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Comparison between a multiple scattering
method and direct numerical simulations for
elastic wave propagation in concrete

M. Chekroun(1,2), L. Le Marrec(3), B. Lombard(4), J. Piraux(4), and O. Abraham(1)

Abstract Numerical simulations are performed to study the propagation of elastic
waves in a 2-D random heterogeneous medium such as concrete.To reduce spuri-
ous numerical artefacts to a negligible level, a fourth-order time-domain numerical
scheme and an immersed interface method are used together. Effective properties of
the equivalent homogeneous medium are extracted and compared to the predictions
of a multiple scattering method (ISA), to evaluate the validity of this latter.

1 Introduction

Concrete is made up of coarse aggregates embedded in a cementpaste matrix (mor-
tar). When ultrasounds propagate in this heterogeneous medium, multiple scattering
is important when the wavelength and the size of scatterers are similar. In this case,
the wave field is the superposition of a coherent field, obtained by averaging fields
over several realizations of disorder, and of an incoherentfield. The coherent field
amounts to waves propagating in an equivalent homogeneous medium, with effec-
tive phase velocity and attenuation deduced from an effective wavenumber.

The goal of multiple-scattering methods, such as the Independent Scattering
Approximation (ISA) [1], is to provide analytical expressions of this effective
wavenumber. A basic assumption for derivation of ISA is thatthe concentration
of scatterers is low. Since aggregates may represent 50 % in volume, the medium
cannot be considered as dilute, and a deeper analysis is required to decide whether
ISA is valid in that case.
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For that purpose, a purely numerical methodology is followed, based on 2D di-
rect numerical simulations and on signal-processing tools. Doing so is much faster
and less expensive than real experiments, allowing also much finer measures. In pre-
vious works, this methodology has been applied successfully to a case where ISA
has been experimentally validated: steel rods immersed in water [2]. In the present
paper, the host medium and the aggregates are both modeled aselastic media. Cases
of different concentrations of aggregates are discussed. Since the propagation of
Rayleigh waves along a free surface of concrete is the original motivation of the
present study, the case of both compressional and shear incident plane wave is con-
sidered (P-SV problem).

2 Problem statement

2.1 Concrete model

Aggregates are assumed to be circular cylinders with a unique radiusa= 6 mm, in a
bidimensional geometry. The probing frequency varies from50 kHz to 700 kHz. In
that range, wavelengths vary from about 3 mm (S wave) to 90 mm (P wave), hence
aggregates are considered as heterogeneities for waves. Onthe contrary, mortar is
considered as an homogeneous medium for wave propagation, since the size of its
components (water, sand and cement) is much smaller than thewavelengths. The
concrete is then be considered as a two phase medium with parameters [3]

(ρ , cp, cs) =







(2050kg/m3, 3950m/s, 2250m/s) in mortar,

(2610kg/m3, 4300m/s, 2475m/s) in aggregates,

whereρ is the density,cp andcs are the celerities of P and S waves. The concentra-
tion of aggregates in concrete is described by the numbern of scatterer per unit area.
Three surface ratiosφ = nπ a2 are considered in the following:φ = 6%, 12%, and
18%, defining 3 concretes called C6, C12 and C18 respectively. The average dis-
tance between nearest scatterers islφ = a

√

π /φ , hence:l6% = 43 mm,l12% = 32
mm,l18%= 25 mm. We assume perfect contact between aggregates and mortar (con-
tinuity of tractions and of displacements at the boundaries) and no dissipative effect.
These hypotheses and the low density of aggregates affect the realism of our model
but allow us to focus on the validity of ISA without additional artifact.

2.2 Independent Scattering Approximation

The formulation of theIndependent Scattering Approximation(ISA) is usually es-
tablished with an fluid matrix [4], but it can be straightforwardly extended to an



Multiple scattering method and direct numerical simulation 3

elastic matrix. As correlation between scatterers is not taken into account, mode
conversion does not perturb the expression of effective wavenumbers. Then, the ef-
fective wavenumberskP,e f f andkS,e f f obtained with incident plane P and S waves
satisfy

k2
P,e f f(ω) = k2

P,0−4in fPP(0), k2
S,e f f(ω) = k2

S,0−4in fSS(0), (1)

wherekP,0 andkS,0 denote P and S wavenumbers of the matrix,ω = 2π f is the
angular frequency, andfPP(0) is the far field pattern in P mode of the interaction
between an incident plane P wave and a single scatterer in theforward direction
(idem for S waves withfSS(0)).

