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Viscosity solutions for a polymer crystal growth model

Introduction

The paper is devoted to the analysis of following system of equations:

       i) u t (x, t) = ḡ(v(x, t))|Du(x, t)| in R N × (0, +∞) ii) v t (x, t) -∆v(x, t) + κḡ(v(x, t))H N -1 ⌊{u(•, t) = 0} = 0 in R N × (0, +∞) iii) v(x, 0) = v 0 (x), u(x, 0) = u 0 (x) in R N . (1.1) 
Following [START_REF] Burger | Iterative regularization of a parameter identification problem occurring in polymer crystallization[END_REF][START_REF] Burger | Growth of multiple crystals in polymer melts[END_REF][START_REF] Burger | Modelling multi-dimensional crystallization of polymers in interaction with heat transfer[END_REF][START_REF] Friedman | A free boundary problem associated with crystallization of polymers in a temperature field[END_REF], the 3-dimensional version of this system modelizes the growth of the surface Γ(t) of a polymer crystal in a nonhomogeneous temperature field v(x, t). In this model one describes the evolving surface Γ(t) of the crystal as the 0-level-set of an auxiliary function u:

{x ∈ R N ; u(x, t) = 0} = Γ(t) .
(This is the level-set approach, see [START_REF] Giga | Surface evolution equations[END_REF] and references therein). It has experimentaly been observed that the normal velocity V n of the crystal is a known, positive function of the temperature: V n = ḡ(v(x, t)), where ḡ is a bell-shaped function depending on the specific polymer ( [START_REF] Eder | Mathematical modelling of crystallization processes as occurring in polymer processing[END_REF]). Expressing the normal velocity V n in terms of the function u gives the eikonal equation (1.1)-i), which holds at least on the set {u(•, t) = 0}. As for the temperature field v it has to follow a heat equation with a (negative) heat source proportional to V n H N -1 ⌊Γ(t). Whence (1.1)-ii). Similar systems, coupling eikonal and diffusion equations, appear in many applications: shape optimization, image segmentation, etc. (see for instance [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF][START_REF] Sethian | Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science[END_REF] and the references therein). However the mathematical analysis of such couplings is delicate and few existence or uniqueness results are available in the literature. Most of them are concerned with classical solutions on a short time interval. For instance short time existence and uniqueness of smooth solutions are obtained for system (1.1) in [START_REF] Friedman | A free boundary problem associated with crystallization of polymers in a temperature field[END_REF].

The point is that, in general, one cannot expect such a system to have classical solutions when the time becomes large: indeed the front Γ(t) usually develops singularities in finite time. For this reason a good description of this front is obtained by its representation as the 0-level-set of the solution of an eikonal equation, which has to be understood in the sense of viscosity solutions. However this approach (which is satisfactory from a numerical view point) raises severe mathematical difficulties. Such issues have been overcome in only a very few number of situations: for a dislocation dynamics model, introduced in [START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF] and analyzed in [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF], or for a system arising in the study of the asymptotics of a Fitzhugh-Nagumo model [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF][START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF]. In this later framework, the associated heat equation is of the form v t (x, t) -∆v(x, t)ḡ(v(x, t))1 {u(•,t)≥0} = 0 , (

where 1 E is the indicator function of a set E. In [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF][START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF] existence of generalized solutions for this Fitzhugh-Nagumo system is proved, while [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF] contains some uniqueness results. However, system (1.1) turns out to be much more challenging than the coupling in the Fitzhuch-Nagumo system. Indeed the surface term H N -1 ⌊{u(•, t) = 0} in (1.1)-ii) is more singular than the volume one 1 {u(•,t)≥0} in (1.2). For this reason, up to now, only the long time existence in space dimension N = 2 is known [START_REF] Su | Global weak solutions of non-isothermal front propagation problem[END_REF][START_REF] Su | Weak solutions of a polymer crystal growth model[END_REF]. The aim of our paper is to obtain a similar existence result for the physical dimension N = 3 (and in fact in any dimension). In order to state precisely our main result, let us introduce the definition of a solution to (1.1). Definition 1.1. A solution (u, v) of (1.1) on the time interval [0, T ] is a map (u, v) : R N × [0, T ] → R 2 which is bounded, uniformly continuous, such that u satisfies the equation

u t (x, t) = ḡ(v(x, t))|Du(x, t)| in R N × (0, T ), u(x, 0) = u 0 (x) in R N
in the viscosity sense, with

T 0 H N -1 ({u(•, t) = 0}) < +∞ ,
and such that v(•, 0) = v 0 and v satisfies in the sense of distributions v t (x, t) -∆v(x, t) + κḡ(v(x, t))H N -1 ⌊{u(•, t) = 0} = 0 in R N × (0, T ) .

We introduce the following set of assumptions, denoted by (A) in the rest of the paper.

(A1) κ is a fixed real number (κ is positive in the case of a negative heat source and negative otherwise), ḡ : R N → R is Lipschitz continuous, bounded, and there exist A, B > 0 such that A ≤ ḡ(z) ≤ B for all z ∈ R .

(A2) v 0 : R N → R is Lipschitz continuous and bounded.

(A3) u 0 : R N → R is Lipschitz continuous and satisfies {u 0 = 0} = ∂{u 0 > 0}. Moreover, we assume that {u 0 ≥ 0} is compact and has the interior ball property of radius r 0 > 0, that is, For all x ∈ K 0 , there exists y ∈ K 0 , with x ∈ B(y, r 0 ) ⊂ K 0 ,

where B(y, r 0 ) is the closed ball of radius r 0 centered at y. Our main result states that, under the above assumptions, system (1.1) has a solution. More precisely: Theorem 1.2. Under Assumption (A), for any T > 0, there exists at least one solution to System (1.1). This solution is bounded on R N × [0, T ] and satisfies, for all x, y ∈ R N , 0 ≤ s, t ≤ T, (1 + | log |t -s||). for some constant C which only depends on the data appearing in Assumption (A) and T.

|v(x, t) -v(y, t)| ≤ C|x -y|(1 + | log |x -y||),

Note that uniqueness of the solution is an open problem (even in dimension 2).

Let us now briefly describe the method of proof. The main difficulty in System (1.1) is the singular surface term in the heat equation: to deal with this term, one has to obtain fine regularity estimates for the level-sets of u. Such estimates, which cannot be derived from the usual regularity results on the eikonal equation, have been investigated through several works. When the velocity x → ḡ(v(x, t)) is positive of class C 1,1 , the front enjoys the interior ball property (1.3) [START_REF] Cannarsa | Interior sphere property of attainable sets and time optimal control problems[END_REF] (see also [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF]); it has an interior cone property when the velocity is positive and Lipschitz continuous [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF]. Unfortunately, for System (1.1), the interior cone property is not sufficient for guarantying the stability of the surface term H N -1 ⌊{u(•, t) = 0}. Moreover we were only able to prove that the map x → v(x, t) has a modulus of continuity of the form ω(ρ) = ρ(1 + | log(ρ)|) (even when the front is smooth this map is at most Lipschitz continuous [START_REF] Friedman | A free boundary problem associated with crystallization of polymers in a temperature field[END_REF]). Our main and new estimate on the eikonal equation is an interior paraboloid property for the level-sets of u. We call paraboloid a solid deformation of the set

x = (x ′ , x N ) ∈ R N -1 × R ; x N ≥ c|x ′ | 1+γ , c > 0, γ ∈ (0, 1).
This property is obtained under the (weak) assumption that the velocity x → ḡ(v(x, t)) is of class C 0,α . For this, we use a representation formula for the solutions of (1.1)-i) in terms of optimal control as well as sharp regularity properties of optimal solutions for this control problem. As a direct consequence of the interior paraboloid property one obtains that the front has an interior cone property. These interior paraboloid and cone properties are the two key ingredients which allow us to obtain a priori estimates on the heat flow: indeed, because of the cone property, the front Γ(t) can be covered by a finite (and controlled) number of Lipschitz graphs. The stability result on the surface term H N -1 ⌊{u(•, t) = 0} (see Lemma 4.1) is a consequence of the interior paraboloid property. Let us finally point out that, although the cone and paraboloid properties do not appear in [START_REF] Su | Global weak solutions of non-isothermal front propagation problem[END_REF][START_REF] Su | Weak solutions of a polymer crystal growth model[END_REF], we use several arguments from these papers: in particular the regularity of the optimal solutions of some control problem is borrowed from [START_REF] Su | Global weak solutions of non-isothermal front propagation problem[END_REF][START_REF] Su | Weak solutions of a polymer crystal growth model[END_REF] and some of our estimates on the heat flow are related with those of [START_REF] Su | Global weak solutions of non-isothermal front propagation problem[END_REF][START_REF] Su | Weak solutions of a polymer crystal growth model[END_REF].

The paper is organized as follows: Section 2 is dedicated to estimates on the eikonal equation, while the a priori estimates for the heat flow are the object of Section 3. We prove the main result in Section 4.

Notations: For any integer k ≥ 1 we denote by B k (x, r) (resp. B k (x, r)) the open (resp. closed) ball of radius r > 0 and of center x in R k . For k = N (the ambiant space), we simply abbreviate to B(x, r). We also denote by S N -1 the unit sphere of R N .

Representation formula and a priori estimates for the eikonal equation

Throughout this section, we investigate the eikonal equation

u t = c(x, t)|Du| in R N × (0, T ), u(x, 0) = u 0 (x) in R N . (2.1)
We assume that the velocity c is Borel measurable on R N × [0, T ] and satisfies

A ≤ c(x, t) ≤ B for all (x, t) ∈ R N × [0, T ] (2.2) 
for some A, B > 0. We also assume that there exist α ∈ (0, 1), ω ∈ L p (0, T ) with p ∈ (1, +∞] and C > 0 such that for all (x, y, t

) ∈ R N × R N × [0, T ], |c(x, t) -c(y, t)| ≤ C|y -x| (1 + | log |x -y||) , (2.3) 
and

|c(x, t) -c(y, t)| ≤ ω(t)|y -x| α . (2.4)
Finally, the initial datum u 0 is Lipschitz continuous on R N . Our aim is to prove existence and uniqueness for the solution of (2.1) under assumptions (2.2) and (2.3), and give some estimates depending only on assumption (2.4). Note that the first two parts are quite classical: they are given here for sake of completeness and also because we are working in a framework (assumption (2.3)) which slightly differs from the standard one. In constrast, the regularity results on the optimal solutions for the controlled system associated with equation (2.1) and its consequence on the level-sets of the solution of (2.1) are new. Their proofs borrow some ideas of [START_REF] Su | Weak solutions of a polymer crystal growth model[END_REF][START_REF] Su | Global weak solutions of non-isothermal front propagation problem[END_REF], as for instance Lemma 2.7.

