with bounded
retraction. The following three claims are then equivalent:

(i) C has right-continuous retraction at t ∈ [t0, T [ (that is, the real-valued
function τ �→ ret (C; t0, τ ) is right-continuous at t).

(ii) limτ→t+ e(C(t),C(τ )) = 0.
(iii) C(t) ⊂ C(t+).
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Classically, a function f : [t0, T ] → E is said to be regulated if there is a
sequence of step functions converging towards f uniformly with regard to t ∈
[t0, T ]. In the specific case where the metric space is complete, a function f :
[t0, T ] → E is regulated if and only if it admits a left limit f (t−) at every t ∈ ]t0, T ]
and a right limit f (t+) at every t ∈ [t0, T [.
Definition 7. A set-valued mapping C : [t0, T ] → P(E) with non-empty closed
values, will be said to be Wijsman-regulated if it is regulated as a mapping with
values in the class of nonempty closed subsets of E equipped with Wijsman’s
topology.

In what follows, only the specific case where the metric space (E, d) is a sep-
arable Hilbert space H will be considered. The scalar product will be denoted by
(· | ·), the norm by ‖·‖ and the closed ball with center c and radius r by B(c, r). The
notation C(H) will stand for the class consisting of the non-empty closed convex
subsets of H .

Theorem 6. Let Cn : N → C(H) be a sequence of nonempty closed convex subsets
of H. If this sequence has a non-empty limit L in the sense of Kuratowski, then L
is convex, and the following statement holds true:

∀x ∈ H, lim
n→∞ proj [x,Cn] = proj [x, L] .

Proof. Fix x ∈ H arbitrary and set

xn = proj [x,Cn] ,

l = proj [x, L] .

It has to be proved that the sequence (xn) converges strongly towards l. Let c ∈ L be
arbitrary. The definition of limn→∞ Cn (convergence in the sense of Kuratowski)
gives:

∀m ∈ N, ∃Nc,m ∈ N, ∀n � Nc,m, d (c,Cn) <
1

m + 1
. (15)

Setting c = l, m = 0 and removing finitely many terms of the sequence, if neces-
sary, we obtain

d (l,Cn) < 1.

Hence, the sequence (xn) takes values in the closed ball having center x and radius
1 + 2‖l − x‖. Therefore, a subsequence, still denoted by (xn), converges weakly
towards l̃ ∈ B(x, 1 + 2‖l − x‖).

Next, fix c ∈ L and m ∈ N arbitrarily. From statement (15), we can find N ∈ N

such that

∀n � N , ∃bn ∈ B(0, 1), c + bn

m + 1
∈ Cn .
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With n � N , we obtain

(

x − xn

∣
∣
∣ c + bn

m + 1
− xn

)

� 0,

; therefore,

(

x − xn
∣
∣ c − xn

)

� 1 + 2‖l − x‖
m + 1

.

Taking the infimum limit n → ∞ in this inequality, one obtains

(

x − l̃
∣
∣ c
)

−
(

x
∣
∣ l̃
)

+ lim inf
n→∞
∥
∥xn
∥
∥

2 � 1 + 2‖l − x‖
m + 1

;

therefore,

∀m ∈ N, ∀c ∈ L ,
(

x − l̃
∣
∣ c − l̃

)

H
� 1 + ‖l − x‖

m + 1
,

which yields

l̃ = l,

because of the uniqueness of the projection of a point onto a closed convex subset
of a Hilbert space. Remembering that the weak topology in a closed ball of a sep-
arable Hilbert space is metrizable and that a sequence in a compact metric space
that has a unique cluster value converges towards it, it has been actually proved
that the whole sequence converges weakly towards l (with no need to extract any
subsequences).

Finally, since ‖x − xn‖ = d(x,Cn), setting c = l in statement (15) yields

∀m ∈ N, ∃Nm ∈ N, ∀n � Nm,
∥
∥x − xn

∥
∥ �
∥
∥x − l

∥
∥+ 1

m + 1
,

and therefore

lim sup
n→∞
∥
∥x − xn

∥
∥ �
∥
∥x − l

∥
∥,

which suffices to ensure that the weak convergence of the sequence (xn) is actually
a strong convergence.

