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Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar

gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of

the turbulent scalar flux spectrum in both the inverse cascade range and the enstrophy cascade range

for small and unity Schmidt numbers. The scaling predictions are checked by direct numerical

simulations and good agreement is observed. © 2009 American Institute of Physics.
fdoi:10.1063/1.3263703g

I. INTRODUCTION

In the present work we consider the spectral distribution

of the passive scalar flux in two-dimensional incompressible

Navier–Stokes turbulence. The scalar flux appears as the un-

closed quantity in the Reynolds averaged equation for the

mean scalar field: separating the velocity and passive scalar

field into mean and fluctuations, u=u+u8 and u= ū+u8, the

equation for the mean scalar field reads

] ū

]t
+ ū j

] ū

]x j
= k

]2ū

]x j
2 −

]u j8u8

]x j
, s1d

where k is the diffusivity of the scalar and the overbar de-
notes an ensemble average. The last term of this equation

contains the correlation u j8u8, which is called the scalar flux.

It is the term which represents the influence of the turbulent

fluctuations on the mean scalar profile. Since it is the un-

closed term in the Reynolds averaged equations, it needs to

be modeled, e.g., by means of an eddy diffusivity. To pro-

pose correct models for the scalar flux, understanding of the

physics of the turbulent flux is needed. For an overview of

models for the scalar flux, we refer to the book by Schiestel,
1

the work by Rogers et al.,2 or more recently the model de-
rived by Wikström et al.3 For the more complicated case of
the scalar flux in the presence of shear and rotation, see the

work by Brethouwer.
4
These studies focus on three-

dimensional turbulence.

We consider statistically homogeneous velocity and sca-

lar fields so that we can investigate the scale distribution of

the turbulent scalar flux by means of Fourier spectra. The

Fourier spectrum related to the scalar flux is defined as

Fuju
skd = E

Sskd
Fu

x−x8
fu j8sx,tdu8sx8,tdgdSskd , s2d

in which Sskd is a circular wavenumber shell with radius k,
the wavenumber, and F u

x−x8
f¯ g denotes the Fourier trans-

form with respect to the separation vector x−x8. This defi-

nition is such that by construction we have

E
0

`

Fuju
skddk = u j8u8, s3d

which illustrates that the scalar flux spectrum characterizes

the contribution of different lengthscales sor wavenumbersd
to the scalar flux. This spectrum is also called the scalar-

velocity cospectrum since it is defined as the real part of the

scalar-velocity correlation in Fourier space. The imaginary

part is called the quadrature spectrum. The quadrature spec-

trum does not contribute to the scalar flux in physical space

and we therefore concentrate on the cospectrum.

Academically the least complicated case to study the tur-

bulent scalar flux is, as proposed by Corrsin,
5
isotropic tur-

bulence on which we impose a stationary uniform mean sca-

lar gradient ]ū /]x1;G, arbitrarily chosen in the x1-direction.
In this case there exists one nonzero component of the scalar

flux, aligned with the gradient. The other component is zero.

We consider this case and in particular, we focus on the

inertial range scaling of the scalar flux spectrum. We will in

the following drop the subscripts and denote the cospectrum

by Fskd. We will also drop the primes and denote the fluc-
tuations of velocity and scalar by u and u, respectively. Be-
fore starting the study of the scaling in two-dimensional tur-

bulence, we briefly discuss the results obtained in the related

case of three-dimensional turbulence. Lumley
6,7
predicted

that at high Reynolds numbers the inertial range should fall

off as k−7/3. Indeed he predicted the inertial range to be given

by

Fskd , Ge1/3k−7/3, s4d

with e the dissipation of kinetic energy, or more precisely the
energy flux at scale k. This scaling was investigated experi-
mentally in the atmospheric boundary layer

8
and in decaying

grid turbulence at Taylor-scale Reynolds numbers up to Rl

=600.
9,10

In these grid-turbulence experiments it was found

that the 27/3 scaling was not observed at this Reynolds
number. It was subsequently proposed

11
that the inertial

range exponent might be 22 instead of 27/3. However, in
closure calculations, it was shown that the 22 scaling was a
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low-Reynolds number effect and that the 27/3 scaling

should be observed at higher Reynolds numbers.
12,13

This

was confirmed by the work of O’Gorman and Pullin
14
and

recent direct numerical simulations sDNSsd.15

In the case of two-dimensional turbulence only few stud-

ies address the problem of the scaling of the scalar flux spec-

trum. Let us recall that in two-dimensional turbulence, in

which the energy is injected at a wavenumber ki, two cas-
cades can be observed: first an energy cascade toward the

large scales and, second, an enstrophy cascade to the small

scales. If the injection scale is much smaller than the domain

size and much larger than the range in which the viscous

stresses become important, both cascades are characterized

by power-law scaling.
16–18

We focus on these inertial ranges,

which we will denote by IC for the inverse energy cascade

and FC for the forward enstrophy cascade range. In particu-

lar we investigate the wavenumber dependence of the scalar

flux spectrum in these ranges.