2.1. Existence, uniqueness, stability and representation formula. Let us recall some known results for Equation (2.1). The notion of L 1 -viscosity solution provides a framework for equations such as (2.1) where the dependance on the time variable is merely measurable. We refer to [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF]Appendix] for the definition and properties of L 1 -viscosity solutions that we need here, and to [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF][START_REF] Nunziante | Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time-dependence[END_REF][START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach[END_REF] for a complete overview of the theory. Let us introduce the following controlled system: for any

b ∈ L ∞ ([0, T ), R N ), x ′ (s) = c(x(s), s) b(s) |b(s)| ≤ 1, for a.e. s ≥ 0. (2.5)
We start by recalling that, for a given initial data and a given control, equation (2.5) has a unique solution (this is Osgood's Theorem, see [START_REF] Coddington | Theory of ordinary differential equations[END_REF] for instance): 

∈ L ∞ ([0, T ), R N ), then |x(t) -y(t)| ≤ ω(|x(0) -y(0)|) (2.
u 0 (x) ≤ u(x, t) ≤ u 0 (x) + B Du 0 ∞ t , (2.7 
)

for any (x, t) ∈ R N × [0, T ].
(ii) (Properties and representation formula) This solution is nondecreasing in time, uniformly continuous on R N × [0, T ] and given by the formula u(x, t) = sup{u 0 (y); ∃ x solution of (2.5) with x(0) = y and x(t) = x} . (2.8)

In particular,

K(t) : = {x ∈ R N ; u(x, t) ≥ 0} (2.9)
= x ∈ R N ; ∃ x solution of (2.5) with x(0) ∈ K(0) and x(t) = x .

(iii) (Stability) If (c n ) is a sequence of measurable functions satisfying (2.2) and (2.3) with the same constants A, B, C > 0 and such that (c n ) converges a.e. to some c : R N × [0, T ] → R, then the sequence of solutions (u n ) of (2.1) associated to the velocities (c n ) converges locally uniformly to the solution u associated to c.

Proof:

The existence of a solution u which satisfies (2.7) is a consequence of the general theory (see [24, Propositions 2.1 and 2.2]). To prove that this solution is unique and given by (2.8), we proceed by approximation: let (ρ n ) n≥1 be a mollifier on R N such that supp(ρ n ) ⊂ B(0, 1/n), ρ n ≥ 0 and ρ n 1 = 1. Let (c n ) n≥1 be the sequence of approximate velocities defined by

cn (x, t) = R N c(x -y, t) ρ n (y) dy.
Then cn is Borel measurable on R N × [0, T ], Lipschitz continuous in space (with a n-dependant constant), satisfies (2.2) and (2.3), and (c n ) converges to c as n → +∞. More precisely, using (2.3), we have for any (x, t) ∈ R N × [0, T ], (x n ) converges uniformly to some x : [0, t] → R N . As a consequence, x(t) = x, u 0 (x(0)) = z and, using the a.e. convergence of (c n ) to c as well as (2.2) and (2.3), we obtain |x ′ (s)| ≤ c(x(s), s) on [0, t]. This proves that lim sup u n (x, t) ≤ sup{u 0 (y); ∃ x solution of (2.5) with x(0) = y and x(t) = x} .

|c n (x, t) -c(x, t)| ≤ B(0,1/n) |c(x -y, t) -c(x, t)| ρ n (y) dy ≤ C 1 n (1 + log n). Let c - n (x, t) = cn (x, t) - C n (1 + log n) and c + n (x, t) = cn (x, t) + C n (1 + log n), so that c - n ≤ c ≤ c + n and
Conversely, let y ∈ R N such that there exists a solution x of (2.5) with x(0) = y and x(t) = x. Let b be the control associated by x and xn be the solution of x′ n (s) = c n (x n (s), s)b(s) with xn (t) = x. Then we must have u n (x, t) ≥ u 0 (x n (0)) for any n. By the same argument as above, (x n ) must converge uniformly to a solution of x ′ (s) = c(x(s), s)b(s), and by uniqueness of such a solution (Lemma 2.1), the limit (x n ) must be x. Therefore u 0 (y) = lim u 0 (x n (0)) ≤ lim inf u n (x, t), and sup{u 0 (y); ∃ x solution of (2.5) with x(0) = y and x(t) = x} ≤ lim inf u n (x, t).

This concludes the proof of the representation formula (2.8) for the unique solution of (2.1). This representation formula implies that u is nondecreasing in time. We also point out that the proof of uniqueness can be easily adapted to prove that, in fact, comparison holds for (2.1).

To prove the stability property (iii), let (c n ) be a sequence of functions satisfying (2.2) and (2.3) with the same constants A, B and C, and such that (c n ) converges a.e. to some c : R N × [0, T ] → R, and let (u n ) be the sequence of solutions of (2.1) associated to the velocities (c n ). Using the same arguments as above and the representation formula (2.8), we can actually prove that the half-relaxed limits

lim inf * u n : (x, t) → lim inf n→+∞ {u n (x n , t n ); x n → x, t n → t} and lim sup * u n : (x, t) → lim sup n→+∞ {u n (x n , t n ); x n → x, t n → t}
coincide and are equal to the solution u of (2.1) associated to c. This is known to imply the locally uniform convergence of (u n ) to u, and proves the stability property.

Finally, let us prove the uniform continuity of the solution u of (2.1), starting with the regularity in space: fix (x, y, t) ∈ R N × R N × [0, T ], and let x be a solution of (2.5) with control b, x(t) = x and u(x, t) = u 0 (x(0)) (notice that the supremum is achieved in (2.8)). Let ȳ be the solution of (2.5) associated to the same control b and satisfying ȳ(t) = y. Applying (2.6) for System (2.5) with reverse time, we have

|x(0) -ȳ(0)| ≤ ω(|x(t) -ȳ(t)|) for all t ∈ [0, T ].
Using that ȳ is a solution of (2.5) and u 0 (ȳ(0)) ≤ u(y, t) thanks to (2.8), we obtain

u(x, t) = u 0 (x(0)) ≤ u 0 (ȳ(0)) + Du 0 ∞ |x(0) -ȳ(0)| ≤ u(y, t) + ω(|x -y|),
where ω = Du 0 ∞ ω is still a modulus of continuity. Exchanging the roles of x and y, we obtain the uniform continuity of u in space.

Now let us fix t ∈ [0, T ]. The map (x, s) → u(x, t + s) is a sub-solution of ūt = B |Dū| in R N × [0, T -t] with uniformly continuous initial datum u(•, t). By the Lax formula, for any 0 ≤ s ≤ T -t, u(x, t) ≤ u(x, t + s) ≤ sup{u(y, t); |x -y| ≤ Bs} .
Using the uniform continuity of u(•, t) in space, we deduce that for any 0

≤ s ≤ T -t, u(x, t) ≤ u(x, t + s) ≤ u(x, t) + ω(Bs) .
This proves the uniform continuity of u in time. 

z : x → min{t ∈ [0, T ]; u(x, t) ≥ 0} ,
which by definition is well-defined on K(T ) = ∪ t∈[0,T ] K(t) (see (2.9) for the definition of K(t)) and is such that

K(t) = {x ∈ R N ; z(x) ≤ t}.
We say that a solution x of (2.5) on [0, t] is extremal if

x(0) ∈ K(0) and z(x(t)) = t. Lemma 2.3. Assume that the velocity c : R N × [0, T ] → R is Borel measurable and satisfies (2.
2) and (2.3).

(1) Let x be an extremal solution on [0, t]. Then:

(i) For any s ∈ [0, t], z(x(s)) = s. (ii) For almost every s ∈ [0, t], |x ′ (s)| = c(x(s), s).
(

) If {x ∈ R N ; u 0 (x) = 0} = ∂{x ∈ R N ; u 0 (x) > 0}, then for any t ∈ (0, T ], {x ∈ R N ; u(x, t) = 0} = {x ∈ R N ; z(x) = t} . 2 
Proof: (1) (i) By definition of x and z, we have for any s ∈ [0, t], z(x(s)) ≤ s. To prove the converse inequality, we argue by contradiction: let s 0 ∈ [0, t) be such that θ := z(x(s 0 )) < s 0 . Let us first prove that for δ > 0 small enough,

B(x(s 0 ), A(s 0 -θ -δ)) ⊂ {y ∈ R N ; z(y) ≤ s 0 -δ} .
Let y be such that |yx(s 0 )| < A(s 0 -θ -δ), and let x θ be a solution of (2.5) on [0, θ] such that x θ (0) ∈ K(0) and x θ (θ) = x(s 0 ). We extend x θ to [0, s 0 -δ] by setting

x θ (s) = x(s 0 ) + y -x(s 0 ) s 0 -θ -δ (s -θ) for all s ∈ [θ, s 0 -δ] .
The bound c ≥ A shows that x θ is a solution of (2.5) on [0, s 0 -δ] with x θ (0) ∈ K(0) and x θ (s 0 -δ) = y, which means that z(y) = z(x θ (s 0 -δ)) ≤ s 0 -δ. Now, for any δ > 0 small enough, let us solve

x ′ δ (s) = c(x δ (s), s) b(s) on [s 0 -δ, t -δ] , x δ (t -δ) = x(t) .
where b is the control associated to x. Applying (2.6) for System (2.5) with reverse time, we have

|x δ (s 0 -δ) -x(s 0 -δ)| ≤ ω(|x δ (t -δ) -x(t -δ)|) = ω(|x(t) -x(t -δ)|) ≤ ω(Bδ) because |x ′ | ≤ B. In particular, for δ small enough, |x δ (s 0 -δ) -x(s 0 -δ)| < 1 2 A(s 0 -θ -δ) , while |x(s 0 -δ) -x(s 0 )| ≤ Bδ < 1 2 A(s 0 -θ -δ) .
For such a choice of δ,

x δ (s 0 -δ) ∈ B(x(s 0 ), A(s 0 -θ -δ)) ⊂ {y ∈ R N ; z(y) ≤ s 0 -δ}.
Therefore z(x δ (s 0 -δ)) ≤ s 0 -δ. In particular, there exists a solution x of (2.5) on [0, s 0 -δ] with x(0) ∈ K(0) and x(s 0 -δ) = x δ (s 0 -δ). The reunion of the paths associated to x on [0, s 0 -δ] and x δ on [s 0 -δ, t -δ] gives a solution x of (2.5) on [0, t -δ] with x(0) ∈ K(0) and x(t -δ) = x δ (t -δ) = x(t). In particular, z(x(t)) ≤ t -δ < t, which is absurd.