Corollary 1. Let Cn : N → C(H) be a sequence of non-empty closed convex
subsets of H, and L ∈ C(H). The following three statements are then equivalent.

(i) lim
n→∞ Cn = L ,

(ii) ∀x ∈ H, lim
n→∞ d (x,Cn) = d (x, L) ,

(iii) ∀x ∈ H, lim
n→∞ proj [x,Cn] = proj [x, L] .

35



Proof. The identity:

d(x,Cn) = d (x, proj [x,Cn]) ,

gives (iii) ⇒ (ii), Proposition 4, (ii) ⇒ (i), and finally, Theorem 6 is exactly (i) ⇒
(iii).

In particular, with sequences of non-empty closed, convex subsets in a sepa-
rable Hilbert space, convergence in the sense of Kuratowski and in the sense of
Wijsman is the same. In the specific case of finite-dimensional Hilbert spaces, this
fact was first proved by Wijsman in 1966 (see [12]) for sequences of non-empty
closed subsets which are not necessarily convex. Corollary 1 is simply a particular
case of more general extensions of Wijsman’s theorem to infinite dimensions which
were reviewed in [5] in 1994. The aim of the following example is to show that
in an infinite-dimensional Hilbert space, the additional assumption of convexity
cannot be relaxed.

Example. Take en to denote the vectors of the canonical basis of l2. For all n ∈ N,
set

Cn = {2e0, en
}

, L = {2e0
}

.

It can be readily checked that

lim
n→∞ Cn = L ,

but

d (0,Cn) = 1, d (0, L) = 2.

Proposition 7. Let C : [t0, T ] → C(H) be an arbitrary set-valued mapping with
non-empty closed convex values. The following three statements are then equiva-
lent:

(i) C is Wijsman-regulated.
(ii) C admits a non-empty left limit in the sense of Kuratowski (notation C(t−))

at every t ∈ ]t0, T ] and a non-empty right limit (notation C(t+)) at every
t ∈ [t0, T [.

(iii) For all x ∈ H, the mapping
{ [t0, T ] → H

t �→ proj [x,C(t)]

is regulated.

Proof. This is straightforward consequence of Theorem 4 and Corollary 1.

We are now able to list some classes of Wijsman-regulated set-valued mappings.

Proposition 8. Let C : [t0, T ] → C(H) be a set-valued mapping with bounded
retraction, the values C(t) of which are non-empty closed convex, at all t ∈ [t0, T ].
Then C is Wijsman-regulated.
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Proof. This is a straightforward consequence of Theorem 5 and Proposition 7.

Hence, in the case of set-valued mappings with non-empty closed convex val-
ues in a Hilbert space, the class consisting of the Wijsman-regulated set-valued
mappings contains the class consisting of the set-valued mappings with bounded
retraction. Another important class of Wijsman-regulated set-valued mappings is
that of those set-valued mappings that are regulated in the sense of Hausdorff dis-
tance.

Theorem 7. A set-valued mapping C : [t0, T ] → C(H) is said to be regulated in
the sense of the Hausdorff distance if there exists a sequence Cn : [t0, T ] → P(H)
of piecewise constant set-valued mappings such that the sequence of real-valued
functions t �→ h(Cn(t),C(t)) converges uniformly towards 0.

Any set-valued mapping C : [t0, T ] → C(H) which is regulated in the sense of
the Hausdorff distance is Wijsman-regulated. Moreover, in those cases where the
values of C are contained in a fixed compact subset K ⊂ H (∀t ∈ [t0, T ], C(t) ⊂
K ), then the converse is true.

Proof. Necessary condition.
Let us consider a set-valued mapping C : [t0, T ] → C(H)which is regulated in the
sense of the Hausdorff distance. Based on Proposition 7, the conclusion targeted will
be reached if at an arbitrary t ∈ [t0, T [, it can be proved that lim infτ→t+ C(τ ) 	= ∅

and lim infτ→t+ C(τ ) = lim supτ→t+ C(τ ).