One of the few works investigating the scaling of the

scalar flux spectrum in two-dimensional turbulence is Ref.

19, which mentions that the scalar flux spectrum can be

roughly estimated by

Fskd < Eskd1/2Euskd1/2, s5d

in which the scalar variance spectrum is defined as

Eusk,td =
1

2
E

Sskd
Fu

x−x8
fusx,tdusx8,tdgdSskd . s6d

In the inverse cascade sICd range, where both the energy

spectrum Eskd and the scalar variance spectrum Euskd are

known to obey the Kolmogorov–Obukhov scaling,
20,21

this

would lead to a k−5/3 inertial range. Close observation of the

numerical results in Ref. 19 shows that this is not the case.

In the present paper we show that this k−5/3 inertial range

prediction does not correspond to the physics of the problem.

Phenomenological scalings for the inertial ranges in both the

IC and the forward enstrophy cascade will be proposed for

the scalar flux spectrum Fskd and the scalar variance spec-

trum Euskd for the cases of unity and small Schmidt number
sthe Schmidt number is defined as the ratio of the diffusivity
of momentum to that of the scalar, Sc=n /k, and is identical
to the Prandtl number when the passive scalar is tempera-

tured. DNSs are carried out to verify the validity of the

predictions.

Note that since the scalar fluctuations are produced by a

mean gradient, the scalar fluctuations are in principle not

isotropic, but axisymmetric around the direction of the gra-

dient. It was shown
22,23

that in the case of three-dimensional

isotropic turbulence the spectral distribution of scalar flux

can be described by a single scalar function. The distribution

of scalar variance can be described by two scalar functions.

In the present work, by integrating over wavenumber shells

fEqs. s2d and s6dg, we eliminate the angle dependence. A

detailed study of the anisotropy of the scalar field will not be

performed in the present work.

II. LINK BETWEEN THE LAGRANGIAN TIMESCALE
AND SCALAR FLUX SPECTRUM

The phenomenological scaling for the scalar flux pro-

posed in the present work is based on the direct relation

which exists between the scalar field and the Lagrangian dy-

namics of the turbulent velocity field. We therefore first dis-

cuss this link. Kraichnan proposed in the framework of the

Lagrangian history direct interaction approximation
24

that

the dominant spectral timescale characterizing the inertial

range dynamics can be estimated by

tsk,td = E
0

t Esk,tusd

Esk,td
ds =

1

Esk,td
E
0

t

Esk,tusdds . s7d

This quantity was investigated numerically in Ref. 25. The

energy spectrum is the spherically averaged Fourier trans-

form of the two-point velocity correlation,

Esk,td =
1

2
E

Sskd
Fu

x−x8
fuisx,tduisx8,tdgdSskd . s8d

Esk , t usd is the equivalent spectrum in which the Eulerian

velocity uisx8 , td is replaced by uisx8 , t usd, which is defined

as the velocity at time s of a fluid particle which arrives at

point x8 at time t. The definition of uisx8 , t usd is illustrated in
Fig. 1. The definition of Esk , t usd is thus

Esk,tusd =
1

2
E

Sskd
Fu

x−x8
fuisx,tduisx8,tusdgdSskd . s9d

By definition Esk , t u td coincides with the Eulerian spectrum

Esk , td. An interesting property of Eq. s7d is that the integral
can be explicited by integrating uisx , t usd along its trajectory.

