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Spurious lattice solitons for linear finite difference schemes

Introduction

The analysis and the control of numerical error in discretized propagation-type equations is of major importance for both theoretical analysis and practical applications. A huge amount of works has been devoted to the analysis of the numerical errors, its dynamics and its influence on the computed solution (the reader is referred to classical books, among which [START_REF] Hirsch | Numerical Computation of Internal and External Flows[END_REF][START_REF] Sengupta | Fundamentals of Computational Fluid Dynamics[END_REF]). It appears that existing works are mostly devoted to linear, one-dimensional numerical models, such as the linear advection equation

∂u ∂t + c ∂u ∂x = 0 ( 1 
)
where c is a constant uniform advection velocity. A striking observation is that, despite the tremendous efforts devoted to the analysis of numerical schemes in this simple case, the full exact non-homogeneous error equation has been derived only very recently [START_REF] Sengupta | A Fourier-Laplace spectral theory of computing for non-periodic problems: signal and error propagation dynamics[END_REF]. The two sources of numerical error are the dispersive and dissipative properties of the numerical scheme, which are very often investigated in unbounded or periodic domains thanks to a spectral analysis. In previous work [START_REF] Cl | A linear dispersive mechanism for numerical error growth: spurious caustics[END_REF], we analyzed of a linear dispersive mechanism which results in local error focusing, i.e. to a sudden local error burst in the L ∞ norm for polychromatic solutions, referred to as the spurious caustic phenomenon. We showed that, for some specific values of the Courant number, spurious caustics can exist for some popular finite-difference schemes.

In another work [START_REF] Cl | Structural stability of finite dispersion-relation preserving schemes[END_REF], [START_REF] Cl | Spurious solitons and structural stability of finite difference schemes for nonlinear wave equations[END_REF] we have determined classes of traveling solitary wave solutions for a differential approximation of a finite difference scheme by means of a hyperbolic ansatz. We showed that spurious solitary waves can occur in finitedifference solutions of nonlinear wave equation. The occurance of such a spurious solitary wave, which exhibits a very long life time, results in a non-vanishing numerical error for arbitrary time in unbounded numerical domain. Such a behavior is referred here to has a structural instability of the scheme, since the space of solutions spanned by the numerical scheme encompasses types of solutions (solitary waves in the present case) that are not solution of the original continuous equations.

We presently extend both works, in so far as we exhibit lattice solitary waves solution of the general linear finite-differenced version of the linear advection equation, rejoining the fact that there exists travelling solitary wave solutions for a differential approximation of a finite difference scheme.

So far, we would like to lay the emphasis on the fact that, contrary to most beliefs, solitary waves and solitons can not uniquely be obtained as solutions of nonlinear differential equations and as solutions of linear differential equations, as it is very well shown in the very interesting paper of C. Radhakrishnan [START_REF] Radhakrishnan | The myth about nonlinear differential equations[END_REF], where, taking the example of the Korteweg-de Vries equation, it is shown that soliton solutions need not always be the consequence of the trade-off between the nonlinear terms and the dispersive term in the nonlinear differential equation, and that even the ordinary one dimensional linear partial differential equation can produce a soliton. The author explains that solutions of both linear and nonlinear differential equations are functions which depend nonlinearly on the independent variable, and that one can construct linear as well as nonlinear differential equations from the same function, as it is the case for the linear advection equation. Thus, as it is explained, the claim that a particular physical phenomenon can be described only by a nonlinear differential equation, and not by any linear differential equation is not tenable, provided a linear differential equation with the same solution as that of the nonlinear differential equation exists, and that, incidentally, linearization is the oldest and most popular method of solving nonlinear differential equations. In the same way, in [START_REF] Liu | Solitary Wave in Linear ODE with Variable Coefficients[END_REF], Liu et al. proved the existence of solitary waves in in Linear ODE with Variable Coefficients.

In the present paper, we consider the linear advection equation [START_REF] Hirsch | Numerical Computation of Internal and External Flows[END_REF], which happens to be obtained by linearizing the nonlinear Burgers equation.

Our analysis is restricted to interior stencil, and the influence of boundary conditions will not be considered.

The paper is organized as follows. The numerical schemes retained for the present analysis are briefly recalled in section 2. Solitary waves, and the related lattice ones are introduced and developped in section 3.

