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Abstract

The goal of this work is to show that lattice traveling solitary wave are
solution of the general linear finite-differenced version of the linear advection
equation. The occurance of such a spurious solitary waves, which exhibits a
very long life time, results in a non-vanishing numerical error for arbitrary
time in unbounded numerical domain. Such a behavior is referred here to has
a structural instability of the scheme, since the space of solutions spanned by
the numerical scheme encompasses types of solutions (lattice solitary waves
in the present case) that are not solution of the original continuous equations.
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1 Introduction

The analysis and the control of numerical error in discretized propagation-type
equations is of major importance for both theoretical analysis and practical appli-
cations. A huge amount of works has been devoted to the analysis of the numerical
errors, its dynamics and its influence on the computed solution (the reader is re-
ferred to classical books, among which [1, 5]). It appears that existing works are
mostly devoted to linear, one-dimensional numerical models, such as the linear
advection equation

∂u

∂t
+ c

∂u

∂x
= 0 (1)

where c is a constant uniform advection velocity. A striking observation is that,
despite the tremendous efforts devoted to the analysis of numerical schemes in this
simple case, the full exact non-homogeneous error equation has been derived only
very recently [8].
The two sources of numerical error are the dispersive and dissipative properties
of the numerical scheme, which are very often investigated in unbounded or pe-
riodic domains thanks to a spectral analysis. In previous work [10], we analyzed
of a linear dispersive mechanism which results in local error focusing, i.e. to a
sudden local error burst in the L∞ norm for polychromatic solutions, referred to
as the spurious caustic phenomenon. We showed that, for some specific values of
the Courant number, spurious caustics can exist for some popular finite-difference
schemes.

In another work [11], [12] we have determined classes of traveling solitary wave
solutions for a differential approximation of a finite difference scheme by means of
a hyperbolic ansatz. We showed that spurious solitary waves can occur in finite-
difference solutions of nonlinear wave equation. The occurance of such a spurious
solitary wave, which exhibits a very long life time, results in a non-vanishing nu-
merical error for arbitrary time in unbounded numerical domain. Such a behavior
is referred here to has a structural instability of the scheme, since the space of
solutions spanned by the numerical scheme encompasses types of solutions (soli-
tary waves in the present case) that are not solution of the original continuous
equations.
We presently extend both works, in so far as we exhibit lattice solitary waves solu-
tion of the general linear finite-differenced version of the linear advection equation,
rejoining the fact that there exists travelling solitary wave solutions for a differen-
tial approximation of a finite difference scheme.
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So far, we would like to lay the emphasis on the fact that, contrary to most beliefs,
solitary waves and solitons can not uniquely be obtained as solutions of nonlinear
differential equations and as solutions of linear differential equations, as it is very
well shown in the very interesting paper of C. Radhakrishnan [13], where, taking
the example of the Korteweg-de Vries equation, it is shown that soliton solutions
need not always be the consequence of the trade-off between the nonlinear terms
and the dispersive term in the nonlinear differential equation, and that even the
ordinary one dimensional linear partial differential equation can produce a soli-
ton. The author explains that solutions of both linear and nonlinear differential
equations are functions which depend nonlinearly on the independent variable, and
that one can construct linear as well as nonlinear differential equations from the
same function, as it is the case for the linear advection equation. Thus, as it is
explained, the claim that a particular physical phenomenon can be described only
by a nonlinear differential equation, and not by any linear differential equation is
not tenable, provided a linear differential equation with the same solution as that
of the nonlinear differential equation exists, and that, incidentally, linearization is
the oldest and most popular method of solving nonlinear differential equations. In
the same way, in [14], Liu et al. proved the existence of solitary waves in in Linear
ODE with Variable Coefficients.

In the present paper, we consider the linear advection equation (1), which happens
to be obtained by linearizing the nonlinear Burgers equation.

Our analysis is restricted to interior stencil, and the influence of boundary condi-
tions will not be considered.

The paper is organized as follows. The numerical schemes retained for the present
analysis are briefly recalled in section 2. Solitary waves, and the related lattice
ones are introduced and developped in section 3.