• First let us prove that the infimum limit is non-empty. There exists a piecewise
constant set-valued mapping Cn0 such that

∀t ∈ [t0, T ], h
(

Cn0(t),C(t)
)

� 1

2
,

and a finite collection {ak} of elements of H such that all the Cn0(t) contain at
least one of the ak . Let B be a closed ball with center a0 and a radius larger than 2
plus the maximum of the distance from a0 to one of the ak . Then, for all n ∈ N,
there exists a piecewise constant set-valued mapping Cn : [t0, T ] → P(H)
such that

∀t ∈ [t0, T ], h (Cn(t),C(t)) � 1

n + 1
, and B ∩ Cn(t) 	= ∅.

This entails

∀n ∈ N, ∃xn ∈ B, ∃ηn > 0,

∀τ ∈ ]t, t + ηn[ , d (xn,C(τ )) <
1

n + 1
.

One can then extract a subsequence, which is still written (xn), that converges
weakly towards l ∈ B. It is now proposed to prove that

l ∈ lim inf
τ→t+ C(τ ),
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that is

lim
τ→t+ d (l,C(τ )) = 0.

Fix m ∈ N. Based on Mazur’s theorem, there exists a convex combination
cm of the xn such that d(l, cm) < 1/(m + 1). Since all the xn in that convex
combination can be chosen with arbitrarily large ranks, one can assume

∃η > 0, ∀τ ∈ ]t, t + η[ , d (xn,C(τ )) <
1

m + 1
,

for all the xn in that convex combination. In addition, the convexity of C(τ )+
B(0, 1/(m + 1)) entails

∀τ ∈ ]t, t + η[ , d (cm,C(τ )) <
1

m + 1
,

and the conclusion targeted is reached, since d(l,C(τ )) � d(l, cm) +
d(cm,C(τ )).

• It still remains to be proved that the infimum limit equals the supremum limit.
Let h ∈ lim supτ→t+ C(τ ), and ε > 0. Since C(t) is regulated in the sense of
Hausdorff distance, one can find a set Cm ⊂ H and a real number η > 0 such
that

∀τ ∈ ]t, t + η[ , h (Cm,C(τ )) <
ε

3
.

Since h ∈ lim supτ→t+ C(τ ),

∃τ ′ ∈ ]t, t + η[ , d
(

h,C(τ ′)
)

<
ε

3
.

Therefore, for all τ ∈]t, t + η[,
d (h,C(τ )) � d

(

h,C(τ ′)
)+ h
(

C(τ ′),Cm
)+ h (Cm,C(τ )) < ε,

which proves that h ∈ lim infτ→t+ C(τ ).

Sufficient condition.
Let C(t) be a Wijsman-regulated set-valued mapping with values contained in a
fixed compact set. By using both Propositions 7 and 3, this set-valued mapping
admits left and right limits in the sense of Hausdorff at every t . Therefore, choosing
n ∈ N and t ∈ [t0, T ] arbitrarily, one obtains

∃ηt > 0,
∀τ ∈ ]t − ηt , t[ , h (C(τ ),C(t−)) < 1/(n + 1),

∀τ ∈ ]t, t + ηt [ , h (C(τ ),C(t+)) < 1/(n + 1).

From the open sets ]t − ηt , t + ηt [ defining a covering of the compact [t0, T ], a
finite subcovering defined by t0 < t1 < t2 < · · · < tn = T can be extracted. Let
us define a piecewise constant set-valued mapping Cn by

∀i, Cn(ti ) = C(ti ), et ∀i, ∀τ ∈ ]ti−1, ti
[

, Cn(τ ) = C

(
ti−1 + ti

2

)

.
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From this definition, for all τ ∈]ti−1, ti [, one obtains

h (Cn(τ ),C(τ ))

� h (C(τ ),C(ti−))+ h (C(ti−),Cn(ti−))+ h (Cn(ti−),Cn(τ )) ,

<
1

n + 1
+ 1

n + 1
+ 0 = 2

n + 1
,

which shows that C(t) is regulated in the sense of the Hausdorff distance.

Corollary 2. Every set-valued mapping C : [t0, T ] → C(H) which is continuous
in the sense of the Hausdorff distance:

∀ε > 0, ∃η > 0, ∀τ ∈ ]t − η, t + η[ , h (C(τ ),C(t)) < ε,

is Wijsman-regulated.

Another class of Wijsman-regulated set-valued mappings is provided by the
class of non-increasing set-valued mappings with non-empty closed convex val-
ues.