3 Direct numerical simulation

3.1 Elastodynamic equations

A velocity-stress formulation of 2D elastodynamics is followed. To solve the hyper-
bolic system so-obtained, a uniform Cartesian grid with mesh sizes∆ x = ∆ y and
time step∆ t is defined. An explicit fourth-order accurate finite-difference ADER
scheme is used [5], with a CFL constraint of stabilityβ = c∆ t/∆ x≤ 0.9. A plane
wave analysis of this scheme is performed in homogeneous medium, in terms ofβ
and ofG = ∆ x/λ , G ∈]0, 0.5], whereλ is the wavelength [6]. The maximal arti-
facts are obtained when the direction of propagation coincides with grid axes, that
is in 1D configurations. In that case, the ratioq between exact and discrete phase
velocities, and the discrete attenuationα, are

q(β , G) = 1−
2π4

15
(β 2−1)(β 2−4)G4+O(G6). (2)

α(β , G, ∆ x) =
4π6β
9∆ x

(β 2−1)(β 2−4)G6+O(G8). (3)

In forthcoming numerical experiments,β = 0.44 andG = 1/90 correspond to the
most penalizing situation of SV waves in mortar atf = 250 kHz. With these pa-
rameters, (3) gives a quality factorQ≈ 3.2107, hence the numerical attenuation is
much smaller than the expected physical attenuation of the effective medium.

3.2 Discretization of interfaces

Three classes of drawbacks are classically induced by interfaces in finite-difference
schemes on Cartesian grids. First, the geometrical description of arbitrary-shaped
interfaces is poor, and generates spurious diffractions. Second, the jump conditions
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are not enforced numerically. Third and last, non-smoothness of the solution across
interfaces decreases the accuracy, leading to spurious oscillations or even instabil-
ities. These three drawbacks prevent from using simulations as metrological tools
in highly heterogeneous media. To circumvent them, the ADERscheme is coupled
with an immersed interface method [7], which accounts both for the jump condi-
tions and for the subcell geometry at points along the interfaces. The main part of
the work can be done during a preprocessing step, before numerical integration. At
each time step,O(L /∆ x) matrix-vector products are done, whereL is the total
perimeter of interfaces, and the matrices are small-size, typically 5×100. Then, the
results are injected in the scheme.

Fig. 1 Snapshot of the horizontal velocity at the initial instant (a), and after 0.04µs of propagation
(b). In (a), the regular grid denotes the location of the receivers.

3.3 Numerical setup

The size of the computational domain is 375 mm alongx and 750 mm alongy, with
∆ x = 0.1 mm andβ = 0.85 in aggregates. The aggregates are randomly distributed
on a 248 mm× 740 mm rectangular subdomain (figure 1). An exclusion length
of 6∆ x between each scatterer is ensured. The right-going incident P or SV plane
wave is a Ricker centered at 250 kHz. At the initial instant, the right part of the
wave front is located atx = 0. At each time step, the exact plane wave solution in
homogeneous medium is enforced on the edges of the domain. The simulations are
stopped when the incident wave has crossed the inclusions: 3250 time steps with an
incident P wave, 5300 time steps with an incident S wave.
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A set of 41 horizontal lines of receivers is taken withN = 221 regular offsets
alongx, denoted bydi = d0 + i ∆ xr , with i = 0, ...,N−1, d0 = 14 mm and∆ xr = 1
mm. The distance between two lines is∆ yr = 6.25 mm. Each line corresponds to
a realization of a random process. These parameters are discussed in section 4.2.
Receivers are sufficiently far from the boundaries of the computational domain to
avoid spurious reflections.
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Fig. 2 Seismograms of the horizontal velocitiesux from the simulation with incident P wave in
C12: one particular realization (a), coherent field obtained after averaging (b).