(1) (ii) Now, let us prove that |x ′ (s)| = c(x(s), s) for almost every s ∈ [0, t]: for s 0 ∈ (0, t) and h > 0 be small enough, let y : [s 0 -h, s 0 + h] be the solution of

y ′ (s) = c(y(s), s) x(s 0 +h)-x(s 0 -h) |x(s 0 +h)-x(s 0 -h)| , y(s 0 -h) = x(s 0 -h) . (x is injective from (1) (i)). Note that y remains in the segment [x(s 0 -h), x(s 0 + h)] on [s 0 -h, s 0 + h] because |y ′ (s)| ≤ c(y(s), s),
which means that y is suboptimal. Moreover y is monotonous on this segment. In particular we have

|x(s 0 + h) -x(s 0 -h)| ≥ |y(s 0 + h) -y(s 0 -h)| = s 0 +h s 0 -h c(y(s), s) ds.
Using the bound c ≤ B, we have

|y(s) -x(s)| ≤ 4Bh for all s ∈ [s 0 -h, s 0 + h] .
Therefore, thanks to (2.3), we get

s 0 +h s 0 -h c(y(s), s) ds ≥ s 0 +h s 0 -h c(x(s), s) ds -8BCh 2 (1 + | log(4Bh)|).
If s 0 is a Lebesgue point of s → c(x(s), s) such that x is differentiable at s 0 , which is the case of almost every s 0 ∈ [0, t], then we obtain

|x ′ (s 0 )| = lim h→0 |x(s 0 + h) -x(s 0 -h)| 2h ≥ lim h→0 1 2h s 0 +h s 0 -h c(x(s), s) ds = c(x(s 0 ), s 0 ) .
(2) Let (x, t) ∈ R N × (0, T ] be such that z(x) = t; by definition of z, we know that u(x, t) ≥ 0 and for any h > 0 enough, u(x, t -h) < 0. By continuity of u, we must have u(x, t) = 0.

Conversely, let (x, t) ∈ R N × (0, T ] be such that u(x, t) = 0. We argue by contradiction and assume that θ = z(x) < t. Since u is nondecreasing in t, one necessarily has u(x, θ) = 0. Let x be a solution of (2.5) such that u(x, θ) = u 0 (x(0)) = 0 and x(θ) = x. By our assumption on u 0 , there exists y such that u 0 (y) > 0 and ω(|yx(0)|) < A(t -θ) (recall that ω is defined in (2.6)). Let ȳ be the solution of (2.5) on [0, θ] with the control b associated to x, and such that ȳ(0) = y. Then, from (2.6), we have

|ȳ(θ) -x| = |ȳ(θ) -x(θ)| ≤ ω(|ȳ(0) -x(0)|) < A(t -θ).
We extend ȳ to [0, t] by setting for any s ∈ [θ, t],

ȳ(s) = ȳ(θ) + x -ȳ(θ) t -θ (s -θ) .
The bound c ≥ A implies that ȳ is a solution of (2.5) with ȳ(0) = y and ȳ(t) = x. By (2.8), we have u(x, t) ≥ u 0 (ȳ(0)) = u 0 (y) > 0, which is absurd. Therefore z(x) = t, and this concludes the proof. 

∈ R N ; 0 < z(x) < T }.
Proof: The proof of the right-hand side inequality follows along the same lines as the beginning of the proof of [7, Theorem 5.9], and shows that z is Lipschitz continuous. For the left-hand side inequality, let φ : {x ∈ R N ; 0 < z(x) < T } → R be a function of class C 1 such that z -φ has a local minimum equal to 0 at some x. Let x be an extremal on [0, t] with x(t) = x. For any s ∈ [0, t], z(x(s)) = s by Lemma 2.3. Then for any h > 0 small enough,

z(x(t -h)) ≥ φ(x(t -h)) , whence, by definition of φ, φ(x(t)) -h = z(x(t)) -h = t -h = z(x(t -h)) ≥ φ(x(t -h)) .
In particular, 2) is that for any t ∈ [0, T ], the front {x ∈ R N ; u(x, t) = 0} has measure 0 and coincides with ∂K(t). Indeed, {x ∈ R N ; u(x, t) = 0} = {x ∈ R N ; z(x) = t}, and Stampacchia's theorem (see for instance [START_REF] Evans | Measure theory and fine properties of functions[END_REF]) states that Dz = 0 almost everywhere on the set {x ∈ R N ; z(x) = t}. Moreover, the viscosity decrease principle (see [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]) shows that

h ≤ φ(x(t)) -φ(x(t -h)) = t t-h Dφ(x(s)), x′ (s) ds ≤ B
∂K(t) = ∂{x ∈ R N ; z(x) ≤ t} = {x ∈ R N ; z(x) = t} = {x ∈ R N ; u(x, t) = 0} .
In particular, a solution x of (2.5) is extremal on [0, t] if x(t) ∈ ∂K(t); in this case, it satisfies x(s) ∈ ∂K(s) for any s ∈ [0, t] and |x ′ (s)| = c(x(s), s) for a.e. s ∈ [0, t].

Regularity of extremal solutions.

From now on we assume that c satisfies (2.2), (2.3) and (2.4). Our first result is the following: Proposition 2.6. Under the above assumptions, if x is extremal on [0, t ] for some t ∈ (0, T ] and if

β := α -1/p > 0, then the map t → x′ (t)/|x ′ (t)| is of class C β/2 (0, t ). Namely x′ (s 2 ) |x ′ (s 2 )| - x′ (s 1 ) |x ′ (s 1 )| ≤ C ω 1/2 p |s 2 -s 1 | β/2 f or all s 1 , s 2 ∈ [0, t ] ,
where C only depends on the constants A, B, α and p introduced in (2.2)-(2.4).

Proof: Throughout the proof C denotes a constant which depends on A, B, α and p only.

By Lemma 2.3 (1)(ii), we have |x ′ (t)| = c(x(t), t) a.e. on [0, t]. We reparametrize the path x with speed 1 as follows. Let θ be a solution of

θ ′ (s) = 1 c(x(θ(s)),θ(s)) s ∈ [0, θ -1 ( t )], θ(0) = 0.
(2.10)

Let us set s = θ -1 ( t ) and ȳ(s) = x(θ(s)) on [0, s]. Then |ȳ ′ (s)| = |x ′ (θ(s))θ ′ (s)| = 1 for any s ∈ [0, s] . (2.11) Let us introduce c(y, s) = c(y, θ(s)) c(ȳ(s)), θ(s))
.

(2.12)

From our assumptions (2.2)-(2.4), we have

c(y, s) -c(y ′ , s) ≤ ω(θ(s)) A |y -y ′ | α for all (y, y ′ , s) ∈ R N × R N × [0, s] (2.13) and A B ≤ c(y, s) ≤ B A for all (y, s) ∈ R N × [0, s]. (2.14)
In order to proceed we need the following lemma:

Lemma 2.7. For any 0 ≤ s 1 < s 2 ≤ s, |ȳ(s 2 )-ȳ(s 1 )| ≤ s 2 -s 1 = s 2 s 1 |ȳ ′ (s)|ds ≤ |ȳ(s 2 )-ȳ(s 1 )|+C(s 2 -s 1 ) α s 2 s 1 ω(θ(s))ds . Proof: First of all, |ȳ(s 2 ) -ȳ(s 1 )| ≤ s 2 -s 1 = s 2 s 1 |ȳ ′ (s)|ds because |ȳ ′ | = 1. Let y : [s 1 , s 2 ] → R N solve y ′ (s) = c(y(s), s) ȳ(s 2 )-ȳ(s 1 )
|ȳ(s 2 )-ȳ(s 1 )| , y(s 1 ) = ȳ(s 1 ) .

(2.15)

Note that y remains in the segment [ȳ(s 1 ), ȳ(s 2 )] on [s 1 , s 2 ] because y is admissible for (2.5), and so is sub-optimal. Moreover y is monotonous on the segment. From the bounds (2.14) on c, we have

|y(s) -ȳ(s)| ≤ 2B A (s 2 -s 1 ) for all s ∈ [s 1 , s 2 ] .
Since c(ȳ(s), s) = 1 and c satisfies (2.13), we have

s 2 -s 1 = s 2 s 1 c(ȳ(s), s)dt ≤ s 2 s 1 c(y(s), s)dt + 2B A α (s 2 -s 1 ) α s 2 s 1 ω(θ(s)) A ds.
On the other hand, y lives in the segment [ȳ(s 1 ), ȳ(s 2 )] and is monotonous on this segment, so that, from (2.15), we get

s 2 s 1 c(y(s), s)ds = s 2 s 1 |y ′ (s)|ds = |y(s 2 ) -y(s 1 )| ≤ |ȳ(s 2 ) -ȳ(s 1 )| .
Putting together the last two estimates proves the Lemma.

2 Next we claim the following result: Lemma 2.8. For any 0 ≤ s 1 < s 2 ≤ s, we have

ȳ s 1 + s 2 2 - ȳ(s 1 ) + ȳ(s 2 ) 2 ≤ C (s 2 -s 1 ) α s 2 s 1 ω(θ(s))ds + (s 2 -s 1 ) (1+α)/2 s 2 s 1 ω(θ(s))ds 1 2
.

Proof: Let us set s 0 = (s 1 + s 2 )/2, a = ȳ(s 0 ) -ȳ(s 1 ), b = ȳ(s 2 ) -ȳ(s 0 ) and τ = s 2 -s 1 . Then, from Lemma 2.7 we have |a| + |b| ≤ s 0 s 1 |ȳ ′ (s)| ds + s 2 s 0 |ȳ ′ (s)| ds ≤ s 2 s 1 |ȳ ′ (s)|ds ≤ |a + b| + ε ,
where ε := Cτ α s 2 s 1 ω(θ(s))ds. Taking the square in the above inequality and expanding this expression, we get

2|a||b| ≤ 2 a, b + 2|a + b|ε + ε 2 . Hence a |a| - b |b| 2 ≤ 2|a + b|ε + ε 2 |a||b| .
From (2.11) and (2.14), we have

A B τ 2 ≤ |a|, |b| ≤ τ 2 . It follows that a |a| - b |b| 2 ≤ 8 B A ε τ + 4 B A 2 ε 2 τ 2 .
Let us estimate ||a| -|b||: from Lemma 2.7 we have

|a| ≤ s 0 s 1 |ȳ ′ (s)|ds = τ 2 = s 2 s 0 |ȳ ′ (s)|ds ≤ |ȳ(s 2 ) -ȳ(s 0 )| + ε = |b| + ε .
We obtain the inequality |b| ≤ |a|+ε in the same way, which proves that ||a|-|b|| ≤ ε. Then we write

|a -b| = |a| a |a| - b |a| ≤ |a| a |a| - b |b| + ||a| -|b|| .
Therefore, since |a| ≤ τ /2, we have

|a -b| ≤ C( √ ετ + ε) ,
which is the desired result from the definition of ε.

2 We are now ready to complete the proof of Proposition 2.6. Since 1/B ≤ θ ′ ≤ 1/A, we have

s 2 s 1 ω(θ(s))ds = θ(s 2 ) θ(s 1 ) ω(s) θ ′ (θ -1 (s)) ds ≤ B θ(s 2 ) θ(s 1 ) ω(s)ds
where, from Hölder's inequality,

θ(s 2 ) θ(s 1 ) ω(s)ds ≤ |θ(s 2 ) -θ(s 1 )| 1-1/p ω p ≤ A -1+1/p |s 2 -s 1 | 1-1/p ω p .
This shows that

s 2 s 1 ω(θ(s))ds ≤ C ω p |s 2 -s 1 | 1-1/p . ( 2 

.16)

If β = α -1/p > 0, then, combining Lemma 2.8 with (2.16), we get

ȳ s 1 + s 2 2 - ȳ(s 1 ) + ȳ(s 2 ) 2 ≤ C ω 1/2 p |s 2 -s 1 | 1+β/2
as soon as

s 2 -s 1 ≤ ω -1/β p
. Theorem 2.1.10 of [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF] then states that each component of ȳ is semi-convex and semi-concave with a modulus m of the form m(ρ) = C ω 1/2 p ρ β/2 . Moreover, from Theorem 3.3.7 of [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF], we know that ȳ is

C 1,β/2 with constant C ω 1/2 p . Therefore |ȳ ′ (s 2 ) -ȳ′ (s 1 )| ≤ C ω 1/2 p |s 2 -s 1 | β/2 which completes the proof since θ -1 is B-Lipschitz continuous and x′ (t) |x ′ (t)| = ȳ′ (θ -1 (t)). 2 
Remark 2.9. We have actually proved that ȳ is

C 1,β/2 , β = α -1/p, with constant C ω 1/2
p , where C depends only on A, B, α and p.