Proposition 9. Let C : [t0, T ] → C(H) be a set-valued mapping with non-empty
closed convex values, which is assumed to be non-increasing in the sense that

∀t1, t2 ∈ [t0, T ], t1 � t2 �⇒ C(t2) ⊂ C(t1).

Then C(t) is Wijsman-regulated.

Proof. It can be readily checked that

lim sup
τ→t−

C(τ ) ⊂
⋂

τ∈[t0,t[

C(τ ) ⊂ lim inf
τ→t− C(τ ),

lim sup
τ→t+

C(τ ) ⊂
⋃

τ∈]t,T ]

C(τ ) ⊂ lim inf
τ→t+ C(τ ),

which shows that C admits the left and right limits:

C(t−) =
⋂

τ∈[t0,t[

C(τ ),

C(t+) =
⋃

τ∈]t,T ]

C(τ ),

which are non-empty since they contain C(T ). Proposition 7 now yields the con-
clusion targeted.
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Appendix B: Weak solutions of sweeping processes

In this appendix, H is a separable Hilbert space, and all the set-valued mappings
C : [t0, T ] → C(H)will be assumed to take only non-empty closed convex values.

Given a closed convex subset K of H , ∂ IK will denote the subdifferential of
the indicatrix function (in the sense of convex analysis) of K . Hence, ∂ IK (x) is the
cone of all the outward normals to K at x. It will be empty if x /∈ K and reduces to
{0} at any interior point x of K . Given a set-valued mapping C : [t0, T ] → C(H)
with non-empty closed convex values, we will use the term “sweeping process” to
refer to the evolution problem consisting of finding a function u : [t0, T ] → H
such that

• u(t0) = u0,

• − u̇(t) ∈ ∂ IC(t) [u(t)] , ∀t ∈ [t0, T ],
where u0 denotes a given initial condition. This evolution problem has a clear geo-
metrical interpretation in kinematic terms when C(t) has a non-empty interior. As
long as the point u(t) is an interior point in the moving convex set C(t), it will
remain at rest. When, by the evolution of C(t), the point u(t) meets the boundary
of C(t) at some instant t , it proceeds in an inward normal direction, so as to go
on belonging to C(t), exactly as if it were being pushed by the boundary of the
moving convex set.

A definition of weak solutions of sweeping processes was first proposed by Mo-
reau [10] in the case of set-valued mappings with bounded retraction. He proved
their existence before showing that they are actually strong solutions in some sense.
In the problems analysed in the present paper, some sweeping processes appear that
have weak solutions that are not strong solutions. Of course, the underlying set-val-
ued mappings do not have bounded retraction. Thus, one is led to extend Moreau’s
definition of weak solutions of sweeping processes to a larger class of set-valued
mappings than that showing bounded retraction. Since these set-valued mappings
must have a right limit C(t+) in the sense of Kuratowski, at every t , one is naturally
led to consider the larger class consisting of all the Wijsman-regulated set-valued
mappings.

In this appendix, we first define weak solutions of sweeping processes based
on Wijsman-regulated set-valued mappings, and these weak solutions, when they
exist, are proved to enjoy the same general properties as those of the weak solu-
tions of sweeping processes based on set-valued mappings with bounded retraction.
Moreau’s [10] existence results obtained in the case of set-valued mappings with
bounded retraction are then briefly recalled without going into the proofs.

Definition 8. We define P as a subdivision of the real interval [t0, T ] (notation
P ∈ subd([t0, T ])) if it is a finite partition of [t0, T ] into intervals of any sort (some
of them possibly reduced to single points).

A P ′ ∈ subd([t0, T ]) will be said to be a refinement of P ∈ subd([t0, T ])
(notation P ′ � P) if every interval of P ′ is contained in an interval of P .

A mapping defined on [t0, T ] will be said to be piecewise constant if it is
constant in every interval of some P ∈ subd([t0, T ]).
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Definition 9. Let C : [t0, T ] → C(H) be a Wijsman-regulated set-valued mapping
taking non-empty closed convex values. For P ∈ subd([t0, T ]), I0, I1, I2, . . . will
denote the ordered sequence of the corresponding intervals, and ti the origin (left
extremity) of Ii . We will also take CP to denote the piecewise constant set-valued
mapping with non-empty closed convex values defined by

CP (Ii ) = Ci =
∣
∣
∣
∣

C(ti ) if ti ∈ Ii ,

C(ti+) if ti 	∈ Ii .

