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Abstract 
 
Independent Factor Analysis (IFA) is a well known 
method used to recover independent components from 
their linear observed mixtures without any knowledge on 
the mixing process. Such recovery is possible thanks to 
the hypothesis that the components are mutually 
independent and non-Gaussians. The IFA model assumes 
furthermore that each component is distributed according 
to a mixture of Gaussians. This article investigates the 
possibility of incorporating prior knowledge on the 
mixing process and partial knowledge on the cluster 
belonging of some samples to estimate the IFA model. In 
this way, other learning contexts can be handled such as 
semi-supervised or partially supervised learning. Such 
information is valuable to enhance estimation accuracy 
and remove indeterminacy commonly encountered in 
unsupervised IFA such as the permutation of the sources. 
The proposed method is illustrated by a railway device 
diagnosis application and results are provided to show its 
effectiveness for this type of problem. 
 
 
1. Introduction 
 

A considerable amount of research has been devoted 
to solving diagnosis problems that aim to assign any 
measurement signal represented by a feature vector to one 
of labeled classes. Research in this area has employed 
either discriminative methods which directly focus on 
learning class boundaries, or generative approaches that 
aim to model the underlying distributions of the classes. 
The choice between these two approaches is closely 
linked to the classification problem. The generative 
technique seems to be interesting when a prior knowledge 
about the measurement process or about the data could be 
incorporated.  

Traditionally, two learning paradigms are possible: 
supervised learning and unsupervised learning. In the 
recent years, other paradigms have emerged to mix them 
as semi-supervised [1] or partially supervised learning 
[2]. In the former approach, one uses a mix of unlabeled 
and labeled examples, whereas in the latter, one can 
define constraints on the possible classes of the examples. 
A more general framework involving partially or 
imprecisely labeled samples can also be considered to 
handle situations where only imperfect knowledge on 
class labels is available. In this case, possibilist or belief 
function based labels can be used [3]. The importance for 
such problems comes from the fact that labeled data are 
often difficult to obtain, while unlabeled or partially 
labeled data are easily available.  

In this article, we present a generative diagnosis 
approach which allows to taking advantage from prior 
knowledge on the dependencies between the latent 
variables (linked to the system defects) and the observed 
variables (features extracted from the measurement 
signal). The generative model involved here assumes that 
observed variables are generated by a linear mixture of 
independent and non Gaussians latent variables (sources). 
Furthermore, each latent variable is assumed to be non 
Gaussian but generated according to a mixture of 
Gaussians. In this context, the well known method so 
called Independent Factor Analysis which is traditionally 
used in signal processing can be applied to recover the 
independent components from observed variables [7] [8]. 

This generative model is often considered within 
unsupervised learning framework. Both the mixing 
process and the source densities are only learned from the 
observed data. The paper investigates the possibility of 
incorporating partial knowledge on the latent variables to 
estimate such model. In the general case, this partial 
information will be encoded by a Dempster-Shafer mass 
function over the set of clusters describing each source 



but it can also be adapted to handle more specific learning 
problems such as the semi-supervised and the partially 
supervised cases. In this way, the mixture model of each 
source density will be supplied by the component origins 
of a subset of training samples. Such information is 
valuable to enhance estimation accuracy and remove 
indeterminacy commonly encountered in unsupervised 
independent factor analysis such as the permutation of the 
sources.  

The approach will be illustrated applying it to a 
railway device diagnosis. This component can be 
considered as a complex system made up of a series of 
spatially related subsystems: the presence of a defect in 
one subsystem modifies not only its own signature but 
also those of subsystems located upstream. The aim of the 
diagnosis system is to identify the working state of the 
global component and localize the defective subsystem. 
This kind of system is present in many other applications 
such as electrical power distribution systems, gas or water 
distribution networks, telephone networks, road traffic,… 
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Figure 1.  Diagnosis of a complex system made up of a series of 
spatially related subsystems S1, S2,….,SN 

The structure of the problem supplies therefore prior 
knowledge on the mixing process. As there is no 
influence between a subsystem Si state and signatures of 
subsystems located upstream, some elements of the 
mixing matrix are null. This information will be 
introduced in the model estimation. 