E
0

t

Esk,tusdds =
1

2
E

Sskd
Fu

x−x8Fuisx,tdE
0

t

uisx8,tusddsGdSskd

=
1

2
E

Sskd
Fu

x−x8
fuisx,tdXisx8,tdgdSskd . s10d

Instead of the two-time quantity uisx8 , t usd, the expression

now contains the single-time displacement vector of the fluid

particle, Xisx8 , td, corresponding to the vector pointing from
its position at t=0 to its position at t, x8, or, in other words,

the trajectory. The link between the scalar flux spectrum and

the integral of Esk , t usd becomes evident if we compare the

FIG. 1. sColor onlined Representation of the Lagrangian two-point velocity
correlation.
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evolution equation of a nondiffusive passive scalar fluctua-

tion u in the presence of a mean scalar gradient,

]u

]t
+ u j

]u

]x j
= − Gu1, s11d

with the equation of the x1-component of the Lagrangian

position vector Xisx , td:

dX1

dt
=

]X1

]t
+ u j

]X1

]x j
= u1. s12d

Indeed, both equations are identical, only differing by a fac-

tor −G. As was already stated in Ref. 26, the scalar fluctua-

tion is therefore proportional to the displacement of a fluid

particle in the direction of the gradient. In the limit of van-

ishing diffusivity, relation s7d can thus be recasted, using

Eqs. s2d and s10d as in Ref. 27:

tskd =
G−1Fskd
Eskd

. s13d

If the energy spectrum and the Lagrangian timescale are

known, the scalar flux spectrum is given by relation s13d.

A. Prediction of the scaling of the scalar flux
spectrum at large and unity Schmidt number

Dimensional analysis and phenomenological rea-

soning
24,28

give that at a scale l,k−1 the Lagrangian time-

scale should be approximately given by l /usld in which the

typical velocity usld can be estimated to be of the order of

ÎkEskd. This yields an estimation for the timescale tskd,

tskd , fk3Eskdg−1/2. s14d

Combining this relation with Eq. s13d yields an estimation

for the scalar flux inertial range scaling,

Fskd , GÎEskd
k3

, s15d

which is a direct relation between inertial range scaling of

the scalar flux spectrum and the energy spectrum. In three-

dimensional turbulence, using Kolmogorov scaling for the

energy spectrum,

Eskd , e2/3k−5/3, s16d

leads to classical scaling for the scalar flux spectrum,

Fskd , Ge1/3k−7/3. s17d

In two-dimensional turbulence this scaling should hold in the

IC range where Kolmogorov scaling is expected. In the for-

ward enstrophy cascade range, the energy spectrum is pre-

dicted to scale as
16–18

Eskd , b2/3k−3, s18d

with b as the flux of enstrophy in the direct cascade. This

scaling was later refined introducing logarithmic

corrections,
29,30

Eskd , b2/3k−3/lnsk/kid
1/3, s19d

with ki as the wavenumber corresponding to the energy in-

jection. We neglect this correction as a first approach. For

this forward entrophy cascade range s15d yields the scaling

Fskd , Gb1/3k−3. s20d

It should be noted that the preceding analysis supposes a

high Schmidt number. Indeed, the analogy between the po-

sition of a fluid particle and a scalar fluctuation fEqs. s11d
and s12dg is exact for infinite Schmidt number. However, the
effect of the Schmidt number for Sc larger than one is

small.
22,31

O’Gorman and Pullin
14
showed that when chang-

ing the Schmidt number from 1 to 104, the shape of the

scalar flux spectrum was only little affected. We now explain

this.

The equation for the cospectrum can be derived directly

from the scalar advection-diffusion equation combined with

the Navier–Stokes equation se.g., Refs. 12 and 22d. It reads

F ]

]t
+ sn + kdk2GFskd = −

2

3
GEskd + Tuu

NLskd . s21d

The left hand side contains the time derivative and the influ-

ence of viscosity n and scalar diffusivity k. We consider the

statistically stationary state in which the time-derivative term

drops. The first term on the right hand side is the production

of scalar flux by interaction of the velocity field with the

mean scalar gradient G. The last term is the nonlinear inter-

action which contains two contributions: a purely conserva-

tive nonlinear interaction which sums to zero by integration

over wavenumbers and a purely destructive pressure scram-

bling term which annihilates the correlation between scalar

and velocity fluctuations. The viscous-diffusive term can be

written as

sn + kdk2Fskd = ns1 + Sc−1dk2Fskd . s22d

This term changes only by a factor of 2 when the Schmidt

number goes from 1 to `. The influence of the Schmidt

number for Sc larger than one is therefore small.

B. Prediction of the scaling of the scalar flux spectrum
at small Schmidt number

In the case of Sc→0 we do expect the above reasoning

to change. We now discuss this case of small Schmidt

number.