2.4.

A priori regularity of the moving front. We consider a solution u to (2.1) for a velocity c which satisfies (2.2), (2.3) and (2.4). We set, as before,

K(t) = {x ∈ R N ; u(x, t) ≥ 0} for all t ∈ [0, T ] .
We introduce cone-like sets and interior cone properties as follows.

Definition 2.10. Let x ∈ R N and ν ∈ S N -1 be a unit vector.

• For any 0 < ρ < θ, the cone of vertex x, axis ν and parameters (ρ, θ) is defined by

C ρ,θ ν,x := t∈[0,θ] B x + tν, t ρ θ = {x + tν + t ρ θ ξ : t ∈ [0, θ], ξ ∈ B(0, 1)}.
• For C > 0, δ ∈ (0, 1), we define the paraboloid

⌢ C δ,C (x, ν) = t∈[0,C -1/δ ] B x + tν, t -Ct 1+δ = {x + tν + (t -Ct 1+δ )ξ : t ∈ [0, C -1/δ ], ξ ∈ B(0, 1)}.
We recall from [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF] that a compact subset K of R N is said to have the interior cone property of parameters (ρ, θ) if, for any x ∈ ∂K, there exists ν ∈ S N -1 such that the cone C ρ,θ ν,x is contained in K. In the same way, we say that K satisfies the interior ⌢ C δ,C -property if for any x ∈ ∂K, there exists ν ∈ S N -1 such that ⌢ C δ,C (x, ν) is contained in K.

The set C

ρ,θ ν,x is a classical cone (see Figure 1). Since the map t → t -Ct 1+δ is concave, a tedious but straightforward computation shows that the set ⌢ C δ,C (x, ν) is convex. We shall see below (Lemma 2.13) that it has a C 1,γ boundary in a neighbourhood of x for some γ ∈ (0, 1) and contains a paraboloid-like subset. This motivates the name paraboloid (see Figure 1 for an illustration). Notice that

C ρ,θ ν,x ⊂ ⌢ C δ,C (x, ν) as soon as θ ≤ C -1/δ and ρ ≤ θ -Cθ 1+δ .
Lemma 2.11. Let us still assume that β = α -1/p > 0. There exist positive constants C 0 , C 1 depending only on A, B, α and p, such that, setting

C(ω) = C 0 ω 1/2 p , for any extremal solution x on [0, t ] with t ≥ C 1 C(ω) -2/β , the set ⌢ C β/2,C(ω) (x, ν) is contained in K( t ), where x = x( t ) , ν = - x′ ( t ) |x ′ ( t )| . 
Proof: As in the proof of Proposition 2.6, we reparametrize x with speed 1 by introducing ȳ(s) = x(θ(s)) on [0, s] where ȳ and s are defined by (2.10). Notice that ȳ′ (s) = x′ (θ(s))/|x ′ (θ(s))| for a.e. s ∈ [0, s].

Next we define c by (2.12) and, for s ∈ (0, s) and b ∈ B(0, 1), we consider the solution y : 

[s, s] → R N to y ′ (σ) = c(y(σ), σ)b, σ ∈ [s, s], y(s) = ȳ(s). x ′ ∈ R N-1 0 C ρ,θ 0,ν ρ ρ θ ν slope (θ/ρ) 2 -1 C -1/δ (C(1 + δ)) -1/δ 0 x ′ ∈ R N -1 r(t) = t -Ct 1+δ ν ⌢ C δ,C (0, ν) x N ∈ R

It follows that

|y(s) -ȳ(s)| ≥ (s -s)(1 -C ω p (s -s) β ), where C = 2 α B 1+α A 2+α-1/p and β = α - 1 p .
Moreover, any point in the segment [ȳ(s), y(s)] also belongs to K( t ). We have therefore proved that

ȳ(s) + (s -s)(1 -C ω p (s -s) β )b ∈ K( t ) .
This holds true for any b ∈ B(0, 1) and any s such that (s -s) ≤ C-1/β ω -1/β p . In particular, as soon as s ≥ C-1/β ω -1/β p , we have, setting t = s -s,

t∈[0, C-1/β ω -1/β p ] B ȳ(s -t), t(1 -C ω p t β ) ⊂ K( t ) ,
where β = α -1/p > 0. From the C 1,β/2 regularity of ȳ (see Remark 2.9), using

that ν = - x′ ( t ) |x ′ ( t )| = -ȳ ′ (s), we have |ȳ(s -t) -(x + tν)| ≤ C ω 1/2 p t 0 s β/2 ds ≤ C ω 1/2 p t 1+β/2 ,
where C only depends on A, B, α and p. Let us set

C 0 = C + B β/2 C1/2 , C 1 = A -1 C-1/β C 2/β 0 and C(ω) = C 0 ω 1/2 p .
Then, going back to the expression of x, we obtain that, if t

≥ C 1 C(ω) -2/β , ⌢ C β/2,C(ω) (x, ν) = t∈[0,C(ω) -2/β ] B x + tν, t(1 -C(ω)t β/2 ) ⊂ K( t ).
2 The above results have the following consequence: Corollary 2.12. Let us assume that K 0 has the interior ball property of radius r 0 : F or all x ∈ K 0 , there exists y ∈ K 0 , with x ∈ B(y, r 0 ) ⊂ K 0 .

(2.17

)
Then there is a positive constant C 0 depending only on A, B, α and p such that for any t ∈ [0, T ], K(t) has the interior ⌢ C β/2,C(ω) -property , where C(ω) = C 0 ω 1/2 p . In particular, there is a constant

ρ = 1 2 (2C(ω)) -2/β = 1 2 (2C 0 ) -2/β ω -1/β
p such that for any t ∈ [0, T ], the set K(t) has the interior cone property of parameters (ρ, 2ρ).

Proof: Let us prove the first part of the corollary. Let K 1 be such that K 0 = K 1 + r 0 B(0, 1). Then K(t) is the reachable set at time r 0 + t for the system

x ′ (t) = c(x(t), t)b(t) |b(t)| ≤ 1 , starting from K 1 , where c(x, t) = 1 if t ∈ [0, r 0 ], and c(x, t) = c(x, t -r 0 ) if t ∈ (r 0 , T + r 0 ] (notice that c satisfies (2.2)-(2.
3)-(2.4)). For this system, Lemma 2.11 shows the result as soon as t ≥ C 1 C(ω) -2/β . Therefore, if we assume that C 1 C(ω) -2/β ≤ r 0 , which is always possible by increasing ω p , then the result holds for K(t), for any t ∈ [0, T ].

For the second part of the result, let θ = 2ρ = (2C(ω)) -2/β , t ∈ (0, T ], x ∈ ∂K(t) and ν ∈ S N -1 be such that (ω) . This proves that the cone C ρ,θ

⌢ C β/2,C(ω) (x, ν) ⊂ K(t). Since θ = (2C(ω)) -2/β , we have θ ≤ C(ω) -2/β and ρ ≤ θ -C(ω)θ 1+β/2 , so that C ρ,θ x,ν ⊂ ⌢ C β/2,C
x,ν , with θ = 2ρ, is contained in K(t).

2

We now show that the convex set ⌢ C δ,C (x, ν) has a boundary of class C 1,γ in a neighborhood of x for some γ > 0. Let us fix a frame {e 1 , . . . , e N } of R N such that x = 0, ν = e N . We denote by (x ′ , x N ) a generic element of R N , with

x ′ ∈ R N -1 , x N ∈ R.
Lemma 2.13. Let C > 0 and δ > 0 be fixed. There are constants γ = δ/(2 + δ), c = 2(2C) 1/(2+δ) , τ 0 = (2C) -1 δ and r 0 = ( √ 3 -1) 2+δ δ τ 0 such that the set

{(x ′ , x N ) ∈ R N ; |x ′ | ≤ r 0 , c|x ′ | 1+γ ≤ x N ≤ τ 0 } is contained in ⌢ C δ,C (0, ν).
Proof: Note that, by choice of τ 0 , the map τ → r(τ

) = τ (1 -Cτ δ ) is nondecreas- ing on [0, τ 0 ]. For any τ ∈ (0, τ 0 ], the ball B(τ e N , r(τ )) is contained in ⌢ C δ,C (0, ν), which is convex. Let us set ψ τ (x ′ ) = τ -(r 2 (τ )-|x ′ | 2 ) 1/2 . Since the set ⌢ C δ,C (0, ν) is convex, the set {(x ′ , x N ) ∈ R N ; |x ′ | ≤ r(τ ), ψ τ (x ′ ) ≤ x N ≤ τ 0 } (2.18) is contained in ⌢ C δ,C (0, ν). Indeed, if |x ′ | ≤ r(τ ), then (x ′ , ψ τ (x ′ )) ∈ B(τ e N , r(τ )) while (x ′ , τ 0 ) ∈ B(τ 0 e N , r(τ )). Let |x ′ | ≤ r 0 and let us choose τ = (2C) -1/(2+δ) |x ′ | 2/(2+δ) .
Then τ ∈ (0, τ 0 ) and |x ′ | ≤ r(τ ) (here we use the fact that |x ′ | ≤ r 0 ). Moreover, since |x ′ | 2 = 2Cτ 2+δ , we get

ψ τ (x ′ ) ≤ τ -τ 2 (1 -Cτ δ ) 2 -2Cτ 2+δ 1/2 ≤ τ 1 -1 -4Cτ δ 1/2 ≤ 2Cτ 1+δ = (2C) 1/(2+δ) |x ′ | 1+γ .
Using (2.18), we get that any point of the form (x ′ , x N ) with

|x ′ | ≤ r 0 and c|x ′ | 1+γ ≤ x N ≤ τ 0 , where c = 2(2C) 1/(2+δ) , belongs to ⌢ C δ,C (0, ν). 2 
Let us now state a stability property for sets satisfying an interior ⌢ C δ,Cproperty: Lemma 2.14. Let (z n ) be a sequence of Lipschitz continuous real-valued maps on R N which converges uniformly to some z. We assume that {z n ≤ 0} = {z ≤ 0}, that there exist constants A, B > 0 such that the following inequality holds in the viscosity sense: for any n ∈ N,

