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Comparison between a multiple scattering
method and direct numerical smulations for
elastic wave propagation in concrete

M. Chekrour™?, L. Le Marreé®, B. Lombard¥, J. Pirau¥®), and O. Abraharfd

Abstract Numerical simulations are performed to study the propagaif elastic

waves in a 2-D random heterogeneous medium such as corboeteduce spuri-
ous numerical artefacts to a negligible level, a fourtheotdme-domain numerical
scheme and an immersed interface method are used togefthetive properties of
the equivalent homogeneous medium are extracted and cethfwathe predictions
of a multiple scattering method (ISA), to evaluate the vglidf this latter.

1 Introduction

Concrete is made up of coarse aggregates embedded in a qemsenmatrix (mor-
tar). When ultrasounds propagate in this heterogeneousimenhultiple scattering
is important when the wavelength and the size of scatterersimilar. In this case,
the wave field is the superposition of a coherent field, olethiny averaging fields
over several realizations of disorder, and of an incohdielat The coherent field
amounts to waves propagating in an equivalent homogeneediim, with effec-

tive phase velocity and attenuation deduced from an efieetavenumber.

The goal of multiple-scattering methods, such as the Inddpet Scattering
Approximation (ISA) [1], is to provide analytical expreses of this effective
wavenumber. A basic assumption for derivation of ISA is tiet concentration
of scatterers is low. Since aggregates may represent 50 @ume, the medium
cannot be considered as dilute, and a deeper analysis isegédo decide whether
ISA is valid in that case.
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For that purpose, a purely numerical methodology is folldweased on 2D di-
rect numerical simulations and on signal-processing tdasng so is much faster
and less expensive than real experiments, allowing alsdfimer measures. In pre-
vious works, this methodology has been applied succegstuth case where ISA
has been experimentally validated: steel rods immersedcitanj2]. In the present
paper, the host medium and the aggregates are both modakdas media. Cases
of different concentrations of aggregates are discussede She propagation of
Rayleigh waves along a free surface of concrete is the @ligimotivation of the
present study, the case of both compressional and shedeiriglane wave is con-
sidered (P-SV problem).

2 Problem statement

2.1 Concrete model

Aggregates are assumed to be circular cylinders with a emagiusa= 6 mm, in a

bidimensional geometry. The probing frequency varies fe@hkHz to 700 kHz. In

that range, wavelengths vary from about 3 mm (S wave) to 90 hmgve), hence
aggregates are considered as heterogeneities for wavebe@ontrary, mortar is
considered as an homogeneous medium for wave propagatioa,the size of its
components (water, sand and cement) is much smaller thamabelengths. The
concrete is then be considered as a two phase medium witmptees [3]

(2050kg/ni, 3950m/$2250m/$  in mortat

(p7 Cpa CS) = .
(2610 kg/ni, 4300m/s2475m/$  in aggregates

wherep is the densityc, andcs are the celerities of P and S waves. The concentra-
tion of aggregates in concrete is described by the numbéscatterer per unit area.
Three surface ratiog = na? are considered in the followingr = 6%, 12%, and
18%, defining 3 concretes called C6, C12 and C18 respectiValy average dis-
tance between nearest scatterergis a/1/@, hencelgy, = 43 mm, |19, = 32
mm,l1g0= 25 mm. We assume perfect contact between aggregates arat (oort-
tinuity of tractions and of displacements at the boundaged no dissipative effect.
These hypotheses and the low density of aggregates aftectdtism of our model
but allow us to focus on the validity of ISA without additidraatifact.

2.2 Independent Scattering Approximation

The formulation of thdndependent Scattering Approximati§A) is usually es-
tablished with an fluid matrix [4], but it can be straightf@mly extended to an
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elastic matrix. As correlation between scatterers is nietriainto account, mode
conversion does not perturb the expression of effectiveewambers. Then, the ef-
fective wavenumberkpets andksers obtained with incident plane P and S waves
satisfy

Kpert(w) = kBo—4infpp(0),  kierr(w) = k§o—4infsgd0), (1)

wherekpg andksg denote P and S wavenumbers of the mattix= 27Tt is the
angular frequency, anébp(0) is the far field pattern in P mode of the interaction
between an incident plane P wave and a single scatterer ifothvard direction
(idem for S waves witHsg0)).