Three simulations provide 41×3= 123 independent realizations of disorder, en-
suring the convergence of the signal processing methods. Recorded velocities along
a line of receivers can be plotted as seismograms. A particular seismogram in the
case of incident P wave in C12 is presented in figure 2(a). A main wave train is
clearly visible and is followed by an incoherent coda. Afteraveraging on the 123
realizations of disorder, the coherent field is obtained andis presented in figure 2(b).
The main wave train is still clearly visible and all the incoherent variations of the
field have greatly decreased.

With an incident P wave (respectively S wave), the coherent field is observed
through the averaging of horizontal velocitiesux (respectively vertical velocitiesuy).
In such configuration, the propagation through the effective medium is equivalent
to a 1D propagation in a slab, what explains that no effectiveS wave (respectively P
wave) is observed in the case of an incident P wave (respectively S wave).

The dispersion curves and damping factor curves can now be estimated from the
Fourier transform of this coherent field.
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4 Signal processing

4.1 Methods

The phase velocityc(ω) is computed using thep−ω transform which represents the
entire data wave field into the slowness-frequency domain (p−ω), wherep = 1/c
[8]. The method consists in a “slant stack summation” of the wave field (orτ−p
transform, withτ representing a delay time) followed by a 1D Fourier transform
overτ to obtain the wave field in thep−ω plane, where the dispersion curves can be
directly picked. Here, we follow a formulation entirely in the frequency domain [9].
The time Fourier transform of the coherent fields(ω ,di) at the distancedi is

s(ω ,di) = A(ω ,di)e−iω p0(ω)di , (4)

whereA(ω ,di) is the amplitude spectrum atdi . Thep−ω stackŝ(ω , p) is

ŝ(ω , p)=
N

∑
i=1

A(ω ,di)e
iω(p−p0(ω))di . (5)

The computation of ˆs(ω , p) is performed with several values ofp. Given ω , the
maximum of the modulus|ŝ(ω , p)| is reached atp = p0(ω); the |ŝ(ω , p)| map is
plotted as a 2D function ofp andω and the maximum locus is extracted at each
frequency.

The damping factor is estimated from the decrease of the amplitude spectrum
of the coherent field during propagation. In the frequency domain, the amplitude
spectrum in (4)-(5) takes the following expression:

A(ω ,di) = A0(ω)e−α(ω)di , (6)

whereA0(ω) is the amplitude ofsat the first receiver. The damping parameterα(ω)
is determined by the slope of a least-square linear fit of ln(A(ω ,di)). Since the inci-
dent wave is plane, no geometrical spreading has to be considered.

4.2 Analysis of accuracy

For evaluating the damping factor, no restriction is imposed about the number and
position of receivers. For phase velocity, however, aliasing and limited resolution
may be encountered [10]. The quantification of these artifacts has justified the nu-
merical acquisition setup (number and position of the receivers). Aliasing occurs
when∆xr > λmin, while resolution is limited by the total length of the acquisition
setupLN = N×∆xr . Phase velocity estimation is accurate as long asλ < LN/2.
Consequently, in the range of frequency under study,LN ≥ 180 mm and∆xr = 1
mm.
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Fig. 3 1D homogeneous medium: analytical and simulated dispersion (a) and damping (b).

To evaluate how accurately the phase velocity and the damping factor are esti-
mated, we apply the processing tools to 1-D simulation in an homogeneous medium,
where numerical dispersion (2) and damping (3) are known. The numerical errors
are maximum with the slowest celerity and shortest wavelength. In our case, it corre-
sponds to the propagation of shear waves in mortar. A 1D homogeneous simulation
of this case is computed, using the same numerical and acquisition parameters as
used in 2D. The phase velocity and damping factor measured are compared to their
theoretical counterparts in figure 3. The error between the theoretical curves and the
measured ones is lower than 10−3%. The signal processing method used and the
acquisition setup chosen is then suitable to evaluate the dispersion curves and the
damping factor with no significant signal processing artifacts.

