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Singular perturbations of curved boundaries in dimension three.

The spectrum of the Neumann Laplacian.

Antoine Laurain∗ Sergey Nazarov† Jan Sokolowski‡

March 3, 2010

Abstract

We calculate the main asymptotic terms for eigenvalues, both simple and multiple, and eigenfunctions of the

Neumann Laplacian in a three-dimensional domain Ω(h) perturbed by a small (with diameter O(h)) Lipschitz cavern

ωh in a smooth boundary ∂Ω = ∂Ω(0). The case of the hole ωh inside the domain but very close to the boundary

∂Ω is under consideration as well. It is proven that the main correction term in the asymptotics of eigenvalues does

not depend on the curvature of ∂Ω while terms in the asymptotics of eigenfunctions do. The influence of the shape

of the cavern to the eigenvalue asymptotics relies mainly upon a certain matrix integral characteristics like the tensor

of virtual masses. Asymptotically exact estimates of the remainders are derived in weighted norms.

keywords. asymptotic analysis, singular perturbations, spectral problem, asymptotics of eigenfunctions and eigen-

values.

1 Introduction

1.1 Preamble

In the seventies and eighties of the last century two asymptotic methods, namely the method of matched [?] and com-

pound [4] expansions, were successfully developed to construct asymptotic expansions of solutions to elliptic boundary

value problems in domains with singularly perturbed boundaries as well as intrinsic functionals calculated for these

solutions. In this context the singular perturbation of the boundary means the creation of a small hole (opening) inside

the domain, smoothing corner and conical points or edges on the boundary and so on. Among the above-mentionned

functionals one finds the energy functional [?, ?, ?, ?], eigenvalues [?, ?, ?, ?, ?], the capacity [?] and others. The

theory of elliptic problems in singularly perturbed domains is presented in [?, 4] in much generality: systems of partial

differential equations, elliptic in the Agmon-Douglis-Nirenberg sense, many dimensional domains, two-scaled coeffi-

cients, miscellaneous perturbation types, and, besides, the procedures to construct and justify asymptotics of solutions,

a qualitative analysis of the problems is performed, that is "almost inverse" operators (paramatrices) are constructed,

asymptotically sharp estimates in weighted norms are derived and formulas for the index are obtained. The asymptotic

analysis of the Neumann Laplacian in a three-dimensional domain with a small cavern (Fig. 1 with the spatial domain

and its two-dimensional dummy) follows the general scheme in [?, 4] because a point on a smooth surface can be

readily regarded as the top of the cone R
3
+, i.e. the half-space. However, the most interesting and important question

cannot be answered by the general procedure which only gives a structure of the asymptotic ansätze, list problems to

be solved, proves the existence of needed solutions and provides the principal asymptotic forms. At the same time,

the procedure leaves open the appearance of logarithmic terms in the decomposition of the auxiliary solutions, the

detection of shape and integral characteristics of the perturbed domain that figure in the asymptotic expansions, and

annulling of certain asymptotic terms. These particularities are to be specified by a direct calculation which, quite
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often becomes a very complicated task.

In this paper we compute the main asymptotic terms of eigenvalues, simple and multiple, and eigenfunctions of

the Neumann problem for the Laplace operator in a three-dimensional domain Ω(h) with the small cavity ωh (Fig.

1); notice that the case of a small hole at the distance O(h) from the boundary ∂Ω (cf. the two-dimensional image in

Fig 2) is also under consideration. The unperturbed boundary ∂Ω = ∂Ω(0) must be smooth but both ∂ωh and ∂Ω(h)
can be Lipschitz. We prove that the main correction term O(h3) in the asymptotics for eigenvalues is independent of

the curvature of the surface ∂Ω at the point O which the cavity ωh shrinks to as h → +0, however some asymptotic

terms in the decomposition of eigenfunctions depend directly on the curvatures. The shape of the cavity influences the

eigenvalue correction term by a special integral characteristics, like the virtual mass tensor [7]. The major difficulty in

the treatment of perturbations of curved boundaries performed in this paper resides in the use of an appropriate system

of curvilinear coordinates to derive the asymptotic expansions.

Similar results on the boundary perturbations of spectral problems for the Laplace operator in two variables were

recently obtained in [?, ?]. We also mention publications on the perturbation of eigenvalues by smooth perturbations

of the boundary [?, ?, ?, ?], by a small hole inside a domain [?, ?, ?, ?, ?], [4, chapter 9], or by changing the type of

boundary conditions in a small part of ∂Ω [?, ?, ?]. We especially emphasize that the case of a small cavern in the flat

boundary is not interesting. Indeed, by the mirror reflection of the domain and the even extension of the eigenfunctions

(Fig. 3), one arrives at a domain with the interior being a small hole, and such class of perturbation problems has been

investigated more than 25 years ago (see citations above).