3 Direct numerical simulation

3.1 Elastodynamic equations

A velocity-stress formulation of 2D elastodynamics isdated. To solve the hyper-
bolic system so-obtained, a uniform Cartesian grid withhrgzesA x = Ay and
time stepAt is defined. An explicit fourth-order accurate finite-difece ADER
scheme is used [5], with a CFL constraint of stabifty= cAt/Ax < 0.9. A plane
wave analysis of this scheme is performed in homogeneouaimeth terms off3
and of G = Ax/A, G €]0, 0.5], whereA is the wavelength [6]. The maximal arti-
facts are obtained when the direction of propagation cdexivith grid axes, that
is in 1D configurations. In that case, the ratj®etween exact and discrete phase
velocities, and the discrete attenuatimpare

a(B, G) = 1—%(32—3 (B?-4)G*+0(G"). 0y
a(B. G Ax) = %(Bz—n (B?~4)G°+0(G"). 3)

In forthcoming numerical experimentg,= 0.44 andG = 1/90 correspond to the
most penalizing situation of SV waves in mortarfat 250 kHz. With these pa-
rameters, (3) gives a quality fact@r~ 3.210, hence the numerical attenuation is
much smaller than the expected physical attenuation offteetire medium.

3.2 Discretization of interfaces

Three classes of drawbacks are classically induced byfactes in finite-difference
schemes on Cartesian grids. First, the geometrical déiscripf arbitrary-shaped
interfaces is poor, and generates spurious diffractioeso®d, the jump conditions
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are not enforced numerically. Third and last, non-smoathioé the solution across
interfaces decreases the accuracy, leading to spurioil&itisns or even instabil-
ities. These three drawbacks prevent from using simulataehmetrological tools
in highly heterogeneous media. To circumvent them, the ABEfReme is coupled
with an immersed interface method [7], which accounts botttlie jump condi-
tions and for the subcell geometry at points along the iat&$. The main part of
the work can be done during a preprocessing step, beforerieahiategration. At
each time stepQ(.Z /A x) matrix-vector products are done, whe#é s the total
perimeter of interfaces, and the matrices are small-grp&ally 5x 100. Then, the
results are injected in the scheme.

-126 0 249

Fig. 1 Snapshot of the horizontal velocity at the initial instaa)t @nd after 0.04s of propagation
(b). In (a), the regular grid denotes the location of the ikexs.

3.3 Numerical setup

The size of the computational domain is 375 mm algagd 750 mm along, with
Ax=0.1 mm andB = 0.85 in aggregates. The aggregates are randomly distributed
on a 248 mmx 740 mm rectangular subdomain (figure 1). An exclusion length
of 6A x between each scatterer is ensured. The right-going incRl@n SV plane
wave is a Ricker centered at 250 kHz. At the initial instahg tight part of the
wave front is located at = 0. At each time step, the exact plane wave solution in
homogeneous medium is enforced on the edges of the domarsitulations are
stopped when the incident wave has crossed the inclusi@b:tBne steps with an
incident P wave, 5300 time steps with an incident S wave.
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A set of 41 horizontal lines of receivers is taken with= 221 regular offsets
alongx, denoted bydi =dp+ 1A%, withi=0,....N—1,dp =14 mmandix =1
mm. The distance between two lineiy;, = 6.25 mm. Each line corresponds to
a realization of a random process. These parameters angssest in section 4.2.
Receivers are sufficiently far from the boundaries of the motational domain to
avoid spurious reflections.

@) (b)

distance [ mm ] distance [ mm ]
50 100 150 200 50 100 150 200

time [ micro-sec ]
time [ micro-sec ]

3)'

lllﬂmlﬂ TN

A

z{“”(a

Fig. 2 Seismograms of the horizontal velocitiggfrom the simulation with incident P wave in
C12: one particular realization (a), coherent field obtaiatter averaging (b).

Three simulations provide 443 = 123 independent realizations of disorder, en-
suring the convergence of the signal processing methoderBed velocities along
a line of receivers can be plotted as seismograms. A paati@gismogram in the
case of incident P wave in C12 is presented in figure 2(a). Amaive train is
clearly visible and is followed by an incoherent coda. Afd@eraging on the 123
realizations of disorder, the coherent field is obtainedisipdesented in figure 2(b).
The main wave train is still clearly visible and all the inevént variations of the
field have greatly decreased.