5 Numerical experiments

5.1 Stabilized regime

The multiple-scattering regime requires a minimal distance of propagation to be
established. The numerical tools proposed in sections 3 and4 allow to estimate this
distancelstabto get a stabilized regime, frequently mentioned in the litterature [11]
but rarely quantified to our knowledge. To do so, measures ofα deduced from (6)
are used: unlike the phase velocity, the attenuation may be estimated accurately on
a distance of acquisition much smaller than the total lengthLN, authorizing to test
various zones of acquisition. Here, a fixed offsetd0 is considered, with a variable
length of acquisitionLM = d0 + (M − 1)∆ xr and M ≤ N (see section 3.3). The
configuration under study is an incident S wave in a concrete C12.

Figure 4-(a) showsα( f ) obtained with various values of the length of acquisition
LM. If LM < 90 mm, the curves are noisy, especially in the low-frequencyrange
where they do not grow monotonically, which is not realistic. In high frequency,
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Fig. 4 Damping evaluated from the first offsetd0, at fixed length of acquisitionLM (a) and at fixed
frequency (b).

differences up to 2 Np/m are measured between the various curves. Figure 4-(b)
showsα(LM) with various values off . The attenuation is noisy up toLM ≈ 90 mm,
independently of the frequency; with greater values ofLM, the curves are almost
constant, which amounts to a stabilized regime of propagation.

This observation is confirmed with the other concentrationsand with incident
plane P waves. Only the approximate minimal length of acquisition LM varies: 90
mm for C6, as seen in the previous paragraph; 70 mm for C12; and50 mm for C18.
These distances are close to 2lφ whatever the frequency range and the concentration.

Consequently, numerical simulations indicate that the minimal distance of prop-
agation to get a stabilized scattering regime is roughlylstab≈ 2lφ . Similar expres-
sions have been proposed in the related area of band-gap creation in phonic crystals
[12]. From now on, all measures are done by excluding this zone of stabilization,
i.e. from 2lφ to LN.
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Fig. 5 Phase velocity: comparison between ISA and numerical simulations, with various concen-
trations of aggregates. (a): incident P wave (a); incident Swave (b).
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5.2 Validity of ISA

The damping factor and phase velocity computed with ISA are compared to similar
quantities measured on simulated data. The latter can be considered as the reference
solutions, as shown in section 3.

First, the phase velocity is examined in figure 5. With an incident P wave (a),
differences up to 1 m/s are observed between ISA and the simulated measures. Even
with C18, ISA fits well the measured phase velocity. With an incident S wave (b),
differences are of about 5 m/s, which remains acceptable. The slight decrease of the
phase velocity at high frequencies is well described by ISA for both waves.

Second, the damping factor is examined in figure 6. With an incident P wave,
the error is lower than 2 Np/m at the concentration 18 % (b). With an incident
S wave, the same remark holds up to 12 %; with higher concentration, the error
increases dramatically (d). In both cases, ISA gives betterresults with lowest con-
centration and low frequencies, which is consistent with the main hypotheses of a
dilute medium.
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Fig. 6 Damping factor: comparison (left) and difference (right) between ISA and numerical simu-
lations, with various concentrations of aggregates. Top: incident P wave; bottom: incident S wave.
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6 Concluding remarks

The main results of this work are as follows:

1. the distance of propagation required to get a stabilized regime of multiple scat-
tering is roughly 2lφ , wherelφ is the mean distance between scatterers;

2. with an incident P wave, ISA provides good estimations of phase velocity and
acceptable estimation of attenuation (lower than 2 Np/m ) with a concentration
nearly up to 20%; with an incident S wave, the concentration must be smaller
than 10% to get the same agreement.

Three directions are distinguished for further investigation:

1. increasing the surfacic concentration of aggregates, upto 50%. Doing so requires
to parallelize the algorithms used for direct numerical simulations;

2. considering continuous distribution size of aggregates, from a few mm to 20
mm. Is the aforementionned empirical formula still valid inthe case of a medium
wherelφ varies ?

3. studying higher-order multiple-scattering methods [11].
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