Figure 1: The domains Ω(h) and ω(h)

Figure 2: Small hole at the distance O(h) from the boundary
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Figure 3: Mirror reflection of a domain with flat boundary

1.2 Problem formulation

Let Ω ⊂ R
3 be a domain with a smooth boundary Γ. We assume that the origin O of the Cartesian coordinates

x = (x1, x2, x3) belongs to Γ. Since Γ is smooth, we can find a neighbourhood U of the point O such that there exists

a conformal application which maps U onto a neighbourhood of the origin in R
3, and thus there exists an orthonormal

curvilinear coordinate system (n, s, ν) in U (see Figure 4), where (s, ν) are the parameters associated with the local

Figure 4: Orthonormal curvilinear coordinate system (n, s, ν) in U

surface parameterization of the origin O, and n stands for the oriented distance to Γ, with n > 0 in Ωc = R
3 \ Ω.

We denote (en, es, eν) the basis corresponding to the curvilinear coordinate system (n, s, ν). By ω ⊂ R
3
− =

(−∞, 0) × R
2 (see Figure 5), we understand an open set (not necessarily connected) with the compact closure ω =

ω ∪ ∂ω and such that ∂ω is Lipschitz. The boundary ∂Ξ of the infinite domain Ξ = R
3
− \ ω is also assumed to be

Lipschitz.

Introduce a family of domains depending on the small parameter h > 0 (see Figure 1),

ωh = {(n, s, ν) | ξ = (ξ1, ξ2, ξ3) := (h−1n, h−1s, h−1ν) ∈ ω}, (1.1)

Ω(h) = Ω \ ωh. (1.2)

Let us consider the spectral Neumann problem

−∆xu
h(x) = λhuh(x), x ∈ Ω(h), (1.3)

∂nhuh(x) = 0, x ∈ Γ(h) := ∂Ω(h), (1.4)
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Figure 5: The domain ω

with the Laplace operator ∆x, and where ∂nh = nh · ∇x denotes the normal derivative along the outer normal nh.

Problem (1.3)-(1.4) admits the sequence of eigenvalues

0 = λh
0 < λh

1 ≤ λh
2 ≤ ... ≤ λh

m ≤ ...→ +∞, (1.5)

where the multiplicity is explicitely indicated. The corresponding eigenfunctions uh
0 , u

h
1 , u

h
2 , ..., u

h
m, ... are subject to

the orthogonality and normalization conditions

(uh
p , u

h
m)Ω(h) = δp,m, p,m ∈ N0, (1.6)

where (., .)D is the natural scalar product in the Lebesgue space L2(D), and δp,m the Kronecker symbol.

Our aim is to derive asymptotic formulae for the solution of the spectral problem (1.3)-(1.4) as h → 0. We will

intermediately conclude that for a fixed index m and with h → 0, the entry λh
m of (1.5) converges to the element λ0

m

in the sequence

0 = λ0
0 < λ0

1 ≤ λ0
2 ≤ ... ≤ λ0

m ≤ ...→ +∞, (1.7)

of eigenvalues for the limit spectral Neumann problem

−∆xv
0(x) = λ0v0(x), x ∈ Ω, (1.8)

∂nv
0(x) = 0, x ∈ Γ. (1.9)

Therefore we will use an eigenfunction v0 as our first approximation of uh. The eigenfunctions of (1.8)-(1.9) are

smooth in Ω and admit the orthogonality and normalization conditions

(v0
p, v

0
m)Ω = δp,m, p,m ∈ N0, (1.10)

1.3 Preliminary description of the asymptotic procedure

We use the following asymptotic ansätze for λh
m and uh

m.

λh
m = λ0

m + h3λ′m + ... (1.11)

uh
m(x) = v0

m(x) + hχ(x)w1
m(ξ) + h2χ(x)w2

m(ξ) + h3v3
m(x) + ... (1.12)
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Here v0
m and v2

m are terms of regular type, and w1
m, w2

m are terms of the boundary layer type, which depend on the

rapid variables ξ = (ξ1, ξ2, ξ3). Finally χ ∈ C∞(Ω) is a cut-off function, which is equal to one in a fixed, independent

of h, neighbourhood of the point O and is null outside of a bigger neighbourhood U .

We emphasize that the coefficients of h1 and h2 vanish in (1.11) and the same happens for regular terms in (1.12).

This simplification of the asymptotic ansätze is not predicted by the general procedure in [4] but is a result of our

further calculations, and we now accept it as granted and verify this assumption in the sequel.

Inserting v0
m and λ0

m into the singularly perturbed problem (1.3)-(1.4) brings a discrepancy into the boundary

condition on the surface ∂Ω(h) ∩ ∂ωh of the cavern ωh. This discrepancy cannot be compensated by a function

depending on the variables n, s, ν smoothly and, using the stretched curvilinear coordinates ξ from (1.1), we come

across the boundary layer phenomenon so that the first correction term becomes of the boundary layer type and must

be found out while solving the Neumann problem in the infinite domain Ξ (Fig. 5). The corresponding solution decays

at infinity as a linear combination of derivatives of the fundamental solution for the Laplacian,

h (c1∂ξ1
+ c2∂ξ2

)
1

4π|ξ|
, (1.13)

and after the multiplication with an appropriate cut-off function the main asymptotic term (1.13) of the boundary layer

produces lower order discrepancies in the differential equation (1.3) and the Neumann conditions (1.4) on ∂Ω(h)\∂ωh.