When the diffusivity becomes very large skeeping n con-

stant to retain an inertial range for the energy spectrumd, the
influence of the nonlinear terms in Eq. s21d will become

small, since the diffusive timescale becomes smaller than the

nonlinear timescale ssuch as the eddy turnover timed. The
production term is then directly balanced by the diffusive

term. In this case Eq. s21d reduces to the equilibrium

kk2Fskd = − 2

3GEskd , s23d

which yields

115105-3 Inertial range scaling of the scalar flux Phys. Fluids 21, 115105 ~2009!
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Fskd = −
2GEskd
3kk2

. s24d

O’Gorman and Pullin
14

obtained the same expression in

three dimensions. In the IC range this should yield a k−11/3

scaling and in the FC range a k−5 scaling.
In Sec. IV results of DNSs of isotropic 2D turbulence

with an imposed mean scalar gradient are presented to check

the relations:

G−1Fskd , 5
e1/3k−7/3 IC for Sc $ 1,

b1/3k−3 FC for Sc $ 1,

k−1e2/3k−11/3 IC for Sc ! 1,

k−1b2/3k−5 FC for Sc ! 1.
6 s25d

III. PREDICTIONS FOR THE SPECTRUM
OF THE PASSIVE SCALAR VARIANCE

It is expected that the scalar variance spectrum displays

Batchelor scaling
32
in the forward enstrophy cascade as was

experimentally demonstrated by
33

Euskd , eub−1/3k−1, s26d

with eu the sdiffusived destruction rate of passive scalar fluc-
tuations. In the IC, Corrsin–Obukhov scaling is expected.

Euskd , eue−1/3k−5/3. s27d

The equation for the scalar variance spectrum reads

F ]

]t
+ 2kk2GEuskd = − FskdG + Tu

NLskd , s28d

with Tu
NLskd being the nonlinear transfer term. For very small

Schmidt number this equation can again be linearized, yield-

ing for the statistically stationary state

Euskd =
− FskdG
2kk2

. s29d

This gives, using Eq. s24d,

Euskd =
EskdG2

3k2k4
. s30d

For the scalar variance, our predictions are therefore

Euskd , 5
eue−1/3k−5/3 IC for Sc $ 1,

eub−1/3k−1 FC for Sc $ 1,

G2k−2e2/3k−17/3 IC for Sc ! 1,

G2k−2b2/3k−7 FC for Sc ! 1.
6 s31d

IV. NUMERICAL VERIFICATION OF THE PROPOSED
INERTIAL RANGE SCALINGS

A. Numerical method

Simulations are performed using a standard pseudospec-

tral method.
34

The simulations are fully dealiased and the

resolution is 10242 gridpoints for a square periodic domain

of size 2p. The time is advanced using a second order

Adams–Bashforth time-stepping scheme.

The equations for the vorticity field and scalar field are

]v

]t
+ u j

]v

]x j
= s− 1da+1na

]2av

]x j
2a + f − g

]−2v

]x j
−2 , s32d

]u

]t
+ u j

]u

]x j
= s− 1da8+1ka8

]2a8u

]x j
2a8

− Gu1, s33d

with the vorticity v=ez · s¹3ud, f a random-phase isotropic
forcing localized in a band in wavenumber-space with a

time-correlation equal to the timestep. The parameters a and

a8 are integers equal to one in the case of Newtonian viscos-

ity and diffusivity and equal to 8 in the case of hyperviscos-

ity or hyperdiffusivity. The mean gradient G is in all cases

taken equal to 1 so that the scalar flux, and its spectrum, is

dominantly negative.

In all cases, hyperviscosity is used to concentrate the

influence of the viscous term at the highest wavenumbers.

This allows to increase the extent of the inertial range, which

is the main subject in the present work. Equivalently the

scalar variance is removed at the largest wavenumbers by a

hyperdiffusive term except in the case of small Schmidt

number. Since in that case the diffusive term becomes the

dominant mechanism, the scaling is directly affected by the

type of diffusion, as can be seen in expressions s23d and s29d.
In that case we therefore use a “normal” Laplacian diffusive

term sa8=1d. In two-dimensional turbulence the energy

shows a tendency to cascade to smaller wavenumbers, i.e., to

larger scales. To avoid a pile-up of energy at the smallest

wavenumber linear Rayleigh friction fthe last term in Eq.

s32dg is used, with g equal to unity.

Two different fully developed turbulent flows are inves-

tigated. First the IC range, in which the forcing is localized

in a wavenumber shell around ki=210. In this case the for-

ward enstrophy range is reduced to less than an octave and a

full decade of IC inertial range is observed in the simula-

tions. Second the forward enstrophy range. In this case the

forcing is localized around ki=8, and the IC range is absent

since the friction acts strongly in the region k,ki. Param-
eters used in the simulations are summarized in Table I. Also

shown are some average values of some typical turbulence

quantities.