With an incident P wave (respectively S wave), the coherefd fs observed
through the averaging of horizontal velocitiggrespectively vertical velocitias).
In such configuration, the propagation through the effeathedium is equivalent
to a 1D propagationin a slab, what explains that no effeGiweave (respectively P
wave) is observed in the case of an incident P wave (respéc®wave).

The dispersion curves and damping factor curves can nowtineagsd from the
Fourier transform of this coherent field.
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4 Signal processing
4.1 Methods

The phase velocitg(w) is computed using thp—w transform which represents the
entire data wave field into the slowness-frequency domaincf), wherep=1/c

[8]. The method consists in a “slant stack summation” of ttavevfield (ort—p
transform, witht representing a delay time) followed by a 1D Fourier transfor
overT to obtain the wave field in thp—cw plane, where the dispersion curves can be
directly picked. Here, we follow a formulation entirely ine frequency domain [9].
The time Fourier transform of the coherent fig{dv, d;) at the distance; is

S(w,d) = A(w,dj)e @Po(@d (4)

whereA(w, d;) is the amplitude spectrum dt The p—w stacks{w, p) is
N .
S(w, p)= ZA(M, di)eW(P*po(w))di ) (5)
i=

The computation o§(w, p) is performed with several values of Given w, the
maximum of the modulug(w, p)| is reached ap = po(w); the |$(w, p)| map is
plotted as a 2D function of and w and the maximum locus is extracted at each
frequency.

The damping factor is estimated from the decrease of theiamdelspectrum
of the coherent field during propagation. In the frequenandio, the amplitude
spectrum in (4)-(5) takes the following expression:

Alw,d) = Ag(w)e 9@ (6)

whereAq(w) is the amplitude o at the first receiver. The damping parametew)
is determined by the slope of a least-square linear fit @(w, d;)). Since the inci-
dent wave is plane, no geometrical spreading has to be @resid

4.2 Analysisof accuracy

For evaluating the damping factor, no restriction is imgbakout the number and
position of receivers. For phase velocity, however, aligsind limited resolution
may be encountered [10]. The quantification of these atsifaas justified the nu-
merical acquisition setup (number and position of the remrs). Aliasing occurs
whenAx, > Anmin, While resolution is limited by the total length of the acsjtion
setupLy = N x Ax. Phase velocity estimation is accurate as lond as Ly/2.
Consequently, in the range of frequency under stugly> 180 mm andAx, =1
mm.
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Fig. 3 1D homogeneous medium: analytical and simulated dispe(aijoand damping (b).

To evaluate how accurately the phase velocity and the dapfpator are esti-
mated, we apply the processing tools to 1-D simulation in@andgeneous medium,
where numerical dispersion (2) and damping (3) are knowe. flumerical errors
are maximum with the slowest celerity and shortest waveletig our case, it corre-
sponds to the propagation of shear waves in mortar. A 1D hemagus simulation
of this case is computed, using the same numerical and doguigarameters as
used in 2D. The phase velocity and damping factor measueecoanpared to their
theoretical counterparts in figure 3. The error betweentgeretical curves and the
measured ones is lower than$96. The signal processing method used and the
acquisition setup chosen is then suitable to evaluate $@ediion curves and the
damping factor with no significant signal processing actga

5 Numerical experiments

5.1 Stabilized regime

The multiple-scattering regime requires a minimal diseant propagation to be
established. The numerical tools proposed in sections 3 atldw to estimate this
distancdgigpto get a stabilized regime, frequently mentioned in theréture [11]
but rarely quantified to our knowledge. To do so, measuras déduced from (6)
are used: unlike the phase velocity, the attenuation magtimated accurately on
a distance of acquisition much smaller than the total lehgthauthorizing to test
various zones of acquisition. Here, a fixed offdgtis considered, with a variable
length of acquisitiorLy = do+ (M —1)Ax andM < N (see section 3.3). The
configuration under study is an incident S wave in a concrég C
Figure 4-(a) shows (f) obtained with various values of the length of acquisition