Given the initial value a ∈ C(t0), set inductively (“catching-up” algorithm):

u0 = a,

ui+1 = proj (ui ,Ci+1),

to define the piecewise constant function u P : [t0, T ] → H by

u P (Ii ) = ui .

When the net (u P ) converges uniformly in [t0, T ], towards some limit u : [t0, T ] →
H in the sense that

∀ε > 0, ∃P ∈ subd ([t0, T ]) , ∀P ′ � P,

∀t ∈ [t0, T ], ∥∥u P ′(t)− u(t)
∥
∥ � ε,

the function u : [t0, T ] → H will be said to be a weak solution of the sweeping
process based on the set-valued mapping C(t), starting at initial condition a.

Proposition 10. Let C : [t0, T ] → C(H) be a Wijsman-regulated set-valued map-
ping, and u, u′ be two weak solutions of the associated sweeping process. Then,
the real-valued function

{ [t0, T ] → R
+

t �→ ∥∥u(t)− u′(t)
∥
∥

is non-increasing.

Proof. If u and u′ start at initial values a and a′, these functions are the limits of
(generalized) sequences u P and u′

P of the piecewise constant functions inductively
defined from these initial data. As the successive values of u P and u′

P are obtained
by performing projections onto the convex sets Ci , the contraction property of such
projections entails that

∀P ∈ subd ([t0, T ]) , ∀s � t,
∥
∥u P (t)− u′

P (t)
∥
∥ �
∥
∥u P (s)− u′

P (s)
∥
∥.

It then suffices to go to the limit of the two members of this inequality to obtain the
conclusion required.
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Proposition 11. Let u : [t0, T ] → H be a weak solution of the sweeping process
based on the set-valued mapping C(t), which is assumed to be Wijsman-regulated.
Then u admits a left limit u(t−) and a right limit u(t+) at every t ∈ [t0, T ] (with
appropriate adjustments at t0 and T ) and

∀t ∈ [t0, T ], u(t) ∈ C(t),

∀t ∈ ]t0, T ] , u(t) = proj (u(t−),C(t)) ,

∀t ∈ [t0, T [ , u(t+) = proj (u(t),C(t+)) .
Proof. The existence of u(t−) and u(t+) is ensured by the fact that u is regulated.

At an arbitrary t ∈ [t0, T ], we take P to denote the set of all subdivisions in
subd([t0, T ]) containing {t}. Based on the definition of CP ,

∀P ∈ P, CP (t) = C(t),

and therefore, based on the definition of u P :

∀P ∈ P, u P (t) = proj [u P (t−),C(t)] ,

which entails

∀P ∈ P, u P (t) ∈ C(t).

Taking a limit with respect to P ∈ P , one can readily see that u(t) ∈ C(t).
As the convergence of the net u P , P ∈ P , is uniform with t , the following

commutation of limits holds:

u(t−) = lim
P∈P

u P (t−),

and therefore,

u(t) = proj (u(t−),C(t)) .

Likewise

∀P ∈ P, u P (t+) = proj (u P (t),C(t+)) ,
and the last statement in the proposition can be proved in the same way.

The two following propositions display the local character of the concept of
weak solutions.

Proposition 12. Let u : [t0, T ] → H be a weak solution of the sweeping process
based on C(t). Let [t ′0, T ′] be a subinterval of [t0, T ]. Then u|[t ′0,T ′]. will be a weak
solution of the sweeping process based on C|[t ′0,T ′].

Proposition 13. Let I0, I1, I2, . . . be a subdivision of [t0, T ] into intervals con-
taining their respective origins t0, t1, t2, . . ., and u : [t0, T ] → H a function such
that
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(i) For all i , u|Ii is a weak solution of the sweeping process based on C∣∣I i
(which

entails the existence of u(ti−) for i > 0).
(ii) For i > 0:

u(ti ) = proj (u(ti−),C(ti )) .