This article is organized as follows. We will first 
present Independent Component Analysis (ICA) and 
Independent Factor Analysis (IFA) as maximum 
likelihood estimation problems. The problem of learning 
the IFA model with prior knowledge on labels will then 
be addressed in Section 3. In Section 4, the method is 
applied to the diagnosis of a railway track circuit. The 
impact of using constraints on the mixing matrix and of 
semi-supervised learning will then be evaluated. The 
paper ends with a conclusion. 

 
2. Independent Factor Analysis 
2.1. Background on ICA 
 

Independent Component analysis aims at recovering 
independent latent components {z1,…,zS} from their 
observed linear mixtures [4] [5]. In its general 

formulation the relationship between latent and observed 
variables takes the following form: 

A.= + εx z  (1) 

where ε is a Gaussian noise independent from z and A a 
mixing matrix of size (D × S). The independence 
assumption is translated to a factorization of the joint 
distribution: 

( ) ( )
1

S

s s
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p p z
=

= ∏z  (2) 

The problem concerns the estimation of both the 
mixing matrix A and the realizations of the latent 
variables z. This general problem is handled differently 
depending on the number of the observed and latent 
variables D and S. If D > S the system is over-determined 
and a pre-processing is classically performed (by a 
Principal Component Analysis (PCA) to transform the 
observed variables x to S new variables, which also leads 
to remove the noise. After this pre-processing the 
noiseless ICA model is assumed to be: 

A.=x z  (3) 

with A a square matrix. The distribution of the observed 
variables is given by: 
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Considering a set of N samples, the relation (3) can be 
written in matrix form as:  

1.A−=Z X  (5) 

where X is the data matrix of size (N × S) and Z is the 
source matrix of size (N × S). The log likelihood for the N 
observations has the form 
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Once particular source density models have been 
chosen, the estimation of the mixing matrix A can be 
performed by differentiating the log likelihood with 
respect to either A or the un-mixing matrix W=A-1 its 
inverse:  

t tA N . A .−Δ = − Φ Z  (7) 

where  Φ is the score function of each sample 

( ) ( ) ( ) ( )1 1

1

S St

S

log p zlog p z
A , , ,

z z
− ⎛ ⎞δδ

Φ =φ φ = − −⎜ ⎟⎜ ⎟δ δ⎝ ⎠
z "X , 

and Z the matrix of estimated latent variables. In order to 



take account of known constraints on the mixing process, 
the log likelihood will be differentiated with respect to A 
rather than to W.  

The maximum likelihood mixing matrix could be 
found with an ascended gradient procedure. A better 
optimization strategy is obtained by using the natural 
gradient [6] in which the climbing direction is found by 
multiplying the gradient by a first order Hessian 
approximation. The updating of the matrix A is achieved 
by the following learning rule 

( ) ( ) ( ) ( )1q q q tA A A . N+ = + τ Φ −Z I  (8) 

where τ is the learning rate that must be tuned, I the 
identity matrix of size (S x S). 
 
2.2. Independent Factor Analysis Principle 
 

The ICA model requires the choice of the probability 
density functions of the sources. They can be fixed by 
using prior knowledge, or according to some indicator 
which allows switching between sub and super Gaussian 
densities [4]. An alternative solution investigated by 
several authors [7] [8], so called Independent Factor 
Analysis (IFA), consists to model each source density as a 
mixture of Gaussians so that a wide class of densities can 
be approximated. 

In IFA model, each latent variable is assumed to be 
distributed according to a mixture model given by: 
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where N refers to the unidimensional Gaussian 
distribution. The model parameters are the mixing matrix 
A and the parameters of latent variable distributions. The 
set of all model parameters is denoted θ = (A, π1,…., πS, 
θ1,…, θS, μ1,…., μS, σ1,…., σS). πS is the vector of 
clusters proportions of source s which sum to one, μS and 
σS are the vectors of size Ks containing the means and the 
variances of each cluster. 