The expression (1.13) can be rewritten in the original coordinates n, s, ν and becomes

h3 (c1∂s + c2∂ν) (4π(n2 + s2 + ν2)1/2)−1. (1.14)

We emphasize that there appears an additional small factor and that the function (1.14) is not singular at a distance

from the point O where the discrepancies are mainly located due to the cut-off function. The latter allows to compen-

sate for them by means of the lower-order term of regular type (in the variable x) while the compatibility condition in

the problem for this function gives the main asymptotic correction of the eigenvalue λ0
j .

The above is a very simplified description of the asymptotic procedure to construct the compound expansion of

the solution to the spectral problem (1.3)-(1.4). Much complication arises from the fact that coefficients of differen-

tial operators written in the curvilinear coordinates are no longer constant. The latter crucially influences both, the

procedure to construct asymptotics and the derivation of estimates for the asymptotic remainders. For example, the

discrepancies of the expression (1.13) appears in the problem in Ξ for the next term of the boundary layer type as well

as in the problem for the above-mentionned next element of regular type. The correct statement of these problems is

made by means of the procedure to rearrange discrepancies [4] which is silently used many times in our paper.

The most complicated task is to examine the behaviour of regular and boundary layer solutions for x→ O and ξ → ∞,

respectively. The general structure is predicted by the Kondratiev theory [1] (see, e.g., monographs [6, ?]) but exact

formulas for the decompositions of the solutions need scrupulous and cumbersome calculations.

1.4 The asymptotic ansätze and the structure of the paper

In the paper, the method of compound asymptotic expansions [4] is applied to identify different terms of ansätze

(1.11)-(1.12). In section 2.1 and 2.2 the first and second boundary layers w1
m and w2

m in (1.11), respectively, are found

out. Both the functions w1
m and w2

m enjoy, unlike in dimension two, the canonic property of boundary layers i.e. they

decay for |ξ| → ∞, with order |ξ|−2 and |ξ|−1, respectively. The correction function of regular type v3
m in (1.12) is

determined in section 2.3. From this correction we deduce λ′m of ansatz (1.11), given by (2.50) in the case of a simple

eigenvalue λ0
m and by (2.58) in the case of multiple eigenvalues in section 2.4.

The justification of asymptotics is based on the weighted Poincaré inequality (Lemma 1). We then reduce the

problem to an abstract equation in a convenient Hilbert space and use the lemma on "almost eigenvalues and eigen-

functions" (Lemma 3) which allows to give estimates for the remainders in ansätze (1.11)-(1.12), for simple or multiple

eigenvalues. The justification of the asymptotics consists of many steps: we need to estimate a remainder which is a
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combination of the terms appearing in ansätze (1.11)-(1.12). The remainder is then divided into several terms which,

when combined in an appropriate fashion, provide an estimate of order h7/2. The estimates of different terms rely

mainly on the analysis of the behaviour of the boundary layers as x→ O and |ξ| → ∞. Finally we derive in Theorem 1

the estimates for the remainders corresponding to ansätze (1.11)-(1.12), i.e. for the eigenvalues and the eigenfunctions,

respectively. In the proof of Theorem 1, we use Lemma 3 to obtain the existence of a certain number of eigenvalues

close to the eigenvalue λ0
m with the multiplicity κm in the sense of the desired estimate, and the main task of the proof

is then to show that these eigenvalues exactly coincide with the eigenvalues corresponding to a small perturbation of

the eigenvalue λ0
m with the multiplicity κm.

2 Constructing the asymptotics

2.1 First term of the boundary layer type

Let P be a point in the neighbourhood U of O, and PΓ its projection onto Γ. Then we have

P = nen + PΓ(s, ν).

Thus, the components of the metric tensor are given by (see [?, pp. 83])

gnn = |∂nP |
2 = |en|

2 = 1,

gss = |∂sP |
2 = |n∂sen + ∂sPΓ(s, ν)|2

= |nκs(s, ν)es + nτs(s, ν)eν + es|
2

= (1 + nκs(s, ν))
2 + (nτs(s, ν))

2,

gνν = |∂νP |
2 = |ν∂νen + ∂νPΓ(s, ν)|2

= |νκν(s, ν)eν + nτν(s, ν)es + eν |
2

= (1 + nκν(s, ν))2 + (nτν(s, ν))2,

where κs and κν stand for the two curvatures corresponding to the curves ν = const and s = const containing the

surface point (s, ν), respectively, while τs and τν are the torsions of these curves, respectively. Since the coordinates

system corresponding to (n, s, ν) is orthogonal, we have gns = gnν = gsν = 0. We can always assume, shrinking the

neighbourhood U , that 1 + nκs > 0 and 1 + nκν > 0 in U . The Jacobian is thus equal to