Test numerical schemes

For the sake of simplicity, the analysis will be restricted to schemes which involves at most three time levels and three grid points. The extension of the present analysis to other schemes is straightforward. For this class of schemes, the general finitedifferenced version of the linear advection equation (1) can therefore be written as follows

αu n+1 j + βu n j + γu n-1 j + ζu n+1 j+1 + δu n j+1 + υu n-1 j+1 + θu n+1 j-1 + εu n j-1 + ηu n-1 j-1 = 0 (2) Name α β γ δ ϵ ζ η θ υ Leapfrog 1 2τ 0 -1 2τ c 2h -c 2h 0 0 0 0 Lax 1 τ 0 0 -1 2τ + c 2h -1 2τ -c 2h 0 0 0 0 Lax-Wendroff 1 τ -1 τ + c 2 τ h 2 0 (1-σ)c 2h -(1+σ)c 2h 0 0 0 0 Crank-Nicolson 2 τ 2 τ 0 -c 2h c 2h c 2h 0 -c 2h 0 Table 1: Numerical scheme coefficients. with u l m = u (l h, m τ ) (3) 
where h and τ are the mesh size and time step respectively. For the sake of simplicity, these two quantities are assumed to be uniform. The CFL number is defined as σ = cτ /h, while the non-dimensional wave number is defined as φ = kh,

where k is the wave number of the signal under consideration.

A numerical scheme is specified by selecting appropriate values of the coefficients α, β, γ, δ, ε, ζ, η, υ and θ in Eq. ( 2). Values corresponding to numerical schemes retained for the present works are given in Table 1.

3 Spurious lattice solitons

Analytical validation

Following [START_REF] Feng | Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation[END_REF], [START_REF] Cl | A note on "general solitary wave solutions of the Compound Burgers-Korteweg-de Vries Equation[END_REF], [START_REF] Cl | Structural stability of finite dispersion-relation preserving schemes[END_REF], [START_REF] Cl | Spurious solitons and structural stability of finite difference schemes for nonlinear wave equations[END_REF], we search solution of Eq. ( 1) under the form:

u(x, t, k) = A sech [k (x -v t)] + B tanh [k (x -v t)] (4) 
The discrete solution associated with a given numerical scheme will admit spurious solitary waves, and therefore spurious local energy pile-up and local sudden growth of the error, if the discrete relation is such that the condition (2) is satisfied by the solitary wave (4). The related condition, which will be referred to as the solitary wave dispersion relation, is of the form

F (i, n, σ, τ, A, B, sech [k (x -v t)] , tanh [k (x -v t)]) = 0 ( 5 
)
where F is a generic notation. Depending on the existence of real numbers A, B, v, k, and of integers i, n satisfying this relation, spurious lattice solitary waves will or not appear.

4 Scheme study

The Lax scheme

Let us consider the Lax scheme. The solitary wave dispersion relation (5) yields:

A(σ + 1)sech ( k τ (i h-n vσ-1) σ ) -(σ -1)sech ( k τ (i-n v σ+1) σ ) ( A + B sinh ( k τ (i-n v σ+1) σ
))

+B(σ + 1)tanh

( k τ (i-n v σ-1) σ ) = 0 (6)
which is satisfied for:

A = -B sinh ( k 
( (i ± 1) h σ -n v τ )) (7) 
where B, k, v can take any values in IR.

It thus exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u n i = -B sinh ( k 
( (i ± 1) h σ -n v τ )) sech [k (i h -n v i τ )]+B tanh [k (i h -n v i τ )] , (B, k, v) ∈ IR 3 (8) 
In the specific case where σ = 1, one obtains:

sech(k τ (i -n v -1))(A + B sinh(k τ (i -n v -1))) = 0 (9)
1. For A = 0, v = 1, the solitary wave dispersion relation is satisfied when

i = n -1 (10) 
which occurs on the recursive calculation of the approximate solution.

It thus exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u i = B tanh [k (i h -(i + 1) τ )] (11) 
2. More generally, numerical simulations usually dealing with values of the time step number n ≫ 1, for A = 0, v = 1 p , p ∈ IN * , the solitary wave dispersion relation is satisfied when

n = p (i -1) (12) 
It thus also exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u i = B tanh [k (i h -p (i -1 τ )] (13) 
Also, when the time step number n goes towards infinity, sech(k τ (i-n v -1)) tends towards zero, and the solitary wave dispersion relation ( 6) tends to be satisfied, accounting for the scheme to become numerically instable. As expected, it can be noted that the solitary wave begins to become greatly unstable as the cf l number tends towards 1. 