Then u is a weak solution of the sweeping process based on C in [t0, T ].
The following theorem is due to Moreau. It claims that provided the set-val-

ued mapping has bounded retraction, the corresponding sweeping process admits
a weak solution starting from any arbitrary initial condition.

Theorem 8. [10] Let C : [t0, T ] → C(H) be a set-valued mapping with non-
empty closed convex values, which is assumed to have bounded retraction. Then
there exists a weak solution u of the sweeping process starting at any given initial
condition a ∈ C(t0). This weak solution is such that

∀s � t ∈ [t0, T ], ∥∥u(t)− u(s)
∥
∥ � ret(C; s, t).

In particular, the function u has bounded variation. If, in addition, C(t) has right-
continuous (respectively absolutely continuous, respectively Lipschitz-continuous)
retraction, then the weak solution u is right-continuous (respectively, absolutely
continuous,respectively Lipschitz-continuous).

This weak solution depends continuously on the data (the set-valued mapping
C(t) and the initial condition) involved in the sweeping process in the sense dis-
played by the following theorem.

Theorem 9. [10] Let C,C ′ : [t0, T ] → C(H) be two set-valued mappings with
non-empty closed convex values and bounded retraction. Then every pair (u, u′)
of weak solutions of the associated sweeping processes will satisfy the following
estimate:

∀t ∈ [t0, T ], ∥∥u(t)− u′(t)
∥
∥

2 − ∥∥u(t0)− u′(t0)
∥
∥

2

�
[

sup
τ∈[t0,t]

h
(

C(τ ),C(τ ′)
)
]
[

ret(C; t0, t)+ ret(C ′; t0, t)
]

.

Theorem 9 can be used to obtain an estimate of the error occurring when the
catching-up algorithm is used to approximate the weak solution of a sweeping
process with bounded retraction.

Proposition 14. [10] Let C : [t0, T ] → C(H) be a set-valued mapping with non-
empty closed convex values and bounded retraction. Consider an arbitrary subdivi-
sion P ∈ subd([t0, T ]) of the interval [t0, T ], let I0, I1, I2, . . . be the corresponding
finite sequence of intervals, and μ be some majorant of ret(C; s, t), for arbitrary
[s, t] ∈ Ii . Still denoting by u P the piecewise constant function provided by the
catching-up algorithm, one has

∥
∥u(t)− u P (t)

∥
∥ � 2
√

μ ret(C; t0, t).
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Any function u ∈ BV ([t0, T ], H) is classically associated with its differential
measure or Stieltjes measure du ∈ M([t0, T ], H). It satisfies, in particular,

∫

]s,t]
du = u(t+)− u(s+).

Definition 10. [10] Let C : [t0, T ] → C(H) be a set-valued mapping whose values
are nonempty closed and convex. The function u ∈ BV ([t0, T ], H) will be said
to be a solution of the sweeping process in the sense of “differential measures” if
there exists (non uniquely) a non-negative real measure μ, as well as a function
u′ ∈ L1

loc([t0, T ]; H) such that du = u′μ and

∀t ∈ [t0, T ], −u′(t) ∈ ∂ IC(t) [u(t)] .

Proposition 15. [10] Let C : [t0, T ] → C(H) be a set-valued mapping with non-
empty closed convex values, and u1, u2 ∈ BV ([t0, T ], H) be two solutions in the
sense of differential measures of the associated sweeping process. These two solu-
tions are assumed to be both right-continuous, and to agree with the same initial
condition u1(t0) = u2(t0) = a. Then

∀t ∈ [t0, T ], u1(t) = u2(t).

Theorem 10. [10] Let C : [t0, T ] → C(H) be a set-valued mapping with non-
empty closed convex values and which is assumed to have bounded right-continu-
ous retraction. Then every weak solution of the associated sweeping process (which
is a function with bounded variation by virtue of Theorem 8 and right-continuous
by virtue of Propositions 6 and 11) will also be a solution in the sense of differential
measures.

If, in addition, C : [t0, T ] → C(H) is assumed to show absolutely continuous
retraction, then every weak solution will be a strong solution in the sense

for a.a. t ∈ [t0, T ], −u′(t) ∈ ∂ IC(t) [u(t)] .
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