J(n, s, ν) =
[
(1 + nκs)

2 + (nτs)
2
]1/2 [

(1 + nκs) + (nτν)2
]1/2

The Laplace operator ∆x in the curvilinear coordinates (n, s, ν) admits the representation

∆x = J−1

[
∂n(J∂n) + ∂s

(
J

gss
∂s

)
+ ∂ν

(
J

gνν
∂ν

)]

= ∂2
n + g−1

ss ∂
2
s + g−1

νν ∂
2
ν + J−1∂nJ∂n

+J−1

([
∂sJ

gss
−
J∂sgss

g2
ss

]
∂s +

[
∂νJ

gνν
−
J∂νgνν

g2
νν

]
∂ν

)
(2.1)

Under the transformation to the rapid variable ξ = (ξ1, ξ2, ξ3) introduced in (1.1), the elements depending on the

torsion in J(n, s, ν) are of order h2 and thus the Laplace operator is independent of the torsions at orders h−2 and

h−1, i.e.,

∆x = h−2∆ξ + h−1
(
κs(O)(∂ξ1

− 2ξ1∂
2
ξ2

) + κν(O)(∂ξ1
− 2ξ1∂

2
ξ3

)
)

+ ... (2.2)

In the coordinates (n, s, ν) the gradient takes the form

∇x =
(
gnn

−1/2∂n, gss
−1/2∂s, gνν

−1/2∂ν

)

=
(
∂n, (1 + nκs)

−1∂s, (1 + nκν)−1∂ν

)
.
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The decomposition of the unit normal vector nh to Ω(h) in the basis (en, es, eν) is as follows

nh = d−1/2 [N1Jen +N2(1 + nκν)es +N3(1 + nκs)eν ] (2.3)

with

d = [N1J ]2 + [N2(1 + nκν)]2 + [N3(1 + nκs)]
2

and N = (N1, N2, N3) is the outward unit normal vector on the boundary ∂Ξ ⊂ R
3. Therefore, denoting by ∂N the

directional derivative along N , we obtain in the rapid coordinates the formula

∂nh = ∇x · nh

= d−1/2

(
N1J∂n +N2

1 + nκν

1 + nκs
∂s +N3

1 + nκs

1 + nκν
∂ν

)

= h−1∂N + ξ1(N
2
2 κs(O) +N2

3 κν(O))∂N − 2ξ1(N2κs(O)∂ξ2
+N3κν(O)∂ξ3

) + ... (2.4)

In view of the homogeneous Neumann condition (1.9), the function v0 in the Ch-neighbourhood of the point O has

the expansion

v0(x) = v0(O) + s∂sv
0(O) + ν∂νv

0(O)

+
1

2
(n2∂2

nv
0(O) + s2∂2

sv
0(O) + ν2∂2

νv
0(O) + 2sν∂2

sνv
0(O)) +O((n2 + s2 + ν2)3/2)

= v0(O) + h(ξ2∂sv
0(O) + ξ3∂νv

0(O))

+
1

2
h2(ξ21∂

2
nv

0(O) + ξ22∂
2
sv

0(O) + ξ23∂
2
νv

0(O) + 2ξ2ξ3∂
2
ξ2ξ3

v0(O)) +O(h3).

Under the coordinate dilation by factor h−1 and setting h = 0, the domain Ω(h) turns into Ξ = R
3 \ ω, thus the

boundary layer w1 is defined in Ξ. Replacing uh and ∆, ∂nh by their expansions in (1.12) and (2.2), (2.4) and

collecting terms of order h−1 in the equation, and of order h0 in the boundary conditions, setting formally h = 0, we

arrive at the problem

−∆ξw
1(ξ) = 0, ξ ∈ Ξ, (2.5)

∂Nw
1(ξ) = −N2(ξ)∂sv

0(O) −N3(ξ)∂νv
0(O), ξ ∈ ∂Ξ. (2.6)

We have the evident formulae
∫

∂Ξ∩∂ω

Nk(ξ) dsξ = 0,

∫

∂Ξ∩∂ω

ξjNk(ξ) dsξ = −δj,k mes3(ω), j, k = 1, 2, 3. (2.7)

The first formula in (2.7) shows that the right-hand side of the boundary condition in (2.6) has null integral over the

surface ∂Ξ; note thatN2 = N3 = 0 on the plane surface ∂Ξ\∂ω of the boundary, and, therefore, the right-hand side is

compactly supported. Thus, there exists a unique generalized solution w1 ∈ H1
loc(Ξ) of problem (2.5)-(2.6), decaying

at infinity. The solution is represented in the form

w1(ξ) = ∂sv
0(O)W2(ξ) + ∂νv

0(O)W3(ξ), (2.8)

where W2 and W3 are canonical solutions of the Neumann problem

−∆ξWk(ξ) = 0, ξ ∈ Ξ, (2.9)