The Lax-Wendroff scheme

Let us consider the Lax-Wendroff scheme. The solitary wave dispersion relation (5) yields:

σ (σ+1) (A sech(k ( τ (i-1) σ -τ nv))+B tanh(k( τ (i-1) σ -τ nv))) 2 τ + ( σ 2 τ -1 τ ) ( Asech ( k ( τ i σ -τ nv )) + B tanh ( k ( τ i σ -n v τ
)))

+ A sech(k ( τ i σ -τ (n+1)v))+B tanh(k( c τ i σ -(n+1) v τ )) τ + (1-σ)σ(A sech(k( c τ (i+1) σ -n v τ ))+B tanh(k( τ (i+1) σ -n v τ ))) 2 τ = 0 ( 14 
)
which is satisfied for:

A = -B sinh ( k ( i τ σ -(n + 1) v τ )) (15) 
where B, k, v can take any values in IR.

It thus exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u n i = -B sinh ( k ( i τ σ -(n + 1) v τ )) sech [k (i h -n v τ )]+B tanh [k (i h -n τ )] , (B, k, v) ∈ IR 3 (16) 
In the specific case where σ = 1, one obtains:

A {-sech( τ k (i -nv -1)) + sech( τ k(i -(n + 1) v))} +B {(tanh( τ k (-i + nv + 1)) + tanh( τ k (i -(n + 1) v)))} = 0 (17)
1. For A = 0, v = 1, the solitary wave dispersion relation is satisfied when which occurs on the recursive calculation of the approximate solution.

It thus exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u i = B tanh [k (i h -(i -1) τ )] ( 18 
)
2. As in the case of the Lax scheme, when the time step number n goes towards infinity, sech(k τ (i -n v -1)) tends towards zero, and the solitary wave dispersion relation [START_REF] Liu | Solitary Wave in Linear ODE with Variable Coefficients[END_REF] tends to be satisfied, accounting for the scheme to become numerically instable.

Figures 3,4 respectively display a lattice solitary wave, first, for σ = 0.7, h = 0.01, v = 5, k = 5, as a function of the mesh points, and, second, as a function of the cf l number σ and of the wave velocity v.

As previously, the solitary wave begins to become greatly unstable as the cf l number tends towards 1. 

Figure 3:

A "lattice solitary wave", in the case of the Lax-Wendroff scheme, as a function of the mesh points

The Leapfrog scheme

Let us consider the Leapfrog scheme. The solitary wave dispersion relation (5) yields:

Asech ( k τ (i-(n-1) v σ) σ ) + A σsech ( k τ (i-nvσ-1) σ ) -A σ sech ( k τ (i-n v σ+1) σ ) +B ( tanh 
( k τ (i-(n-1) v σ) σ ) + σ ( tanh ( k τ (i-n v σ-1) σ ) -tanh ( k τ (i-n v σ+1) σ
))) = 0 (19) which is satisfied for: 

( i τ σ -(n + 1) v τ )) (20) 
where B, k, v can take any values in IR.

It thus exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u n i = -B sinh ( k ( i τ σ -(n + 1) v τ )) sech [k (i h -v n τ )]+B tanh [k (i h -v n τ )] , (B, k, v) ∈ IR 3 (21) 
Figures 5, 6 respectively display a lattice solitary wave, first, for σ = 0.7, h = 0.01, v = 5, k = 5, as a function of the mesh points, and, second, as a function of the cf l number σ and of the wave velocity v.

As previously, the solitary wave begins to become greatly unstable as the cf l number tends towards 1. ( -

√ A 2 B 2 + 1 ) k n τ σ (22)
the solitary wave dispersion relation ( 19) is also satisfied. It thus exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u n i = A sech [ k (i h -n v sol Leapf rog τ ) ] + B tanh [ k (i h -n v sol Leapf rog τ ) ] (23) 

The Crank-Nicolson scheme

Let us consider the Crank-Nicolson scheme. The solitary wave dispersion relation (5) yields:

- σ 2 (A sech(k( τ (i-1) σ -n v τ ))+B tanh(k( τ (i-1) σ -n v τ ))) 2 τ 2 -- σ 2 (A sech(k ( τ (i-1) σ -τ (n+1)v))+B tanh(k( τ (i-1) σ -τ (n+1)v))) 2τ 2 + ( σ 2 τ 2 -1 τ ) ( Asech ( k ( τ i σ -τ nv )) + B tanh ( k ( τ i σ -n v τ ))) + ( σ 2 τ 2 + 1 τ ) ( Asech ( k ( τ i σ -(n + 1) v τ )) + B tanh ( k ( τ i σ -(n + 1) v τ ))) - σ 2 (A sech(k ( τ (i+1) σ -n v τ ))+B tanh(k( τ (i+1) σ -n v τ ))) 2τ 2 = 0 (24) 
which is satisfied for:

A = U n i ( 25 
)
with:

U n i = B τ 2 tanh(k ( h(j -1) -n v τ )) sech(k ((i + 1) h -n v τ )) + 4 B τ 2 tanh(k (i h -n v τ )) sech(k (i h -(n + 1) v τ )) D + B τ 2 tanh(k ((i + 1) h -n v τ )) sech(k ((i -1) h -n v τ )) D + 4 B τ 2 tanh(k (i h -(n + 1) v τ )) sech(k (i h -n v τ )) -4 B h 4 tanh(k (i h -n v τ )) sech(k (i h -(n + 1) v τ )) D - 4 B h 4 tanh(k(i h -(n + 1) v τ )) sech(k (i h -n v τ )) D - 2 τ 2 h 2 sech(k ((j -1) h -(n + 1) v τ )) + 2 τ 2 h 2 sech(k ((i + 1) h -(n + 1) v τ )) D - √ E ( 26 
)
where: where B, k, v can take any values in IR.

D = -2 τ 2 sech(k ((i -1) h -v τ )) sech(k ((i + 1) h -v τ )) -8 τ 2 sech(k( hj -τ nv)) sech(k( h -(n + 1) v τ )) + 8 h 4 sech(k (i h -n v τ )) sech(k (i h -(n + 1) v τ )) (27) E = -B τ 2 tanh(k ((i -1) h -n v τ )) sech(k ((i + 1) h -n v τ )) -4 B τ 2 tanh(k ( hj -n v τ )) sech(k (i h -(n + 1) v τ )) -B τ 2 tanh(k ((i + 1) h -n v τ )) sech(k ((i -1) h -n v τ )) -4 B τ 2 tanh(k (i h -(n + 1) v τ ))sech(k(i h -n v τ )) + 4 B h 4 tanh(k (i h -τ nv)) sech(k (i h -(n + 1) v τ )) + 4 B h 4 tanh(k (i h -(n + 1) v τ )) sech(k (i, h -n v τ )) + ( 2 
It thus exhibits the existence of lattice solitons, related to the discrete numerical scheme, of the form

u n i = U n i sech [k (i h -v i n τ )] + B tanh [k (i h -v i n τ )] , (B, k, v) ∈ IR 3 (30)

Concluding remarks

The existence of spurious numerical lattice solitary waves in linear advection schemes has been proved. Such lattice solitary waves, which are not solutions of the exact continuous original equation, nevertheless satisfy the numerical scheme, appearing as parasitic solutions of the correct one. Such schemes will be referred to as structurally instable ones. Such spurious solitary waves have constant energy, and therefore the numerical error norm does not vanish at arbitrary long integration times on unbounded numerical domains.
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 1 Figure 1:A "lattice solitary wave", in the case of the Lax scheme, as a function of the mesh points, for σ = 0.7, h = 0.01, v = 5, k = 5
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 2 Figure 2:A "lattice solitary wave", in the case of the Lax scheme, as a function of the cfl number σ and of the wave velocity v
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 4 Figure 4:A "lattice solitary wave", in the case of the Lax-Wendroff scheme, as a function of the cfl number σ and of the wave velocity v
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 6 Figure 6:A "lattice solitary wave", in the case of the Leapfrog scheme, as a function of the cfl number σ and of the wave velocity v

  τ 2 h 2 sech(k ((i -1) h -(n + 1) v τ ) + 2 τ 2 h 2 sech(k ((i + 1) h -(n + 1) v τ )) ) 2 + 4 τ 2 sech(k ((i -1) h -n v τ )) sech(k((i + 1) h -n v τ )) + 16 τ 2 sech(k(i h -n v τ )) sech(k (i h -(n + 1) v τ )) -16 h 4 sech(k (i h -n v τ )) sech(k (i h -(n + 1) v τ )) F (28)

F = -B 2 τ 2 tanh(k((i -1) h -n v τ )) tanh(k((i + 1) h -n v τ )) -4 B 2 τ 2 tanh(k(i h -n v τ )) tanh(k (i h -(n + 1) v τ )) + 4B 2 h 4 tanh(k(i h -n v τ )) tanh(k (i h -(n + 1) v τ )) + 2 B τ 2 h 2 tanh(k ((i -1) h -(n + 1) v τ )) + 2 B τ 2 h 2 tanh(k ((i + 1) h -(n + 1) v τ ))

(29)