Traditional methods for learning these parameters 
from an independently and identically distributed learning 
set use the likelihood function which can be obtained by 
substituting the density function ps in (6) by its definition 
given in (9):  
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As outlined previously a gradient climbing algorithm 
can be set up to optimize such function with respect to A 

if the source densities are frozen. Similarly, with A kept 
fixed this likelihood function can be optimized with 
respect to the parameters of each source model by means 
of an Expectation Maximization (EM) algorithm. These 
remarks lead to the definition of an alternating 
optimization algorithm which takes the form a 
Generalized Expectation Maximization algorithm (GEM) 
since the objective function is only increased during the 
maximization step [9]. It should be noted that two 
indeterminacies affect the ICA model: the scaling and the 
permutation of sources.  

 
3. Partially-supervised learning in IFA 
 

The IFA model is often used in unsupervised learning 
context. The idea that we investigate in this paper is to 
incorporate partial knowledge on the cluster belonging of 
some samples in the learning process. In this way, other 
learning contexts can be handled such as semi-supervised 
or partially supervised learning. For that purpose, an 
objective function generalizing the likelihood function 
needs to be defined and an EM algorithm dedicated to its 
optimization has to be set up.  
 
3.1. Derivation of a Generalized likelihood 
criterion 

 
We shall assume a learning set of the form Xiu = 

{(x1,m1), . . . , (xN,mN)}, where 1 2 S
i i i im m ,m , ,m⎡ ⎤= ⎣ ⎦" is a 

set of basic belief assignments or Dempster-Shafer mass 
functions [10] encoding our knowledge on the cluster 
belonging of sample i for source s. The set of all possible 
cluster for source s will be denoted Y s={c1,…,cKs}. The 
observed data xi will be assumed to be generated 
according to the IFA model defined in Section 2. 
Depending on the choice of the mass functions, this 
formulation can therefore be seen as addressing a more 
general issue which encompasses unsupervised, 
supervised and semi-supervised learning paradigms as 
mentioned in Table 1.  

The concept of likelihood function has strong relations 
with that of possibility, and more generally plausibility as 
already noted by several authors. Furthermore, selecting 
the simple hypothesis with highest plausibility given the 
observations is a natural decision strategy in the belief 
functions framework. 

The proposed estimation principle to search the value 
of θ is based on the maximization of the conditional 
plausibility given the data [11]:  

( )iuˆ arg max plΘ

Θ
θ= θ X  (11) 

 



Table 1. Different learning paradigms and soft labels 

 Mass function plausibility 

Unsupervised ( )s 1s
im =�Y  1s

ikpl , k= ∀  

Supervised ( ) 1s
i km c =  1 0s s

ik ik 'pl , pl k' k= = ∀ ≠  
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im C =  1

0

s
ik k
s
ik k

pl if c C

pl if c C

= ∈

= ∉
 

“soft” 
supervised 

s
im ? [ ]0 1s

ikpl ,∈  

 
Previous work on mixture model estimation with 

belief function based labels [11] using such principle can 
easily be extended to the IFA model. It can be shown that 
the logarithm of the conditional plausibility of the IFA 
parameters given the dataset can be expressed as: 

{ }( ) ( )( )

( )
1

1 1 1

=

s

N

KN S
ss t s s

ik s i k kk
i s k

L A; N log det A

log pl N A .x , ,−

= = =

−

⎛ ⎞
+ π μ σ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑

x
 (12) 

where s
ikpl  are the plausibilities of each cluster k of 

source s for each sample i. Once the criterion is defined, 
the remaining work concerns its optimization. The next 
section details this approach in the particular context of 
semi-supervised context.  

 
3.2. Semi-supervised learning in IFA model 

 
In semi-supervised learning approach, the IFA model 

is built from a combination of M labeled and N-M 
unlabeled samples. Consequently the log-likelihood can 
be decomposed in two parts corresponding, respectively, 
to the supervised and unsupervised learning examples. 
Criterion (12) can then be rewritten as: 
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with { }0 1 SKs
ikl ,∈  are binary variables encoding the class 

of sample i, 1s
ikl = if sample i comes from cluster kc , and 

0s
ikl =  otherwise. 