∂nWk(ξ) = −Nk(ξ), ξ ∈ ∂Ξ. (2.10)

They admit the representation

Wk(ξ) = −
3∑

j=2

mkj

2π

ξj
ρ3

+O(|ξ|−3), |ξ| ≥ R, (2.11)

where the coefficients mkj have been introduced in Note G on virtual mass tensor in the classical monograph [7].
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Figure 6: Even extension of the domain Ξ

Remark 1. The approach we discussed in Section 1, with even extension of a harmonic function over the boundary

with the homogeneous Neumann condition (see Figures 3 and 6), is applicable to the function W . As a result, problem

(2.9)-(2.10) can be transformed to the exterior Neumann problem in the domain

Ξ00 = {ξ = (ξ1, ξ2, ξ3) ∈ R
3 : (−|ξ1|, ξ2, ξ3) /∈ ω}. (2.12)

In this way, the extended functionsW2,W3 become solutions to exactly the same problems as introduced in monograph

[7, page 239] for the description of the virtual mass tensor. Hence, the first term on the right-hand side of (2.14) is

half the corresponding term of the virtual mass matrix (see Note G in [7]).

In the spherical coordinate system (ρ, θ, φ) we have (ξ1, ξ2, ξ3) = (ρ cosφ, ρ cos θ sinφ, ρ sin θ sinφ) and

W2(ξ) = −
m22

2π
ρ−2 cos θ sinφ−

m23

2π
ρ−2 sin θ sinφ+O(ρ−3),

W3(ξ) = −
m33

2π
ρ−2 sin θ sinφ−

m32

2π
ρ−2 sin θ sinφ+O(ρ−3).

In order to observe general properties of mkj , we apply Green’s formula on the set ΞR = {ξ ∈ Ξ : ρ < R} with the

functions Wk and Yk = ξk +Wk, k = 2, 3,

∫

∂Ξ

Y2∂NW2dsξ =

∫

{ξ∈R3
−

:ρ=R}

W2∂ρY2 − Y2∂ρW2 dsξ =

∫

{ξ∈R3
−

:ρ=R}

W2∂ρξ2 − ξ2∂ρW2 dsξ

= −

∫ 2π

0

∫ π

π/2

(
3m22

2π
R−2[cos θ sinφ]2

)
R2 sinφdφdθ

−

∫ 2π

0

∫ π

π/2

(
3m23

2π
R−2[cos θ sin θ][sinφ]2

)
R2 sinφdφdθ +O(R−1)

= −
3m22

2π

∫ 2π

0

∫ π

π/2

cos2 θ sin3 φdφdθ +O(R−1)

= −m22 +O(R−1).

On the other hand, applying Green’s formula in ω and changing the direction of the normal, we have

∫

∂Ξ

Yj∂NWkdsξ =

∫

∂Ξ

Wj∂NWkdsξ −

∫

∂Ξ

ξjNkdsξ =

∫

Ξ

∇ξWk · ∇ξWj dξ + δkj mes3(ω). (2.13)

Therefore as R→ ∞, and in a similar way for m33 and m23 = m32 we get

mkj = −

∫

Ξ

∇ξWk · ∇ξWj dξ − δkj mes3(ω), k, j = 1, 2. (2.14)
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In other words, the 2 × 2-matrix

m(Ξ) =

(
m22 m23

m32 m33

)
(2.15)

is symmetric and negative definite because it is the sum of two Gram matrices.

Example 1. For a semi-ball of radius R, m(Ξ) is a multiple of the identity matrix with the coefficient −πR3.

Example 2. If ω is a plain crack then mes3(ω) = 0 and the matrix (2.15) becomes singular. For example, if ω belongs

to the plane {ξ2 = 0}, then m33 = m23 = 0 while obviously W3 = 0. However, for a curved or broken crack (cf.

Figure 7b) the solutions W2 and W3 are linear independent and m(Ξ) is non-degenerate although mes3(ω) = 0.

Figure 7: straight a) and broken b) cracks

2.2 Second term of the boundary layer type

The right-hand sides in the problem

−∆ξw
2(ξ) = F 2(ξ), ξ ∈ Ξ, (2.16)

∂Nw
2(ξ) = G2(ξ), ξ ∈ ∂Ξ. (2.17)

are to be determined using (1.12), (2.2) and (2.4), and collecting terms of order h0 in the equation, and of order h1 in

the boundary conditions. As a result, we arrive at the following functions written in rapid variables

F 2(ξ) = [κs(O)(∂ξ1
− 2ξ1∂

2
ξ2

) + κν(O)(∂ξ1
− 2ξ1∂

2
ξ3

)]w1(ξ) (2.18)

and

G2(ξ) = −N1ξ1∂
2
nv

0(O) −N2ξ2∂
2
sv

0(O) −N3ξ3∂
2
νv

0(O) − (N2ξ3 +N3ξ2)∂
2
sνv

0(O)