In both velocity fields two different cases are considered

for the passive scalar. One at Sc=1, with hyperdiffusivity

sa8=8d and one at small Schmidt number and a8=1. It is not

straightforward to define Schmidt numbers for these cases.

The precise definition of the Schmidt numbers is however

not important for the present study, but what is important is

the location of the inertial ranges and the ranges where dif-

fusivity becomes important. These ranges can be determined

as follows. We define a wavenumber k
p
at which the nonlin-

ear timescale tskd becomes of the order of the diffusive time-
scale skk2d−1. If k

p
is in the inertial range, we can estimate its

value by using expression s14d and the inertial range scalings
s16d and s18d. This yields k

p
,se /k3d1/4 in the IC and

k
p
,sb /k3d1/6 in the forward cascade. The wavenumber k

p

marks the crossover between an inertial-convective range

and an inertial-diffusive range. We will call unity Schmidt

number cases, these cases in which both viscosity and diffu-

sivity mainly act in the last two octaves of the energy and
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scalar spectra, i.e., k
p
is of the order of the viscous wave-

number, se /n3d1/4. The direct influence of the viscosity and

diffusivity is then small for wavenumbers smaller than ap-

proximately 100. In the case of small Sc, a normal diffusive
term is used since the scaling depends directly on the Laplac-

ian. The diffusivity is here taken large enough for it to act at

all scales, including the large scales, i.e., k
p
is of the order of,

or smaller than ke, the wavenumber at which the energy

spectrum peaks.

Simulations are performed until a statistically stationary

flow is obtained. The spectra are subsequently obtained by

averaging over a time interval of approximately 300 time

units, until a relatively smooth spectrum is obtained. This

corresponds to 270 Te for the IC-range and 540 Te for the

FC-range. The large-scale turnover time Te is here defined as

Te=1 / fkes u8
2 d1/2g.

B. Results

In Fig. 2 visualizations of various quantities are shown at

an arbitrary time. It is observed that the vorticity field con-

tains clear vortical structures in the forward cascade. In the

IC the vorticity field seems almost structureless. However,

closer inspection shows small vortical structures. Visualiza-

tion of the stream function shows more clearly that these

structures are present. The scalar field shows how fluctua-

tions of passive scalar are created by interaction of the flow

with the mean scalar gradient. In the IC case this scalar field

is almost structureless, but shows patches of scalar fluctua-

tion. We also displayed the instantaneous scalar flux, which

is the product of the x1-component of the velocity with the

scalar field. Both positive and negative values of the flux are

observed. The mean value is however smaller than zero

ssince the mean gradient is positived, so that the net flux is

nonzero.

In Fig. 3 visualizations are shown for the scalar field and

the scalar flux for the small Schmidt number case. Vorticity

fields and stream function are not shown, since they are

qualitatively the same as in Fig. 2. Due to the large diffusiv-

ity, all scalar gradients are rapidly smoothed out, so that in

both the IC and FC case the scalar field consists of large

blobs. The scalar flux fields are characterized by a finer

structure.

In Fig. 4 wavenumber spectra are shown for the energy,

scalar variance, and scalar flux. In the IC case, classical

Kolmogorov scaling proportional to k−5/3 holds for Eskd in
the inertial range. The scalar variance spectrum Euskd is also

TABLE I. Details of the simulations. Parameters used in the simulations and

average values of some typical turbulence quantities. These quantities are

averaged over space and time during a time interval of approximately 300

time units. The correlation coefficient ruu is defined as ruu=uu /Îu2u2 and
analogous for r

vu.

IC, Sc=1 FC, Sc=1 IC, Sc!1 FC, Sc!1

ki 210 8 210 8

ke 9 4 9 4

a 8 8 8 8

a8 8 8 1 1

na 1310−38 1310−35 1310−38 1310−35

ka8
1310−35 1310−32 10 10

Dt 5310−4 10−4 5310−4 10−4

u2 1310−2 0.2 1310−2 0.2

v
2 1310−2 0.2 1310−2 0.2

u2 0.1 0.9 5310−8 1.4310−5

uu −1.5310−2 20.1 −1.5310−5 −1.2310−3

vu 4310−4 2.4310−3 −4310−8 9310−7

ruu 20.45 20.3 20.6 20.7

r
vu 1310−2 6310−3 −2310−3 5310−4

−100 −80 −60 −40 −20 0 20 40 60 80 100

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 −5 −4 −3 −2 −1 0 1 2 3 4 5

Inverse Cascade Forward Cascade

ω

ψ

θ

uθ

FIG. 2. sColor onlined Visualizations of sfrom top to bottomd vorticity,

streamfunction, scalar fluctuations, scalar flux. Left: IC. Right: forward cas-

cade. The Schmidt number is unity. The mean scalar gradient is in the

horizontal direction.
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proportional to k−5/3 as can be expected from Corrsin–