1 B ≤ |Dz n (x)| ≤ 1 A in {0 < z n < T },
and that there exist C, δ > 0 such that for any x ∈ {0 < z < T } and any n sufficiently large, there is some

ν ∈ S N -1 with ⌢ C δ,C (x, ν) ⊂ {z n ≤ z n (x)}. Then Dz n (x) |Dz n (x)| → Dz(x) |Dz(x)| a.e. in {0 < z < T } and (|Dz n |) converges to |Dz| in L ∞ -weak- * in {0 < z < T }.
Proof: By standard stability property of viscosity solutions we have that

1 B ≤ |Dz(x)| ≤ 1 A in {0 < z < T },
in the viscosity and a.e. sense. Note also that, in view of Remark 2.5, the indicator function of the set {0 < z n < T } converges a.e. to the indicator function of {0 < z < T }. Let x be such that z n and z are positive and differentiable at x for any n. Then |Dz n (x)| > 0 for any n and |Dz(x)| > 0. From the regularity assumption on z n there exists 2 We complete the section by proving that a set with the interior cone property is the union of a finite number of Lipschitz graphs. Proposition 2.15. Let (K(t)) t∈[0,T ] be a nondecreasing family of compact subsets of R N , each K(t) having the interior cone property of parameter (ρ, 2ρ) for some ρ > 0. Then for any x ∈ R N and any r ≥ ρ, there is an integer C(r, ρ) ≤ C(N )r/ρ (where C(N ) only depends on N ) and, for each i ∈ {1, . . . , C(r, ρ)},

ν n ∈ S N -1 such that ⌢ C δ,C (x, ν n ) ⊂ {z n ≤ z n (x)}. Since Dz n (x)
• a Borel measurable map Ψ i : B N -1 (0, r)×[0, T ] → R, which is √ 15-Lipschitz continuous with respect to the space variable,

• and a change of coordinates O i : R N → R N (i.e., the composition of a rotation and a translation), with O i (0) = x, such that, for all t ∈ [0, T ],

∂K(t) ∩ B(x, r) ⊂ i=1,...,C(r,ρ) O i (x ′ , Ψ i (x ′ , t)) , x ′ ∈ B N -1 (0, r) .
If furthermore the family (K(t)) is contained in some ball B(0, M ), then we can take r = +∞ and C(ρ) ≤ C(N )M/ρ and we have, for all t ∈ [0, T ],

∂K(t) ⊂ i=1,...,C(r,ρ) O i (x ′ , Ψ i (x ′ , t)) , x ′ ∈ B N -1 (0, M ) .
An important and straightforward consequence of the fact that ∂K(t) is piecewise Lipschitz continuous is that the sets K(t) are of (locally) finite perimeter.

Proof: We closely follow several arguments of [START_REF] Barles | Uniqueness results for nonlocal Hamilton-Jacobi equations[END_REF]. We first observe that if

x ∈ ∂K and C ρ,2ρ x,ν ⊂ K(t), then for all ν ′ ∈ S N -1 verifying |ν -ν ′ | ≤ 1/4, we have C ρ/2,2ρ x,ν ′ ⊂ K(t)
. By compactness of S N -1 , we can cover S N -1 with the traces on S N -1 of at most p balls of radius 1/4 centered at ν i , for some positive constant p = p(N ) and 1 ≤ j ≤ p. Therefore, for any x ∈ ∂K(t), there exists 1

≤ j ≤ p such that C ρ/2,2ρ x,ν j ⊂ K(t).
Let us now fix x and 1 ≤ j ≤ p. Up to a translation and a rotation of the space, we can assume that x = 0, ν j = (0, . . . , 0, 1). For any x ∈ R N , we write x = (x ′ , x N ) with x ′ ∈ R N -1 and x N ∈ R. For any t ∈ [0, T ] and any integer k with |k| ≤ r/ρ + 1, we set

U k = B N -1 (0, r) × [kρ, (k + 1)ρ] , A j,k (t) = x = (x ′ , x N ) ∈ ∂K(t) ∩ U k ; C ρ/2,2ρ x,ν j ⊂ K(t) ,
and, for all y ′ ∈ B N -1 (0, r),

Ψ j,k (y ′ , t) = min (k + 1)ρ , inf x∈A j,k (t) ψ x (y ′ ) ,
where

ψ x (y ′ ) = √ 15|y ′ -x ′ | + x N is such that (graph ψ x ) ∩ U k = C ρ/2,2ρ
x,ν j ∩ U k (see Figure 2 for an illustration). We claim that

r U 0 U 1 U 2 ν j 0 x N K(t) ρ x ′ Ψ j,0 U -1 U -2 U -3 ∂K(t) 1 Figure 2. A j,k (t) ∩ U k ⊂ graph Ψ j,k (•, t). Indeed, let x ∈ A j,k (t)∩ U k . If x / ∈ graph Ψ j,k (•, t), then Ψ j,k (x ′ , t) < ψ x (x ′ ) = x N . Therefore, there exists z ∈ A j,k (t) such that ψ z (x ′ ) < x N . It follows that x ∈ int C ρ/2,2ρ z,ν j
⊂ int K(t) and x cannot belong to ∂K(t), which is a contradiction. This proves the claim. Then we remark that Ψ j,k (•, t) is a Lipschitz continuous map with constant √ 15 as the infimum of a family of maps having this property. This means that ∂K(t) ∩ B(x, r) is contained in at most p(2r/ρ + 2) Lipschitz graphs with constant √ 15, which concludes the proof since r ≥ ρ; indeed this implies that p(2r/ρ + 2) ≤ 4p r/ρ =: C(r, ρ). 

Representation and a priori estimates for the heat equation

The aim of this section is to provide estimates for the following heat equations

v t -∆v + g(x, t)H N -1 ⌊Γ(t) = 0 in R N × (0, T ) , v(x, 0) = v 0 (x) in R N , (3.1) 
and v t -∆v + κḡ(v(x, t))H N -1 ⌊Γ(t) = 0 in R N × (0, T ) , v(x, 0) = v 0 (x) in R N , (3.2) 
for a given evolving front (Γ(t)) t≥0 .

Throughout the section we work under the following conditions on the data:

(H1) g : R N × [0, T ] → R is continuous and bounded by a constant M > 0.

(H2) κ ∈ R and ḡ : R → R is bounded by M and Lipschitz continuous.

(H3) v 0 is Lipschitz continuous and bounded.

(H4) The evolving family (Γ(t)) t∈[0,T ] can be represented as

Γ(t) = {x ∈ R N ; z(x) = t} for all t ∈ (0, T ) . (3.3)
where z : R N → R is Lipschitz continuous and satisfies

1 B ≤ |Dz(x)| ≤ 1 A in {0 < z < T } (3.4)
in the viscosity sense for some A, B > 0. Furthermore we assume that there is some ρ > 0 such that the set

K(t) = {x ∈ R N ; z(x) ≤ t}
has the interior cone property of parameter (ρ, 2ρ) for all t ∈ (0, T ), and that there exists M > 0 such that

K(t) ⊂ B(0, M ).
Let us recall that, thanks to the interior cone condition, K(t) is a set of finite perimeter and, moreover, its boundary Γ(t) is contained in the union of a finite number of Lipschitz graphs (Proposition 2.15). Throughout the section we denote by C a constant which only depends on A, B, N, T, M, κ and may vary from line to line in the computations.

3.1. Representation and L ∞ bounds for the solution of (3.1).

Lemma 3.1.

There exists a unique solution to (3.1). This solution is given, for all

(x, t) ∈ R N × [0, T ], by v(x, t) = R N G(x -y, t)v 0 (y) dy - t 0 Γ(s)
where G(x, t) = (4πt) -N/2 e -|x| 2 /(4t) is the kernel of the heat equation, and satisfies the uniform bound

|v(x, t)| ≤ C(1 + | log(ρ)|) f or all (x, t) ∈ R N × [0, T ], (3.5) 
where ρ is the cone paramater which appears in (H4).

Proof: Uniqueness of the solution is clear. The term R N G(x -y, t)v 0 (y) dy corresponds to the initial datum and satisfies the bound

R N G(x -y, t)v 0 (y) dy ≤ v 0 ∞ .
In order to prove the representation formula and the bound for v, we can therefore assume that v 0 = 0. Let us set f ε (x, t) = 1 K(t) * G(•, ε) (where the convolution is only made with respect to the space variable). Then f ε is smooth in space and strictly converges in the BV sense to 1 K(t) (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Def. 3.14] and [START_REF] Evans | Measure theory and fine properties of functions[END_REF]Sect. 5.2]). In particular, since ∂K(t) is piecewise Lispchitz continuous, the measure

|Df ε (•, t)|dx weakly- * converges to H N -1 ⌊Γ(t) ([3, Prop. 3.62]). For all (x, t) ∈ R N × [0, T ], let v ε (x, t) = - t 0 R N g(y, s)G(x -y, t -s)|Df ε (y, s)|dyds. Since |Df ε (•, t)| is Lipschitz continuous, it is well-known that v ε is a solution of (v ε ) t -∆v ε + g(y, s)|Df ε (x, t)| = 0 in R N × (0, T ) . (3.6) 
The key step in the proof of (3.5) is the following uniform bound on (v ε ):

|v ε (x, t)| ≤ C(1 + | log(ρ)|) for all (x, t) ∈ R N × [0, T ] , (3.7) 
which holds for any ε > 0. Let us assume for a while that this is true. Then, by the weak- * convergence of

|Df ε |dx to H N -1 ⌊Γ, (v ε ) converges pointwise to v in (R N × (0, T ))\Γ, hence in L 1 loc (R N × [0, T ]
) since it is uniformly bounded in L ∞ thanks to the bound (3.7), and Γ has zero measure in R N × (0, T ). By (3.6) v is a solution of (3.1).