−ξ1(N
2
2 κs(O) +N2

3 κν(O))(N2∂sv
0(O) +N3∂νv

0(O))

+2N2ξ1κs(O)∂sv
0(O) + 2N3ξ1κν(O)∂νv

0(O)

−ξ1(N
2
2 κs(O) +N2

3 κν(O))∂Nw
1(ξ)

+2N2ξ1κs(O)∂ξ2
w1(ξ) + 2N3ξ1κν(O)∂ξ3

w1(ξ)

=: G2
1(ξ) +G2

2(ξ) +G2
3(ξ) +G2

4(ξ) +G2
5(ξ). (2.19)
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We immediately notice that G2
2(ξ) + G2

4(ξ) = 0 according to the boundary conditions (2.6). In view of formulae

(2.18) and (2.11), the following expansion holds true:

F 2(ξ) = [κs(O)(∂ξ1
− 2ξ∂2

ξ2
) + κν(O)(∂ξ1

− 2ξ∂2
ξ3

)][∂sv
0(O)W2(ξ) + ∂νv

0(O)W3(ξ)]

= κs(O)∂sv
0(O)

m2

π

(
15
ξ1ξ2
ρ5

− 30
ξ1ξ

3
2

ρ7

)
+ κν(O)∂νv

0(O)
m3

π

(
15
ξ1ξ3
ρ5

− 30
ξ1ξ

3
3

ρ7

)

+κs(O)∂νv
0(O)

m3

π

(
−27

ξ1ξ3
ρ5

+ 30
ξ31ξ3 + ξ1ξ

3
3

ρ7

)

+κν(O)∂sv
0(O)

m2

π

(
−27

ξ1ξ2
ρ5

+ 30
ξ31ξ2 + ξ1ξ

3
2

ρ7

)

+O(ρ−2), ρ→ ∞. (2.20)

The function

U2(ξ) = [κs(O)(∂ξ1
− 2ξ∂2

ξ2
) + κν(O)(∂ξ1

− 2ξ∂2
ξ3

)][∂sv
0(O)W2(ξ) + ∂νv

0(O)W3(ξ)]

= κs(O)∂sv
0(O)

m2

π

(
15
ξ1ξ2
6ρ3

− 30
ξ31ξ2 + ξ1ξ

2
3ξ2 + ξ1ξ

3
2

20ρ5

)

+κν(O)∂νv
0(O)

m3

π

(
15
ξ1ξ3
6ρ3

− 30
ξ31ξ3 + ξ1ξ

2
2ξ3 + ξ1ξ

3
3

20ρ5

)

+κs(O)∂νv
0(O)

m3

π

(
−27

ξ1ξ3
6ρ3

− 30
3ξ31ξ3 + 2ξ1ξ

2
2ξ3 + 3ξ1ξ

3
3

20ρ5

)

+κν(O)∂sv
0(O)

m2

π

(
−27

ξ1ξ2
6ρ3

− 30
3ξ31ξ2 + 2ξ1ξ

2
3ξ2 + 3ξ1ξ

3
2

20ρ5

)

has the homogeneity order −1 (the same as for the fundamental solutions) and compensates for the leading term of

F 2(ξ). Therefore, the expansion of w2(ξ) at infinity can be written as follows :

w2(ξ) = aρ−1 + U2(ξ) +O(ρ−2). (2.21)

Remark 2. The formula z(ξ) = z0(ξ) +O(ρ−p) used in (2.11) and (2.20), (2.21) means that

z(ξ) = z0(ξ) + z̃(ξ), |∇q
ξ z̃(ξ)| ≤ cqρ

−p−q, q = 0, 1, . . . , ρ = |ξ| ≥ R0; (2.22)

where ∇q
ξ z̃ is the collection of all order q derivatives of the function z̃, and the radius R0 is selected such that

ω ⊂ {ξ : ρ < R0}. For a solution w1 of problem (2.5)-(2.6) the estimate of form (2.22) for the remainder w̃1

is straightforward, since the remainder verifies the Laplace equation in the set {ξ ∈ R
2 : ρ > R0}. For such an

equation, e.g., the Fourier method can be used in order to provide a solution representation in the form of a convergent

series, with harmonic functions decaying at infinity. The pointwise estimates of the remainder in the representation

(2.21) are justified again by the general theory (see [3] and, e.g., [6, Chapter 3] ).

To evaluate the coefficient a, we compute the following integrals on the semi-sphere of radius R taking the expan-

sion (2.21) into account :
∫

ΞR

F 2(ξ)dξ +

∫

∂ω∩∂Ξ

G2(ξ)dsξ = −

∫

∂ΞR

∂Nw
2(ξ)dsξ +

∫

∂ω∩∂Ξ

G2(ξ)dsξ

= −

∫

{ξ∈R3
−

:ρ=R}

∂ρw
2(ξ)dsξ,

where we have used the fact that G2(ξ) = 0 on ∂ΞR \ ∂ω due to the evident relations ξ1 = 0 and N2 = N3 = 0 on

∂ΞR \ ∂ω. In view of expansion (2.21) we obtain

∂ρw
2(ξ) = −aρ−2 + ∂ρU

2(ξ) +O(ρ−3) = −aρ−2 − ρ−1U2(ξ) +O(ρ−3)
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and thus

−

∫

{ξ∈R3
−

:ρ=R}

∂ρw
2(ξ)dsξ = a

∫

{ξ∈R3
−

:ρ=R}

ρ−2dsξ −

∫

{ξ∈R3
−

:ρ=R}

∂ρU
2(ξ)dsξ +O(R−1).