Obukhov arguments, but showing an important prediffusive

bump. This bump is frequently observed in spectra of the

scalar variance, e.g., Refs. 9 and 35. The scalar flux spectrum

is proportional to k−7/3, which is in disagreement with ex-

pression s5d proposed as a rough estimate by Smith et al.,19

and in perfect agreement with expression s25d, which corre-
sponds to classical Lumley scaling. Zero crossings are ob-

served so that not the whole spectrum has the same sign.

In the FC range, the energy spectrum is approximately

proportional to k−3, but slightly steeper for the wavenumbers
close to the injection scale ki. Taking into account the loga-
rithmic correction, the agreement with the prediction im-

proves even more. The scalar variance spectrum Euskd shows
a Batchelor regime

32
proportional to k−1. The scalar flux

spectrum does show a scaling close to the scaling of the

energy spectrum, especially for the absolute value of the

spectrum. It is observed that the spectrum changes sign at

several wavenumbers. These sign changes were also ob-

served in the investigation of the scalar flux by the stretched

spiral vortex model for three-dimensional turbulence.
23
The

spectrum of the planar contribution of the Lundgren vortex

to the scalar flux showed equivalent negative excursions. We

therefore relate this behavior to the roll-up of the scalar field

by large coherent vortices. Indeed, a fluid particle which re-

mains for a long time trapped in a vortical structure will

contribute both positively and negatively to the scalar flux.

As can be observed in Fig. 5, at small Schmidt number,

excellent agreement is observed with the predictions. In the

IC range, Fskd is proportional to k−11/3 and Euskd to k−17/3. In

the FC range, Fskd is proportional to k−5 and Euskd to k−7.

V. CONCLUSION

In this work the scaling of the scalar flux spectrum in

two-dimensional isotropic turbulence was addressed. Phe-

nomenological arguments based on Lagrangian dynamics

were proposed leading to the following predictions for the

inertial range scaling of the scalar flux spectrum:

G−1Fskd , 5
e1/3k−7/3 IC for Sc $ 1,

b1/3k−3 FC for Sc $ 1,

k−1e2/3k−11/3 IC for Sc ! 1,

k−1b2/3k−5 FC for Sc ! 1,
6 s34d

and for the scalar variance spectrum,

Euskd , 5
eue−1/3k−5/3 IC for Sc $ 1,

eub−1/3k−1 FC for Sc $ 1,

G2k−2e2/3k−17/3 IC for Sc ! 1,

G2k−2b2/3k−7 FC for Sc ! 1.
6 s35d

It was shown by DNS that in the IC the scalar flux spectrum
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FIG. 3. sColor onlined Visualizations of scalar fluctuations stopd, scalar flux
sbottomd, in the IC sleftd and in the forward cascade srightd for the case of
small Schmidt number.
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FIG. 4. sColor onlined The energy spectrum, scalar flux spectrum and scalar

variance spectrum for Sc=1. Top: the case of large wavenumber forcing

sinverse energy cascaded. Bottom: the case of small wavenumber forcing

sforward entrophy cascaded. The solid lines are dimensional predictions

given by Eqs. s25d and s31d. In the FC case also the log-corrected k−3 scaling
is shown for the energy spectrum, which almost superposes the normal k−3

scaling. Dots indicate positive values of the scalar flux spectrum.
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is proportional to k−7/3, in perfect agreement with the scaling

arguments. The scalar variance shows Corrsin–Obukhov

scaling, proportional to k−5/3. In the direct enstrophy cascade

the energy spectrum obeys a log-corrected k−3 scaling and

the scalar spectrum displays Batchelor scaling proportional

to k−1. The scalar flux spectrum shows important positive and

negative contributions, probably related to the presence of

long-living coherent structures. The absolute value of the

spectrum shows a scaling close to k−3. At small Schmidt
number, excellent agreement is observed with the predic-

tions. The scalar flux spectrum scales here as k−11/3 in the IC

case and k−5 in the FC case. The scalar spectrum is propor-

tional to k−17/3 sICd and k−7 sFCd.
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