It remains to prove (3.7). To do this we note that, since K(t) is a set of finite perimeter, we have

|Df ε (y, s)| ≤ Γ(t) G(y -x ′ , ε)dH N -1 (x ′ ) for all (y, s) ∈ R N × (0, T ), y / ∈ Γ(s) . Therefore, since G(x -x ′ , t -s + ε) = R N G(x -y, t -s)G(y -x ′ , ε)dy, we get |v ε (x, t)| ≤M t 0 R N Γ(s) G(x -y, t -s)G(y -x ′ , ε) dH N -1 (x ′ )dyds ≤C t 0 Γ(s) G(x -x ′ , t + ε -s)dH N -1 (x ′ )ds.
Let us split this last integral in two parts, the first one denoted by I 1 being the integral between 0 and t -τ and the other one, denoted by I 2 , between t -τ and t for some τ ∈ (0, t]. Let us first estimate

I 1 = C t-τ 0 Γ(s) G(x -y, t + ε -s)dH N -1 (y)ds .
From (3.3) and Lemma 3.2 below, we have

I 1 = C t-τ 0 {z=s} G(x -y, t + ε -s) dH N -1 (y)ds ≤ C A {0<z<t-τ } G(x -y, ε + τ ) dy + t-τ 0 {0<z<s} |G t (x -y, t + ε -s)| dyds . Note that {0<z<t-τ } G(x -y, ε + τ ) dy ≤ R N G(x -y, ε + τ ) dy = 1 .
Moreover we have

{0<z<s} |G t (x -y, t + ε -s)| dy ≤ C R N 1 (t + ε -s) (N +2)/2 + |y -x| 2 (t + ε -s) (N +4)/2 e -|y-x| 2 /(4(t+ε-s)) dy ≤ C ∞ 0 r N -1 (t + ε -s) (N +2)/2 + r N +1 (t + ε -s) (N +4)/2 e -r 2 /(4(t+ε-s)) dr ≤ C t + ε -s ∞ 0 (r N -1 + r N +1 )e -r 2 dr ≤ C t + ε -s ≤ C t -s .
Therefore we get I 1 ≤ C(1 + log(t/τ )) . We now estimate

I 2 = C t t-τ Γ(s) G(x -y, t + ε -s) dH N -1 (y)ds .
From the structure condition on K(s) and Proposition 2.15, there exists an integer C(ρ) ≤ C 1 /ρ (where C 1 only depends on N, M ) and, for each i ∈ {1, . . . , C(ρ)},

• a Borel measurable map Ψ i :

B N -1 (0, M )×[0, T ] → R, which is √ 15-Lipschitz continuous with respect to the space variable, • and a change of coordinates O i : R N → R N , where O i (0) = x, such that, for all s ∈ [0, T ], Γ(s) ⊂ i=1,...,C(ρ) O i (y ′ , Ψ i (y ′ , s)), y ′ ∈ B N -1 (0, M ) .
Therefore, using that

H N -1 ⌊{(y ′ , Ψ i (y ′ , s)), y ′ ∈ B N -1 (0, M )} = 1 + |DΨ i (y ′ , s)| 2 L N -1 ⌊B N -1 (0, M ),
we have

I 2 ≤ C C(ρ) i=1 t t-τ B N-1 (0,M ) G((y ′ , Ψ i (y ′ , s)), t + ε -s) 1 + |DΨ i (y ′ , s)| 2 dy ′ ds .
We deduce that

I 2 ≤ C ρ t t-τ R N-1 1 (t + ε -s) N/2 e -|y ′ | 2 /(4(t+ε-s)) dy ′ ds ≤ C ρ t t-τ +∞ 0 r N -2 (t + ε -s) N/2 e -r 2 /(4(t+ε-s)) drds ≤ C ρ t t-τ +∞ 0 r N -2 (t -s) 1/2 e -r 2 drds ≤ C √ τ ρ .
Putting together the estimates for I 1 and I 2 gives

|v ε (x, t)| ≤ C 1 + log t τ + √ τ ρ ,
which holds for any τ ∈ (0, t]. Choosing τ = ρ2 if t ≥ ρ2 and τ = t otherwise (in which case the decomposition reduces to I 2 ), we finally obtain (3.7). 2 The following Lemma, which was used in the proof, is a simple consequence of the Coarea formula. Lemma 3.2. Let T > 0, z : R N → R be Lipschitz continuous and such that

1 B ≤ |Dz| ≤ 1 A a.e. in {0 < z < T } . Let 0 ≤ s 1 < s 2 ≤
T and assume that φ : R N × (s 1 , s 2 ) → R is nonnegative and such that φ and φ t are integrable on {s 1 < z < s 2 }. Then

s 2 s 1 {z=s} φ(x, s) dH N -1 (x)ds ≤ 1 A {s 1 <z<s 2 } φ(x, s 2 ) dx + s 2 s 1 {s 1 <z<s} |φ t (x, s)| dxds .
Proof : Let us first assume that φ is smooth and bounded. From the Coarea formula [START_REF] Evans | Measure theory and fine properties of functions[END_REF]Sect. 3.4.4] we have

s 2 s 1 {z=s} φ(x, s) |Dz(x)| dH N -1 (x)ds = {s 1 <z<s 2 } φ(x, z(x)) dx
while, by Fubini's Theorem, we get

s 2 s 1 {s 1 <z<s} φ t (x, s) dxds = {s 1 <z<s 2 } s 2 z(x) φ t (x, s) dsdx = {s 1 <z<s 2 } φ(x, s 2 ) dx - {s 1 <z<s 2 } φ(x, z(x)) dx . So s 2 s 1 {z=s} φ(x, s) |Dz(x)| dH N -1 (x)ds ≤ {s 1 <z<s 2 } φ(x, s 2 ) dx + s 2 s 1 {s 1 <z<s} |φ t (x, s)| dxds .
Since |Dz| ≤ 1/A, this gives the result for φ smooth and bounded. The general case follows by regularization. 2

We shall need two types of space regularity estimates for the solution v to (3.1). The first one is a continuity estimate with a modulus ω(s) = s(1 + | log(s)|): it is required in order to solve unambiguously the eikonal equation with a velocity ḡ(v(x, t)), but is very crude with respect to the ρ dependance; we prove it in Subsection 3.2. The second one is merely a Hölder estimate, but it is much sharper with respect to the ρ dependance. It is the aim of Subsection 3.3.

3.2.

Modulus of continuity in space for the solution of (3.1). Lemma 3.3. Let v be the solution of (3.1) given by Lemma 3.1. Then, for any

x, y ∈ R N , t ∈ [0, T ], |v(x, t) -v(y, t)| ≤ C ρ |x -y| (1 + | log |x -y||) . (3.8) 
Proof : We prove the result for N ≥ 3, the case N = 2 being similar but simpler.

The term x → R N G(x -y, t)v 0 (y) dy is Lipschitz continuous with constant Dv 0 ∞ ; we can therefore assume that v 0 = 0 and t > 0.

Using again the structure condition on K(s) and Proposition 2.15, for any x ∈ R N , there is an integer C(ρ) ≤ C 1 /ρ (where C 1 only depends on N, M ) and, for each i ∈ {1, . . . , C(ρ)}, 

• a Borel measurable map Ψ i : B N -1 (0, M )×[0, T ] → R,
O i (z ′ , Ψ i (z ′ , s)) , z ′ ∈ B N -1 (0, M ) for all s ∈ [0, T ] . Setting E i (s) = z = (z ′ , Ψ i (z ′ , s)) , z ′ ∈ B N -1 (0, M ) = graph(Ψ i (•, s) |B N-1 (0,M ) ),
for any h ∈ R N , we have

|v(x + h, t) -v(x, t)| ≤ M t 0 Γ(s) |G(x + h -y, t -s) -G(x -y, t -s)| dH N -1 (y)ds ≤ C C(ρ) i=1 t 0 O i (E i (s)) |G(x + h -y, t -s) -G(x -y, t -s)| dH N -1 (y)ds ≤ C C(ρ) i=1 t 0 E i (s) |G(x + h -O i (z), t -s) -G(x -O i (z), t -s)| dH N -1 (z)ds. Let us set h i = (h ′ i , h iN ) := R -1 i h, where h ′ i ∈ R N -1 and h iN ∈ R. We note that, for any z ∈ R N , R -1 i (x + h -O i z) = h i -z, so that G(x + h -O i (z), t -s) = G(h i -z, t -s)
because G(•, t -s) has rotational invariance. It follows that

|v(x + h, t) -v(x, t)| ≤ C C(ρ) i=1 t 0 E i (s) |G(h i -z, t -s) -G(-z, t -s)| dH N -1 (z)ds ≤ C C(ρ) i=1 t 0 B N-1 (0,M ) G((h ′ i -z ′ , h iN -Ψ i (z ′ , s)), t -s) -G((-z ′ , -Ψ i (z ′ , s)), t -s) 1 + |DΨ i (z ′ , s)| 2 dz ′ ds since H N -1 ⌊E i (s) = 1 + |DΨ i (y ′ , s)| 2 L N -1 ⌊B N -1 (0, M ).
We recall that |DΨ i (z ′ , s)| ≤ √ 15 and introduce

D i (s) = σ∈[0,1] B N -1 (σh ′ i , |h|(t -s) 1/4 )
in order to split the latter integral into two parts. We get

|v(x + h, t) -v(x, t)| ≤ C C(ρ) i=1 t 0 D i (s) G((h ′ i -z ′ , h iN -Ψ i (z ′ , s)), t -s) -G((-z ′ , -Ψ i (z ′ , s)), t -s) dz ′ ds +|h| 1 0 t 0 R N-1 \D i (s) DG((σh ′ i -z ′ , σh iN -Ψ i (z ′ , s)), t -s)| dz ′ dsdσ = C C(ρ) i=1 (I i + |h| J i ) .
Let us fix i ∈ {1, . . . , C(ρ)} and estimate I i . Without loss of generality we can assume that h i belongs to the plane spanned by e 1 and e N . Then,

D i (s) ⊂ R × B N -2 (0, |h|(t -s) 1/4 ) ,
and setting z ′ = (z 1 , z ′′ ) with z 1 ∈ R, z ′′ ∈ R N -2 , we have

I i ≤ C t 0 R B N-2 (0,|h|(t-s) 1/4 ) 1 (t -s) N/2 e - |h 1 -z 1 | 2 +|h ′′ -z ′′ | 2 +|h iN -Ψ i (z ′ ,s)| 2 4(t-s) dz ′′ dz 1 ds +C t 0 R B N-2 (0,|h|(t-s) 1/4 ) 1 (t -s) N/2 e - |z 1 | 2 +|z ′′ | 2 +|Ψ i (z ′ ,s)| 2 4(t-s) dz ′′ dz 1 ds ≤ C t 0 |h|(t-s) 1/4 0 R e - |h 1 -z 1 | 2 4(t-s) + e - |z 1 | 2 4(t-s) dz 1 r N -3 (t -s) N/2 e -r 2 4(t-s) drds ≤ C t 0 |h|(t-s) -1/4 0 r N -3 (t -s) 1/2 e -r 2 /4 drds ≤ C +∞ 0 t 0∨(t-(|h|/r) 4 ) r N -3 (t -s) 1/2 e -r 2 /4 dsdr ≤ C |h|/t 1/4 0 r N -3 e -r 2 /4 t 1/2 dr + +∞ |h|/t 1/4
r N -5 e -r 2 /4 |h| 2 dr .