= 2πa+O(R−1). (2.23)

Note that all terms in U2(ξ) are odd in either ξ2, or ξ3, thus it is also true for ∂ρU
2(ξ) so that

∫

{ξ∈R3
−

:ρ=R}

∂ρU
2(ξ) = 0.

Now we study the integral
∫

∂ω∩∂Ξ
G2(ξ)dsξ using (2.19). If we denote by ω+ the domain obtained by adding to ω its

mirror image with respect to the plane ξ1 = 0 we, in view of (2.7), can write

∫

∂ω∩∂Ξ

G2
1(ξ)dsξ =

1

2

∫

∂ω+

G2
1(ξ)dsξ

= −
1

2

3∑

k=1

∂2
kv

0(O)

∫

∂ω+

Nkξkdsξ −
1

2
∂2

sνv
0(O)

∫

∂ω+

(N2ξ3 +N3ξ2)dsξ

= −
1

2
λ0v0(O) mes3(ω

+) = −λ0v0(O) mes3(ω). (2.24)

According to (2.7), we also have

∫

∂ω∩∂Ξ

G2
3(ξ)dsξ = 0 .

Now we process the integral
∫
ΞR

F 2(ξ)dξ. Owing to (2.18), we first compute

∫

ΞR

∂ξ1
(ξ)dsξ =

∫

∂ω∩∂Ξ

N1(ξ)w
1(ξ)dsξ +

∫

{ξ∈R3
−

:ρ=R}

ρ−1ξ1w
1(ξ)dsξ. (2.25)

The last integral on the right-hand side of (2.25) is of order R−1. Indeed, the main terms of w1(ξ) are of order R−2,

however, according to (2.11), they are odd functions in either the variable ξ2, or ξ3. Therefore, the terms O(1) vanish

in the last integral on the right-hand side of (2.25) due to the full symmetry of the semi-sphere {ξ ∈ R
3
− : ρ = R}.

The first integral on the right-hand side of (2.25) is equal to

∫

∂ω∩∂Ξ

N1(ξ)w
1(ξ)dsξ =

∫

∂ω∩∂Ξ

w1(ξ)∂Nξ1dsξ

=

∫

∂ω∩∂Ξ

ξ1∂Nw
1(ξ)dsξ +

∫

{ξ∈R3
−

:ρ=R}

(ξ∂ρw
1(ξ) − w1(ξ)∂ρξ1)dsξ.

The integral
∫
{ξ∈R3

−
:ρ=R}

(ξ1∂ρw
1(ξ) − w1(ξ)∂ρξ1)dsξ is also of order R−1 by the same argument as above, since

∂ρw
1(ξ) has the same symmetry in ξ2 and ξ3 as w1(ξ). We also have

∫
∂ω∩∂Ξ

ξ1∂Nw
1(ξ)dsξ = 0 due to the boundary

conditions (2.10) and the second equality in (2.7).

We compute now

−2κs(O)

∫

ΞR

ξ1∂
2
ξ2
w1(ξ)dξ = −2κs(O)

∫

∂ω∩∂Ξ

ξ1N2(ξ)∂ξ2
w1(ξ)dsξ (2.26)

−2κs(O)

∫

{ξ∈R3
−

:ρ=R}

ρ−1ξ1ξ2∂ξ2
w1(ξ)dsξ. (2.27)
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The latter integral is of order R−1, hence the leading asymptotic term of order ρ−2 coming from the expression ξ2∂ξ2

is still odd with respect to the variable ξ2 or ξ3, therefore it is annihilated by integration. The first integrand on the

right-hand side in (2.26) is the opposite of the first term in G2
5(ξ), and, hence, they cancel each other. Finally, recalling

that G2
2(ξ) +G2

4(ξ) = 0, collecting the aforementionned integrals and taking (2.24) into account, we pass to the limit

R→ ∞ and get the equality

a = −
1

2π
λ0v0(O)mes3(ω).

Note that the coefficient a does not depend on the curvatures κs(O) or κν(O), although the original expressions (2.19)

and (2.20) do.