The GEM algorithm can easily be adapted to optimize 
this function. The modification affects only the E step, 
where the posterior probabilities s

ikt  are only computed 
for unlabeled observations. During the M step, the known 
labels are used instead of the s

ikt , for the labelled data.  
 

Algorithm GEM, pseudo-code for semi-supervised IFA 

Inputs: centered data matrix { } 1= "i Nix  and labels { } 1

1 1

s ...Ss
ik i ...M ,k ...Ks

l
=

= =
 

Initialize parameters vector 
( )0 0 1 0 0 1 0 0 1 0 0( ) ( ) ( ) S( ) ( ) S( ) ( ) S( )A , , , , , , , , ,θ π π μ μ σ σ= … … …  

0q ←  
While increment in log likelihood > precision threshold  do  

1A−=Z X // Source Update 

For all sources { }1s , ,S∈ …  

For  all clusters { }1 sk , ,K∈ …  do    // E step 

1s( q ) s
ik ikt l , i M= = "  

1

1
s

s( q ) s( q ) s( q )
s( q ) k is k k
ik K s( q ) s( q ) s( q )

k k is k ' k '
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π μ σ
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 End for 
End for 
For all sources { }1s , ,S∈ …  

For  all clusters { }1 sk , ,K∈ …  do    // M step 

1

1

1 N
s( q ) s( q )
k ik

i

t
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End for 
( ) ( )1φ +Φ = q

.S .SZ  // Score function update 
End for 

( ) ( ) ( ) ( )1q q q tA A A . N I+ = + τ Φ −Z    // Mixing matrix update 
1q q← +  

End while 
Outputs : estimated model parameters 

( )1 1 1ML S S SA, , , , , , , , ,θ π π μ μ σ σ= … … …  

 

4. Railway application 
 
4.1. Track circuit principle 
 

The application considered in this paper concerns the 
automatic diagnosis of a railway track/vehicle 
transmission system. On high speed lines, signalling 
information is transmitted to the train driver using 
modulated currents that are injected into the rail and 
picked up by antennas mounted under the train. This 
system, called a track circuit, provides a great deal of 
information that is useful for train movement, such as the 
speed limit on a given track section.  

So, the railway track is divided into different sections, 
each section is equipped by a track circuit consisting of 
(see Figure 2): 1) a transmitter connected to one of the 
two section ends that delivers a frequency modulated 
alternating current 2) the two rails that can be considered 
as a transmission line 3) at the other end of the track 
section, a receiver that detects the presence or the absence 



of train on the section 4) trimming capacitors connected 
between the two rails at constant spacing to compensate 
for the inductive behaviour of the track. Electrical tuning 
is then performed to limit the attenuation of the 
transmitted current and improve the transmission level. 
The number of compensation points depends on the 
carrier frequency and the length of the track section. 
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Figure 2.  Track circuit representation and inspection signal 
without defect and with a defective 9th capacitor 

4.2. Diagnosis purpose and methodology 
 

The different parts of the system are subject to 
malfunctions (due to aging, or track maintenance 
operations) that must be detected as soon as possible in 
order to maintain the system at the required safety and 
availability levels. In the extreme case, this causes an 
unfortunate attenuation of the transmitted signal that leads 
to the stop of the train. The purpose of diagnosis is to 
inform maintainers about track circuit failures on the 
basis of the analysis of a specific current, recorded by an 
inspection vehicle.  

This paper will focus on trimming capacitor defects 
that affect capacitor internal capacitance. Figure 2 shows 
examples of signals simulated along a 1500m track 
circuit: one of them corresponds to an absence of defect, 
while the others correspond to a defective 9th capacitor. 
The idea is to consider the track circuit as a global system 
S, and each trimming capacitor as a subsystem Si. A 
defect on one subsystem is represented by a continue 
value of the capacitance parameter. The proposed 
diagnosis method must take account of a variable number 
of subsystems depending on the track circuit length and a 
spatial relationship between subsystems. 