Lm. If Lm < 90 mm, the curves are noisy, especially in the low-frequeaacge
where they do not grow monotonically, which is not realistit high frequency,
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@) (b)
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Fig. 4 Damping evaluated from the first offs#, at fixed length of acquisitiohyy (a) and at fixed
frequency (b).

differences up to 2 Np/m are measured between the variowesuFigure 4-(b)
showsa (Ly ) with various values of . The attenuation is noisy up tgy ~ 90 mm,
independently of the frequency; with greater valued gf the curves are almost
constant, which amounts to a stabilized regime of propagati

This observation is confirmed with the other concentratiand with incident
plane P waves. Only the approximate minimal length of adtipisLy, varies: 90
mm for C6, as seen in the previous paragraph; 70 mm for C125@mam for C18.
These distances are close i &vhatever the frequency range and the concentration.

Consequently, numerical simulations indicate that themmahdistance of prop-
agation to get a stabilized scattering regime is routiihyy~ 21,. Similar expres-
sions have been proposed in the related area of band-gdjpaoriegphonic crystals
[12]. From now on, all measures are done by excluding thig zafrstabilization,
i.e. from 2, to L.

(@) (b)
4060 2360
ISA 06% =— ISA 06% =—
ISA 12% == ISA 12% ==
4040 ISA 18% 2340 ISA 18%
simulation 06% = simulation 06% =
simulation 12% -4- simulation 12% -4-
— 4020 simulation 18% -e- — 2320 simulation 18% -e-
Ty ,i‘“”“% "y
£ N =
Z 4000 | &% Z 2300
° S ey, 2
= o ¢ =4 5
3980 2280
o0 7 2260 ¥
3940 2240
100 200 300 400 500 600 700 100 200 300 400 500 600 700
frequency [ kHz | frequency [ kHz ]

Fig. 5 Phase velocity: comparison between ISA and numerical sitiouls, with various concen-
trations of aggregates. (a): incident P wave (a); incident@e (b).
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5.2 Validity of 1 SA

The damping factor and phase velocity computed with ISA arepared to similar
quantities measured on simulated data. The latter can lsdayad as the reference
solutions, as shown in section 3.

First, the phase velocity is examined in figure 5. With andeait P wave (a),
differences up to 1 m/s are observed between ISA and theaietlineasures. Even
with C18, ISA fits well the measured phase velocity. With acident S wave (b),
differences are of about 5 m/s, which remains acceptabkeslight decrease of the
phase velocity at high frequencies is well described by 1&#bbth waves.

Second, the damping factor is examined in figure 6. With aidemt P wave,
the error is lower than 2 Np/m at the concentration 18 % (bXhVein incident
S wave, the same remark holds up to 12 %; with higher cond@nirahe error
increases dramatically (d). In both cases, ISA gives betwilts with lowest con-
centration and low frequencies, which is consistent withriain hypotheses of a
dilute medium.

@)

ISA 06% =—
6 ISA 1205 s
ISA 18%

simulation 06%

4 simulation 12% -4-

simulation 18% --e-

o [Npm™ ]

0 100 200 300 400

frequency [ kHz |
©
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ISA 12% w
14 ISA 18%
12 simulation 06%

10 simulation 12% -4-

500 600 700
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0 100

200

300 400
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Fig. 6 Damping factor: comparison (left) and difference (righejyeeen ISA and numerical simu-
lations, with various concentrations of aggregates. Togident P wave; bottom: incident S wave.
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6 Concluding remarks

The main results of this work are as follows:

1. the distance of propagation required to get a stabiliegthre of multiple scat-
tering is roughly 2,, wherel, is the mean distance between scatterers;

2. with an incident P wave, ISA provides good estimationstodge velocity and
acceptable estimation of attenuation (lower than 2 Np/mth &iconcentration
nearly up to 20%; with an incident S wave, the concentratiostnbe smaller
than 10% to get the same agreement.

Three directions are distinguished for further investmyat

1. increasing the surfacic concentration of aggregatets 80%. Doing so requires
to parallelize the algorithms used for direct numericaldations;

2. considering continuous distribution size of aggregdi@sn a few mm to 20
mm. Is the aforementionned empirical formula still validlire case of a medium
wherely varies ?

3. studying higher-order multiple-scattering methodd.[11
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