Let M N = sup [0,+∞) r N -3 e -r 2 /4 (recall that N ≥ 3 by assumption). Then

I i ≤ CM N |h| t 1/4 + +∞ |h|/t 1/4 |h| 2 r 2 dr ≤ CM N T 1/4 |h| = C|h|.
(3.9)

We now estimate J i . We have

DG((σh ′ i -z ′ , σh iN -Ψ i (z ′ , s)), t -s) ≤ C |σh ′ i -z ′ | + |σh iN -Ψ i (z ′ , s)| (t -s) (N +2)/2 e -|σh ′ i -z ′ | 2 /(4(t-s)) e -|σh iN -Ψ i (z ′ ,s)| 2 /(4(t-s)) , with |σh iN -Ψ i (z ′ , s)|e -|σh iN -Ψ i (z ′ ,s)| 2 /(4(t-s)) ≤ C(t -s) 1/2 . Since R N \ D i (s) ⊂ R N \ B N -1 (0, |h|(t -s) 1/4
), we get 

J i ≤ C 1 0 t 0 +∞ |h|(t-s) 1/4 r N -1 (t -s) (N +2)/2 + r N -2 (t -s) (N +1)/2 e -r 2 /(4(t-s)) drdsdσ ≤ C +∞ |h|t -1/4 t-(|h|/r) 4 0 r N -1 + r N -2 t -s e -r 2 /4 dsdr ≤ C +∞ |h|t -1/4 (r N -1 + r N -2 ) log
t ∈ [0, T ], x, y ∈ R N , |v(x, t) -v(y, t)| ≤ C(1 + | log(ρ)|)(ρ) -1 4 |x -y| 1 2 . ( 3 
(x + h, t) -v(x, t)| ≤ C(ρ) -1 4 |h| 1 2 .
We will complete the proof of (3.11) by using Lemma 3.1.

The term x → R N G(x -y, t)v 0 (y) dy is Lipschitz continuous with constant Dv 0 ∞ , and therefore locally 1/2-Hölder continuous; we can assume that v 0 = 0 and t > 0. Then

|v(x + h, t) -v(x, t)| ≤ M |h| 1 0 t-τ 0 Γ(s) |DG(x + σh -y, t -s)| dH N -1 (y) dsdσ + t t-τ Γ(s)\B(x,r) (G(x -y, t -s) + G(x + h -y, t -s)) dH N -1 (y) dsdσ + t t-τ Γ(s)∩B(x,r) (G(x -y, t -s) + G(x + h -y, t -s)) dH N -1 (y) dsdσ = g ∞ [ |h|J 1 + J 2 + J 3 ]
where r, τ > 0 are chosen such that r = √ ρ and τ = |h| √ ρ .

Since |h| ≤ √ ρ/4, we have τ ≤ ρ/4 and r/ √ τ ≥ 2. If τ > t, the decomposition reduces to J 2 + J 3 with τ = t.

In order to estimate J 1 , we argue as for I 1 in the proof of the estimate (3.7): we have

1 0 t-τ 0 Γ(s) |DG(x + σh -y, t -s)| dH N -1 (y) dsdσ ≤ C 1 0 t-τ 0 Γ(s) |y -x -σh| (t -s) (N +2)/2 e -|y-x-σh| 2 /(4(t-s)) dH N -1 (y) dsdσ,
where, using Lemma 3.2, we have for any σ ∈ (0, 1):

t-τ 0 Γ(s) |y -x -σh| (t -s) (N +2)/2 e -|y-x-σh| 2 /(4(t-s)) dH N -1 (y)ds ≤ 1 A K(t-τ ) |y -x -σh| τ (N +2)/2 e -|y-x-σh| 2 /(4τ ) dy + C t-τ 0 K(s) |y -x -σh| (t -s) (N +4)/2 + |y -x -σh| 3 (t -s) (N +6
)/2 e -|y-x-σh| 2 /(4(t-s)) dyds .

Since, for any σ ∈ (0, 1), we have

K(t-τ ) |y -x -σh| τ (N +2)/2 e -|y-x-σh| 2 /(4τ ) dy ≤ +∞ 0 r N τ (N +2)/2 e -r 2 /(4τ ) dr ≤ Cτ -1 2 and t-τ 0 K(s) |y -x -σh| (t -s) (N +4)/2 + |y -x -σh| 3 (t -s) (N +6)/2 e -|y-x-σh| 2 /(4(t-s)) dyds ≤ C t-τ 0 +∞ 0 r N + r N +2 (t -s) 3/2 e -r 2 /4 drds ≤ C τ -1/2 , we get J 1 ≤ C τ -1/2
. For J 2 we use the same strategy of proof: from Lemma 3.2 we have, for any ǫ ∈ (0, τ ),

t-ǫ t-τ Γ(s)\B(x,r) (G(x -y, t -s) + G(x + h -y, t -s)) dH N -1 (y) dsdσ ≤ 1 A {t-τ <z<t-ǫ} 1 R N \B(x,r) (y)(G(x -y, ǫ) + G(x + h -y, ǫ)) dy + t-ǫ t-τ {t-τ <z<s} 1 R N \B(x,r) (y) |G t (x -y, t -s) + G t (x + h -y, t -s)| dyds .
It is easily seen that lim ǫ→0 {t-τ <z<t-ǫ} 1 R N \B(x,r) (y)(G(x -y, ǫ) + G(x + h -y, ǫ)) dy = 0, because r is larger than 4|h|. On the other hand

t-ǫ t-τ {t-τ <z<s} 1 R N \B(x,r) (y) |G t (x -y, t -s) + G t (x + h -y, t -s)| dyds ≤ C t t-τ +∞ r/(2(t-s) 1/2 ) r N -1 + r N +1 t -s e -r 2 /4 drds ≤ C +∞ r/(2 √ τ ) t-r 2 /(4r 2 ) t-τ r N -1 + r N +1 t -s e -r 2 /4 dsdr ≤ C +∞ r/(2 √ τ ) (r N -1 + r N +1 ) log 4τ r 2 r2 e -r 2 /4 dr ≤ C √ τ r +∞ 1 (r N + r N +2 ) log(r 2 )e -r 2 /4 dr because r/ √ τ is larger than 2. So J 2 ≤ C √ τ /r.
In order to estimate J 3 we use the structure of K(s): from Proposition 2.15, there exists an integer C(r, ρ) ≤ C 1 r/ρ (where C 1 only depends on N ) and, for each i ∈ {1, . . . , C(r, ρ)},

• a Borel measurable map Ψ i : B N -1 (0, r) × [0, T ] → R, which is Lipschitz continuous with constant √ 15 with respect to the space variable,

• and a change of coordinates

O i = R i • τ i : R N → R N (where R i is a rotation and τ x is a translation), with O i (0) = x, such that, for all s ∈ [0, T ], Γ(s) ∩ B(x, r) ⊂ i=1,...,C(r,ρ) O i (z ′ , Ψ i (z ′ , t)) , z ′ ∈ B N -1 (0, r) .
Let us set, for any i ∈ {1, . . . , C(r, ρ)},

h i = (h ′ i , h iN ) := R -1 i h where h ′ i ∈ R N -1 and h iN ∈ R. Then J 3 ≤ C(r,ρ) i=1 t t-τ B N-1 (0,r) [G((-z ′ , Ψ i (z ′ , s)), t -s) + G((h ′ i -z ′ , h iN -Ψ i (z ′ , s)), t -s)] 1 + |DΨ i (z ′ , s)| 2 dz ′ ds = C(r,ρ) i=1 J 3,i .
Let us fix i ∈ {1, . . . , C(r, ρ)}. Since |h| ≤ √ ρ/4 = r/4, we have

J 3,i ≤ C t t-τ B N-1 (0,r) e -|z ′ | 2 /(4(t-s)) + e -|h ′ i -z ′ | 2 /(4(t-s)) (t -s) N/2 dz ′ ds ≤ C t t-τ B N-1 (0,2r) e -|z ′ | 2 /(4(t-s)) (t -s) N/2 dz ′ ds .
It follows that

J 3,i ≤ C t t-τ 2r/(t-s) 1/2 0 r N -2 (t -s) 1/2 e -r 2 /4 drds ≤ C +∞ 0 t (t-τ )∨(t-(2r) 2 /r 2 ) r N -2 (t -s) 1/2 e -r 2 /4 dsdr ≤ C √ τ 2r/ √ τ 0 r N -2 e -r 2 /4 dsdr + 2r +∞ 2r/ √ τ r N -3 e -r 2 /4 dsdr ≤ C √ τ +∞ 0 r N -2 e -r 2 /4 dsdr + √ τ +∞ 4 r N -2 e -r 2 /4 dsdr since r/ √ τ ≥ 2. Accordingly J 3 ≤ C r ρ √ τ .
Therefore

|h|J 1 + J 2 + J 3 ≤ C |h| √ τ + √ τ r + r√ τ ρ .
With the choice of r = √ ρ and τ = |h| √ ρ we get G(x -y, t -s)ḡ(v(y, s))dH N -1 (y)ds.

|v(x + h, t) -v(x, t)| ≤ C(ρ) -1 4 |h| 1 2 for all (h, t) ∈ R N × [0, T ] with |h| ≤ √ ρ/4. ( 3 
For all x, y ∈ R N , t, s ∈ [0, T ], v satisfies the following estimates. From the structure condition on K(s) and Proposition 2.15 (see the computations in the proof of Lemma 3.1 for details), we have

h 0 Γ(t+s)
G(x -y, h -s) ḡ(v(y, t + s)) dH N -1 (y)ds

≤ C ρ h 0 R N-1 1 (h -s) N/2 e -|y ′ -x ′ | 2 /(4(h-s)) dy ′ ds ≤ C ρ h 0 +∞ 0 r N -2 (h -s) 1/2 e -r 2 /4 drds ≤ C √ h ρ .
Putting together the above estimates gives (3.17).

2

Fix x ∈ R N and let θ ∈ (0, t) be small. Then, following for instance the estimates obtained for the proof of (3.17), one easily checks that The solution of this equation being unique, we have v = v, which proves the convergence of (v n ) to v. Notice that V is a closed convex subset of the Banach space L ∞ (R N × [0, T ]).

To any v ∈ V we associate a map ṽ defined in the following way: let u be the solution to u t (x, t) = ḡ(v(x, t))|Du(x, t)| u(x, 0) = u 0 (x), and let us set K(t) = {u(•, t) ≥ 0}, Γ(t) = ∂K(t) and z(x) = inf{t ≥ 0 ; x ∈ K(t)}.

Since the velocity c(x, t) := ḡ(v(x, t)) satisfies (2.2), (2.3) and is 1/2-Hölder continuous in space with constant ḡ′ ∞ C, and since the initial condition enjoys the interior ball property, we know from Corollary 2.12 with β = α -1/p = 1/2 that each K(t) has the interior cone property of parameter (ρ, 2ρ), where ρ = C 0 C-2 . Moreover, by (2.9) there exists M > 0 depending only on the data such that for any t ∈ [0; T ], K(t) ⊂ B(0, M ), while (3.4) holds thanks to Proposition 2.4.