2 Test numerical schemes

For the sake of simplicity, the analysis will be restricted to schemes which involves at
most three time levels and three grid points. The extension of the present analysis
to other schemes is straightforward. For this class of schemes, the general finite-
differenced version of the linear advection equation (1) can therefore be written as
follows

αun+1
j + βun

j + γun−1
j + ζun+1

j+1 + δun
j+1 + υun−1

j+1 + θun+1
j−1 + εun

j−1 + ηun−1
j−1 = 0 (2)
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Name α β γ δ ϵ ζ η θ υ
Leapfrog 1

2τ
0 −1

2τ
c
2h

−c
2h

0 0 0 0
Lax 1

τ
0 0 −1

2τ
+ c

2h
−1
2τ

− c
2h

0 0 0 0

Lax-Wendroff 1
τ

−1
τ
+ c2τ

h2 0 (1−σ)c
2h

−(1+σ)c
2h

0 0 0 0
Crank-Nicolson 2

τ
2
τ

0 −c
2h

c
2h

c
2h

0 −c
2h

0

Table 1: Numerical scheme coefficients.

with

ul
m = u (l h,m τ) (3)

where h and τ are the mesh size and time step respectively. For the sake of
simplicity, these two quantities are assumed to be uniform. The CFL number is
defined as σ = cτ/h, while the non-dimensional wave number is defined as φ = kh,
where k is the wave number of the signal under consideration.
A numerical scheme is specified by selecting appropriate values of the coefficients
α, β, γ, δ, ε, ζ, η, υ and θ in Eq. (2). Values corresponding to numerical schemes
retained for the present works are given in Table 1.

3 Spurious lattice solitons

3.1 Analytical validation

Following [15], [16], [11], [12], we search solution of Eq. (1) under the form:

u(x, t, k) = A sech [k (x− v t)] +B tanh [k (x− v t)] (4)

The discrete solution associated with a given numerical scheme will admit spurious
solitary waves, and therefore spurious local energy pile-up and local sudden growth
of the error, if the discrete relation is such that the condition (2) is satisfied by the
solitary wave (4).
The related condition, which will be referred to as the solitary wave dispersion
relation, is of the form

F (i, n, σ, τ, A,B, sech [k (x− v t)] , tanh [k (x− v t)]) = 0 (5)

where F is a generic notation.
Depending on the existence of real numbers A, B, v, k, and of integers i, n satisfying
this relation, spurious lattice solitary waves will or not appear.
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4 Scheme study

4.1 The Lax scheme

Let us consider the Lax scheme. The solitary wave dispersion relation (5) yields:

A(σ + 1)sech
(

k τ(i h−n vσ−1)
σ

)
− (σ − 1)sech

(
k τ(i−n v σ+1)

σ

)(
A+B sinh

(
k τ(i−n v σ+1)

σ

))
+B(σ + 1)tanh

(
k τ (i−n v σ−1)

σ

)
= 0

(6)

which is satisfied for:

A = −B sinh

(
k

(
(i± 1)h

σ
− n v τ

))
(7)

where B, k, v can take any values in IR.

It thus exhibits the existence of lattice solitons, related to the discrete numerical
scheme, of the form

un
i = −B sinh

(
k

(
(i± 1)h

σ
− n v τ

))
sech [k (i h− n vi τ)]+B tanh [k (i h− n vi τ)] , (B, k, v) ∈ IR3

(8)

In the specific case where σ = 1, one obtains:

sech(k τ(i− n v − 1))(A+B sinh(k τ(i− n v − 1))) = 0 (9)

1. For A = 0, v = 1, the solitary wave dispersion relation is satisfied when

i = n− 1 (10)

which occurs on the recursive calculation of the approximate solution.
It thus exhibits the existence of lattice solitons, related to the discrete nu-
merical scheme, of the form

ui = B tanh [k (i h− (i+ 1) τ)] (11)
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2. More generally, numerical simulations usually dealing with values of the time
step number n ≫ 1, for A = 0, v = 1

p
, p ∈ IN∗, the solitary wave dispersion

relation is satisfied when

n = p (i− 1) (12)

It thus also exhibits the existence of lattice solitons, related to the discrete
numerical scheme, of the form

ui = B tanh [k (i h− p (i− 1 τ)] (13)

Also, when the time step number n goes towards infinity, sech(k τ(i−n v−1))
tends towards zero, and the solitary wave dispersion relation (6) tends to be
satisfied, accounting for the scheme to become numerically instable.

Figures 1, 2 respectively display a lattice solitary wave, first, for σ = 0.7, h = 0.01,
v = 5, k = 5, as a function of the mesh points, and, second, as a function of the
cfl number σ and of the wave velocity v.
As expected, it can be noted that the solitary wave begins to become greatly
unstable as the cfl number tends towards 1.
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Figure 1:
A ”lattice solitary wave”, in the case of the Lax scheme,

as a function of the mesh points, for σ = 0.7, h = 0.01, v = 5, k = 5
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Figure 2:
A ”lattice solitary wave”, in the case of the Lax scheme,

as a function of the cfl number σ and of the wave velocity v
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4.2 The Lax-Wendroff scheme

Let us consider the Lax-Wendroff scheme. The solitary wave dispersion relation
(5) yields:

σ (σ+1) (A sech(k ( τ (i−1)
σ

− τ nv))+B tanh(k( τ (i−1)
σ

− τ nv)))
2 τ

+
(

σ2

τ
− 1

τ

) (
Asech

(
k
(
τ i
σ
− τ nv

))
+B tanh

(
k
(
τ i
σ
− n v τ

)))
+

A sech(k ( τ i
σ
− τ (n+1)v))+B tanh(k( c τ i

σ
−(n+1) v τ))

τ

+
(1−σ)σ(A sech(k( c τ (i+1)

σ
−n v τ))+B tanh(k( τ (i+1)

σ
−n v τ )))

2 τ
= 0

(14)

which is satisfied for:

A = −B sinh

(
k

(
i τ

σ
− (n+ 1) v τ

))
(15)

where B, k, v can take any values in IR.

It thus exhibits the existence of lattice solitons, related to the discrete numerical
scheme, of the form

un
i = −B sinh

(
k

(
i τ

σ
− (n+ 1) v τ

))
sech [k (i h− n v τ)]+B tanh [k (i h− n τ)] , (B, k, v) ∈ IR3

(16)

In the specific case where σ = 1, one obtains:

A {−sech( τ k (i− nv − 1)) + sech( τ k(i− (n+ 1) v))}
+B {(tanh( τ k (−i+ nv + 1)) + tanh( τ k (i− (n+ 1) v)))} = 0

(17)

1. For A = 0, v = 1, the solitary wave dispersion relation is satisfied when

which occurs on the recursive calculation of the approximate solution.
It thus exhibits the existence of lattice solitons, related to the discrete nu-
merical scheme, of the form

ui = B tanh [k (i h− (i− 1) τ)] (18)

2. As in the case of the Lax scheme, when the time step number n goes to-
wards infinity, sech(k τ(i−n v−1)) tends towards zero, and the solitary wave
dispersion relation (14) tends to be satisfied, accounting for the scheme to
become numerically instable.

8



Figures 3, 4 respectively display a lattice solitary wave, first, for σ = 0.7, h = 0.01,
v = 5, k = 5, as a function of the mesh points, and, second, as a function of the
cfl number σ and of the wave velocity v.
As previously, the solitary wave begins to become greatly unstable as the cfl num-
ber tends towards 1.
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Figure 3:
A ”lattice solitary wave”, in the case of the Lax-Wendroff scheme,

as a function of the mesh points

4.3 The Leapfrog scheme

Let us consider the Leapfrog scheme. The solitary wave dispersion relation (5)
yields:

Asech
(

k τ (i−(n−1) v σ)
σ

)
+ Aσsech

(
k τ (i−nvσ−1)

σ

)
− Aσ sech

(
k τ (i−n v σ+1)

σ

)
+B

(
tanh

(
k τ (i−(n−1) v σ)

σ

)
+ σ

(
tanh

(
k τ (i−n v σ−1)

σ

)
− tanh

(
k τ (i−n v σ+1)

σ

)))
= 0

(19)
which is satisfied for:
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Figure 4:
A ”lattice solitary wave”, in the case of the Lax-Wendroff scheme,

as a function of the cfl number σ and of the wave velocity v

A = −B sinh

(
k

(
i τ

σ
− (n+ 1) v τ

))
(20)

where B, k, v can take any values in IR.

It thus exhibits the existence of lattice solitons, related to the discrete numerical
scheme, of the form

un
i = −B sinh

(
k

(
i τ

σ
− (n+ 1) v τ

))
sech [k (i h− v n τ)]+B tanh [k (i h− v n τ)] , (B, k, v) ∈ IR3

(21)

Figures 5, 6 respectively display a lattice solitary wave, first, for σ = 0.7, h = 0.01,
v = 5, k = 5, as a function of the mesh points, and, second, as a function of the
cfl number σ and of the wave velocity v.
As previously, the solitary wave begins to become greatly unstable as the cfl num-
ber tends towards 1.
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Figure 5:

A ”lattice solitary wave”, in the case of the Leapfrog scheme, as a function of the

mesh points, for σ = 0.7, h = 0.01, v = 5, k = 5
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Figure 6:
A ”lattice solitary wave”, in the case of the Leapfrog scheme,

as a function of the cfl number σ and of the wave velocity v
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For

v = vsolLeapfrog

k (j + 1) τ + σ cosh−1

(
−
√

A2

B2 + 1

)
k n τ σ

(22)

the solitary wave dispersion relation (19) is also satisfied. It thus exhibits the
existence of lattice solitons, related to the discrete numerical scheme, of the form

un
i = A sech

[
k (i h− n vsolLeapfrog τ)

]
+B tanh

[
k (i h− n vsolLeapfrog τ)

]
(23)

4.4 The Crank-Nicolson scheme

Let us consider the Crank-Nicolson scheme. The solitary wave dispersion relation
(5) yields:

−σ2 (A sech(k( τ (i−1)
σ −n v τ))+B tanh(k( τ (i−1)

σ −n v τ)))
2 τ 2

−− σ2(A sech(k ( τ (i−1)
σ −τ (n+1)v))+B tanh(k( τ (i−1)

σ −τ (n+1)v)))
2τ 2

+
(

σ2

τ 2 − 1
τ

) (
Asech

(
k
(
τ i
σ − τ nv

))
+B tanh

(
k
(
τ i
σ − n v τ

)))
+
(

σ2

τ 2 + 1
τ

) (
Asech

(
k
(
τ i
σ − (n+ 1) v τ

))
+B tanh

(
k
(
τ i
σ − (n+ 1) v τ

)))
−σ2 (A sech(k ( τ (i+1)

σ −n v τ))+B tanh(k( τ (i+1)
σ −n v τ)))

2τ 2 = 0

(24)

which is satisfied for:

A = Un
i (25)

with:

Un
i =

B τ2 tanh(k (h(j − 1)− n v τ)) sech(k ((i+ 1)h− n v τ)) + 4B τ2 tanh(k (i h− n v τ)) sech(k (i h− (n+ 1) v τ))

D

+
B τ2 tanh(k ((i+ 1)h− n v τ)) sech(k ((i− 1)h− n v τ))

D

+
4B τ2 tanh(k (i h− (n+ 1) v τ)) sech(k (i h− n v τ))− 4B h4 tanh(k (i h− n v τ)) sech(k (i h− (n+ 1) v τ))

D

−
4B h4 tanh(k(i h− (n+ 1) v τ)) sech(k (i h− n v τ))

D

−
2 τ2 h2 sech(k ((j − 1)h− (n+ 1) v τ)) + 2 τ2 h2sech(k ((i+ 1)h− (n+ 1) v τ))

D
−

√
E

(26)

where:

D =− 2 τ2 sech(k ((i− 1)h− v τ)) sech(k ((i+ 1)h− v τ))

− 8 τ2sech(k(hj − τnv)) sech(k(h− (n+ 1) v τ)) + 8h4 sech(k (i h− n v τ)) sech(k (i h− (n+ 1) v τ))
(27)
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E =−B τ2 tanh(k ((i− 1)h− n v τ)) sech(k ((i+ 1)h− n v τ))

− 4B τ2 tanh(k (hj − n v τ)) sech(k (i h− (n+ 1) v τ))

−B τ2 tanh(k ((i+ 1)h− n v τ)) sech(k ((i− 1)h− n v τ))

− 4B τ2 tanh(k (i h− (n+ 1) v τ))sech(k(i h− n v τ)) + 4B h4 tanh(k (i h− τnv)) sech(k (i h− (n+ 1) v τ))

+ 4B h4 tanh(k (i h− (n+ 1) v τ)) sech(k (i, h− n v τ))

+
(
2 τ2 h2 sech(k ((i− 1)h− (n+ 1) v τ) + 2 τ2 h2 sech(k ((i+ 1)h− (n+ 1) v τ))

)2
+ 4 τ2sech(k ((i− 1)h− n v τ)) sech(k((i+ 1)h− n v τ))

+ 16 τ2sech(k(i h− n v τ)) sech(k (i h− (n+ 1) v τ))

− 16h4 sech(k (i h− n v τ)) sech(k (i h− (n+ 1) v τ))F
(28)

F =−B2 τ2 tanh(k((i− 1)h− n v τ)) tanh(k((i+ 1)h− n v τ))

− 4B2 τ2 tanh(k(i h− n v τ)) tanh(k (i h− (n+ 1) v τ))

+ 4B2 h4 tanh(k(i h− n v τ)) tanh(k (i h− (n+ 1) v τ)) + 2B τ2 h2 tanh(k ((i− 1)h− (n+ 1) v τ))

+ 2B τ2 h2 tanh(k ((i+ 1)h− (n+ 1) v τ))
(29)

where B, k, v can take any values in IR.

It thus exhibits the existence of lattice solitons, related to the discrete numerical
scheme, of the form

un
i = Un

i sech [k (i h− vi n τ)] +B tanh [k (i h− vi n τ)] , (B, k, v) ∈ IR3 (30)

5 Concluding remarks

The existence of spurious numerical lattice solitary waves in linear advection schemes
has been proved. Such lattice solitary waves, which are not solutions of the exact
continuous original equation, nevertheless satisfy the numerical scheme, appear-
ing as parasitic solutions of the correct one. Such schemes will be referred to as
structurally instable ones. Such spurious solitary waves have constant energy, and
therefore the numerical error norm does not vanish at arbitrary long integration
times on unbounded numerical domains.
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