A generative model can be build where the observed 
variables are the coefficients of the local polynomial 
approximating the measuring signal located between two 
subsystems, and the latent variables are the capacitances 

of each trimming capacitor. In this way, the diagnosis of a 
shorter system (N’<N) simply uses a sub-model extracted 
from the global one and the model structure can also take 
advantages from prior knowledge (downstream-upstream 
dependencies) as shown in Figure 1 which leads to a 
block lower triangular mixing matrix.  

 
5. Results and discussion 
 

To access the performances of the method, we 
considered a track circuit of S = 18 subsystems 
(capacitors) and built a database containing noised signals 
obtained for different values of the capacitance of each 
capacitor. 2500 signals are thus obtained of each 
capacitor where 1000 are used in the training phase while 
the 1500 others are employed for the test phase to 
estimate the performances. A piecewise approach is then 
adopted for the signal representation: each arch was 
approximated by a second degree polynomial of which 
two coefficients are used as observed variables for each 
node in the generative model. 

Given an observation matrix, the aim is to recover S 
latent variables from 2*S observed ones with the hope 
that they will be strongly correlated with the variables of 
interest that are the capacitor capacitances. As prior 
information on the mixing matrix is available, PCA 
cannot be used as a preprocessing because the mixing 
structure will be lost. 2*S latent variables are therefore 
extracted, the S most correlated with the capacitances 
being kept and the others being considered as noise. We 
have investigated the influence on the method results of 
using different amount of labeled samples and imposing 
constraints on the mixing matrix. 

The comparison between the different settings will be 
quantified by the correlation between the true 
capacitances and their estimates calculated on the test set. 
The results presented in Figure 3 show that the source 
permutation is avoided when the components origins of a 
sufficient amount of training samples is provided. The 
non detection rate is also decreased in this case since no 
capacitor is weakly correlated with its estimate.  

Figure 4 shows the mean correlation between 
estimated latent variables and capacitor capacitances 
function of the number of labeled samples when the 
mixing matrix is constrained or not. Fifty random starting 
points were used for the GEM algorithm and only the best 
solution according to the likelihood was kept. To avoid 
the source permutations which occur when not enough 
labeled samples are supplied, the mean correlation was 
computed according to the best permutation of the 
sources.  

 
 



 
Figure 3.  Correlation between estimated latent variables and 
true capacitor capacitances, computed on a test set for 
unsupervised IFA (a) and semi-supervised IFA with constraints 
on the mixing matrix and 40% of labeled samples among 1000 
training samples (b). 
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Figure 4.  Mean correlation between estimated latent variables 
and true capacitor capacitances evaluated on a test set, function 
of the percentage of laleled samples among the 1000 training 
samples, for IFA with and without constraints on the mixing 
matrix.  

As expected, when the number of labeled data 
increases, the mean correlation also increases. 
Furthermore, when prior information on the mixing 
matrix is provided, the sources are well estimated. The 
use of labeled data seems less influent when prior 
information such as constraints on the mixing matrix are 
available.  

 
6. Conclusion 
 

Here we presented a diagnosis method based on 
independent factor analysis which aims to recover the 
latent variables linked to the defects from their linear 
observed mixtures. In this paper, we investigate the 
possibility of incorporating knowledge on the cluster 
belonging of some samples and also on the structure of 
the mixing matrix to estimate the IFA model. A 
generalized maximum likelihood criterion was defined 
and a GEM algorithm dedicated to its optimization was 
given. The proposed approach was illustrated on a 
railway device diagnosis application. The results show 

that our solution is able to take advantage of information 
on class labels and on the mixing form. The benefits are 
in terms of source estimation accuracy and no 
permutation of sources. Further studies will be carried out 
to apply the approach on real signals in order to take 
account of imprecise and uncertain labels (label noise).  
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