By Lemma 3.5 we can therefore define the unique solution ṽ to ṽt (x, t) -∆ṽ(x, t) + ḡ(ṽ(x, t))H N -1 ⌊{u(•, t) = 0} = 0 ṽ(x, 0) = v 0 (x). we obtain that ṽ ∈ V. Let us now fix C, R and C 1 as above. Then the map Φ, which associates to v ∈ V the map ṽ, is compact because of the L ∞ and Hölder bounds on ṽ recalled above. Since, from Lemma 4.1, Φ is also continuous, we can complete the proof thanks to Schauder's fixed point theorem.
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 225 |Dφ(x(s))| ds thanks to the the bound c ≤ B. Dividing this expression by h and letting h → 0, we get |Dφ(x)| ≥ 1/B. Since z is Lipschitz continuous, the viscosity inequality |Dz| ≥ 1/B also holds almost everywhere. A consequence of the inequality |Dz| ≥ 1/B and Lemma 2.3 (
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  exists and is nonzero and since the set ⌢ C δ,C (x, ν n ) is of class C 1 at x (thanks to Lemma 2.13), one must have ν n = -Dz n (x)/|Dz n (x)|. Let ν be the limit of a subsequence of the (ν n ). Then ⌢ C δ,C (x, ν) ⊂ {z ≤ z(x)}, so that by the same argument as above, ν = -Dz(x)/|Dz(x)|. Accordingly any converging subsequence of Dz n (x)/|Dz n (x)| converges to Dz(x)/|Dz(x)|, which shows the a.e. convergence of (Dz n /|Dz n |) to Dz/|Dz|. Since the (z n ) are uniformly Lipschitz continuous and (z n ) converges uniformly to z, (Dz n ) converges to Dz in L ∞ -weak- * in {0 < z < T }. Let a ∈ L 1 (R N , R N ). Then we have on the one hand lim n→+∞ {0<z<T } a, Dz n = {0<z<T } a, Dz . On the other hand, if we denote by ξ any weak- * limit of a subsequence (|Dz n k |), we have, from the a.e. convergence of (Dz n /|Dz n |) to Dz/|Dz|, lim k→+∞ {0<z<T } a, Dz n k = lim k→+∞ {0<z<T } a, Dz n k |Dz n k | |Dz n k | = a.e. in {0 < z < T } , and shows that ξ = |Dz|. Hence (|Dz n |) converges to |Dz| weakly- * in {0 < z < T }.
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 15 Lipschitz continuous with respect to the space variable, • and a change of coordinates O i = R i •τ x : R N → R N , where τ x (z) = z +x, R i is a rotation, such that O i (0) = x and Γ(s) ⊂ i=1,...,C(ρ)
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 2 -1 + r N -2 ) (| log(T )| + | log(r)| + | log(|h|)) e -r 2 /4 dr ≤ C(1 + | log |h||).(3.10) Finally, combining (3.9), (3.10) and the bound C(ρ) ≤ C 1 /ρ, we obtain (3.8).
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 23 Hölder estimate for the solution of (3.1). Lemma 3.4 (Hölder bounds). Let v be the solution of (3.1) given by Lemma 3.1. Then, for any
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 11 Proof: The main part of the proof consists in showing the following local Hölder inequality: for any t ∈ [0, T ], x, h ∈ R N with |h| ≤ √ ρ/4, we have |v

. 12 )

 12 Now recall that, according to Lemma 3.1, we have|v(x, t)| ≤ C(1 + | log(ρ)|) for all (x, t) ∈ R N × (0, T ). (3.13)Combining (3.12) and (3.13) then implies(3.11).
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 435 Existence, bounds and Hölder estimate for the solution of (3.2). Equation (3.2) has a unique solution v : R N × [0, T ] → R, given by v(x, t) = R N G(x -y, t)v 0 (y)dy -κ

( i )

 i Uniform L ∞ bound: |v(x, t)| ≤ C(1 + | log(ρ)|),(3.14)(ii) Space modulus of continuity:|v(x, t) -v(y, t)| ≤ C ρ |x -y|(1 + | log |x -y||),(3.15)(iii) Space-time Hölder continuity:|v(x, t) -v(y, t)| ≤ C(1 + | log(ρ)|) (ρ) -1/4 |x -y| 1/2 , (3.16) |v(x, t) -v(x, s)| ≤ C ρ (1 + | log |h||) |t -s| 1/2 .(3.17)Proof: The existence, uniqueness, representation and space estimates for the solution of (3.2) follow from Banach fixed point theorem and Lemmata 3.1-3.4.Let us now check the time estimate; we fix 0 ≤ s ≤ t ≤ T and set h = t -s. We note that, from the uniqueness of the solution we have, for anyx ∈ R N , v(x, t + h) = R N G(x -y, h)v(y, t)dy --y, h -s) ḡ(v(y, t + s))dH N -1 (y)ds . Since v satisfies (3.15), we get from standard estimates on the heat flow that R N G(x -y, h)v(y, t)dy -v(x, t) ≤ C ρ (1 + | log |h||)h 1 2 .

2 .

 2 v n (x, t) + κ t-θ 0 {zn=s}G(x -y, t -s)ḡ(v n (y, s)) dH N -1 (y)ds≤ |κ| ḡ ∞ t t-θ {zn=s} G(x -y, t -s) dH N -1 (y)ds ≤ C(ρ) θ 1/By the Coarea formula, we havet-θ 0 {zn=s} G(x -y, t -s) ḡ(v n (y, s))dH N -1 (y) ds = {0<zn<t-θ} G(x -y, t -z n (y)) ḡ(v n (y, z n (y)))|Dz n (y)|dy.In this expression,G(x -•, t -z n (•)) ḡ(v n (•, z n (•))) -→ n→+∞ G(x -•, t -z(•)) ḡ(v(•, z(•))) uniformly in {0 < z < t -θ} while (|Dz n |) converges weakly- * to |Dz|. Moreover, by Remark 2.5, the front Γ(s) has zero measure for any s. Therefore, the indicator function of {0 < z n < t -θ} converges to the indicator function of {0 < z < t -θ} almost everywhere. It follows that lim n→+∞ t-θ 0 {zn=s} G(x -y, t -s) ḡ(v n (y, s)) dH N -1 (y)ds = {0<z<t-θ} G(x -y, t -z(y)) ḡ(v(y, z(y)))|Dz(y)| dy= t-θ 0 {z=s} G(x -y, t -s) ḡ(v(y, s)) dH N -1 (y)ds . Since, as above, v(x, t) + κ t-θ 0 {z=s} G(x -y, t -s)ḡ(v(y, s))dH N -1 (y)ds ≤ C(ρ) θ 1/2 , we have proved that v satisfies v(x, t) = -κ t 0 {z=s} G(x -y, t -s)ḡ(v(y, s))dH N -1 (y)ds ,i.e., v is a solution to v t -∆v + κḡ(v)H N -1 ⌊{u(•, t) = 0} = 0 in R N × (0, T ), v(x, 0) = 0 in R N .
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 2 Proof of the existence Theorem 1.2. We are now ready to prove Theorem 1.2. Throughout the proof, C denotes a constant which depends only the data of the problem: N , T , κ, ḡ, u 0 and v 0 . Let us fix some constants C, R, C 1 > 0 to be chosen later and let V = V( C, R, C 1 ) be the set of maps v : R N × [0, T ] → R such that v is measurable, 1/2-Hölder continuous in space with constant C, bounded by a constant R > v 0 ∞ and such that |v(x, t) -v(y, t)| ≤ C 1 |x -y|(1 + | log |x -y||) for all x, y ∈ R N , t ∈ [0, T ].
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 35 we also have, for all x, y ∈ R N , 0≤ t ≤ t + h ≤ T, |ṽ(x, t)| ≤ C(1 + | log(ρ)|) ≤ C(1 + | log( C)|), |ṽ(x, t)ṽ(y, t)| ≤ C(1 + | log(ρ)|)(ρ) -1/4 |x -y| 1/2 ≤ C(1 + | log( C)|) C1/2 |x -y| 1/2 , |ṽ(x, t)ṽ(y, t)| ≤ C ρ |x -y|(1 + | log(|x -y|)|) ≤ C C2 |x -y|(1 + | log(|x -y|)|),and|ṽ(x, t + h)ṽ(x, t)| ≤ C ρ (1 + | log |h||) h 1/2 ≤ C C2 (1 + | log |h||) h 1/2 .So, if we choose C such that C(1 + | log( C)|) C1/2 ≤ C and then R and C 1 such that R ≥ C(1 + | log( C)|) and C 1 ≥ C C2 ,
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	Proposition 2.2 (Existence, uniqueness and stability for (2.1)).
	Assume that the velocity c : R N × [0, T ] → R is Borel measurable and satisfies (2.2) and (2.3). Let u 0 : R N → R be a Lipschitz continuous function. Then: (i) (Existence and uniqueness) Equation (2.1) has a unique L 1 -viscosity so-
	lution satisfying

  +∞, then the representation formulae for the corresponding solutions u n converge to the representation formula for u.First of all, fix (x, t) ∈ R N × [0, T ] and let (y n ) be a sequence of points inR N such that u 0 (y n ) → z ∈ Ras n → +∞ and for any n, there exists an absolutely continuous function xn : [0, t] → R N such that xn (0) = y n , xn (t) = x and |x ′ n (s)| ≤ c n (x n (s), s) on [0, t]. Since |c n | ≤ B for any n, up to an extraction,

	c ± n satisfies (2.2) with A/2 and 2B for n large enough. By
	the comparison principle for (2.1) with a velocity which is Lipschitz continuous in
	space (see [24, Theorem 3.1]), we obtain that u -n ≤ u ≤ u + n , where u -n (resp. u + n ) is the solution of (2.1) associated to the velocity c -n (resp. c + n ). Moreover (2.7) (with 2B) and (2.8) hold for both u -n and u + n . To conclude, it only remains to
	prove that, if a sequence of velocities (c n ) satisfies (2.2) and (2.3), and converges
	almost everywhere to c as n →
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4. Stability and existence of solutions for the system (1.1)

We start with an a priori stability property for the solution and then prove our main result.

4.1.

A stability property. We first investigate the convergence of the solution of

with fixed α > 1/p and modulus ω.

Proof: Without loss of generality we can assume that v 0 = 0. Let us set as usual

From Proposition 2.2 we know that (u n ) converges locally uniformly to u.

We claim that this implies that (z n ) converges uniformly to z in {0 < z < t}. Indeed, u n (x, z n (x)) = 0 for all n and, passing to the limit, we get u(x, lim inf z n (x)) = 0. Thus lim inf z n (x) ≥ z(x). Now, let x ∈ {0 < z < t}. From Proposition 2.4, for every ǫ, there exists x ǫ such that |x -x ǫ | < ǫ and u(x ǫ , z(x)) > 0. For n sufficiently large, we also have u n (x ǫ , z(x)) > 0 and therefore z n (x ǫ ) < z(x). It follows that lim sup z n (x ǫ ) ≤ z(x). Applying again Proposition 2.4, we get -|x -x ǫ |/A + lim sup z n (x) ≤ z(x). We conclude by sending ǫ to 0.

Corollary 2.12 states that there is some ρ > 0 such that each K n (t) has the interior cone property of parameter (ρ, 2ρ) and that, for any x ∈ ∂K n (t), there is a vector ν ∈ R N such that |ν| = 1 and the set

and β = α -1/p. Then Lemma 2.14 implies that |Dz n | weakly- * converges to |Dz| in {0 < z < T }.

By the representation formula for the solution of (3.2) (Lemma 3.5) and Lemma 2.3 (2),

From the estimates of Lemma 3.5 we know that the v n are uniformly bounded and uniformly Hölder continuous. So, up to some subsequence, we can assume that (v n ) uniformly converges to some v. Our aim is to show that v = v.