2.3 The correction term of regular type

We start by writing the boundary layers in the following condensed form

wq(ξ) = tq(ξ) +O(ρq−4), ρ→ ∞, q = 1, 2, (2.28)

where t1 and t2 denote the sum of functions of the homogeneity orders −2 and −1 in (2.8), (2.11) and (2.21), respec-

tively. In other words, t1(ξ) = h2t1(n, s, ν) and t2(ξ) = ht2(n, s, ν). Outside a small neighbourhood of the point O
we have,

hw1(ξ) + h2w2(ξ) = h3(t1(n, s, ν) + t2(n, s, ν)) +O(h4)

=: h3T (x) +O(h4). (2.29)

In view of the multiplier h3, the expression for T should be present in the following problem for the function v3 of

regular type in the asymptotic ansatz (1.12)

−∆xv
3(x) = λ0v3(x) + λ′v0(x) + f3(x), x ∈ Ω, (2.30)

∂nv
3(x) = g3(x), x ∈ Γ. (2.31)

The first two terms on the right-hand side of (2.30) are obtained if we replace the eigenvalues and eigenfunctions in

(1.3) by the ansätze (1.11)-(1.12) and collect terms of order h3 written in the slow variables x. The right-hand side g3

of the boundary condition (2.31) is the discrepancy which results from the multiplication of the boundary layers with

the cut-off function χ. If we assume that in the vicinity of the boundary the cut-off function χ depends only on the

tangential variables s and ν, and it is independent of the normal variable n, then g3 = 0, since the boundary conditions

(2.6) (2.17) on ∂Ξ \ ∂ω are homogeneous. It is clear that such a requirement can be readily satisfied, and thus we

further assume g3 = 0. The correction f3 in (2.30) is given by

f3(x) = λ0χ(x)T (x) + ∆x(χ(x)T (x)). (2.32)

We will verify that the function f3, smooth outside a neighbourhood of the origin O, is of the growth O(|x|−2) as

x→ O which means that f3 belongs to H−1(Ω), since a function of order |x|−5/2+δ is in H−1(Ω) for all δ > 0. This

ensures that f3 is admissible for the right-hand side of equation (2.30). The observation is obvious for the first term of

f3, since t1(n, s) = O(|x|−2) and t2(n, s) = O(|x|−1). Let us consider the second term ∆x(χ(x)T (x)). According

to (2.1), the representation of the Laplacian in curvilinear coordinates can be rewritten in the form

∆x = L0(∂n, ∂s, ∂ν) + L1(n, ∂n, ∂s, ∂ν) + L2(n, s, ν, ∂n, ∂s, ∂ν), (2.33)

with the ingredients

L0(∂n, ∂s, ∂ν) = (∂2
n + ∂2

s + ∂2
ν) , (2.34)

L1(n, ∂n, ∂s, ∂ν) = κs(O)(∂n − 2n∂2
s ) + κν(O)(∂n − 2n∂2

ν) , (2.35)

L2(n, s, ν, ∂n, ∂s, ∂ν) = a11∂
2
n + a22∂

2
s + a33∂

2
ν + a1∂n + a2∂s + a3∂ν , (2.36)
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while the functions ajj and aj are smooth in a neighbourhood of O, in variable n and s, and in addition they have the

property

ajj(0, 0) = 0, ∂kajj(0, 0) = 0, aj(0, 0) = 0, j = 1, 2, 3. (2.37)

Therefore, we can write

∆xT = L0t1 + (L0t2 + L1t1) + L1t2 + L2(t1 + t2). (2.38)

We readily check that L0t1 = 0 and L0t2+L1t1 = 0 due to the definition ofw1 andw2, see (2.5) and (2.16). Function

t2 is of order |x|−1 thus L1t2 is of order |x|−2, and L2(t1 + t2) is also of order |x|−2 due to (2.37). Thus, we have

concluded that g3 = 0 and f3 ∈ H−1(Ω).

According to the Fredholm theorem, and under the assumption that λ0 is a simple eigenvalue, the problem (2.30)-

(2.31) with the described right-hand sides admits a solution v3 in the Sobolev spaceH1(Ω) if and only if the following

orthogonality condition is satisfied by the right-hand side of (2.30)-(2.31) :

λ′(v0, v0)Ω + (f3, v0)Ω + (g3, v0)∂Ω = 0. (2.39)

Owing to the normalization condition and since g3 = 0, relation (2.39) becomes

λ′ = −(f3, v0)Ω. (2.40)

Integral of the product f3v0 is convergent, which means that

(f3, v0)Ω = lim
δ→+0

∫

Ωδ

(λ0χT + ∆x(χT ))v0 dx, (2.41)

where Ωδ = Ω \ {x : n2 + s2 + ν2 ≤ δ2}. The surface patch Sδ = ∂Ωδ \ ∂Ω turns out to be a semi-sphere in the

curvilinear coordinate system. We imitate the spherical coordinate system in the curvilinear coordinates by setting

n = r sin θ cosϕ, s = r sin θ sinϕ and ν = r cos θ while denoting (r, ϕ, θ) the spherical coordinate system, with

r = hρ ≥ 0, ϕ ∈ (−π/2, π/2), θ ∈ (0, π). Using Green’s formula for the smooth functions T and v0 in the domain

Ωδ yields ∫

Ωδ

f3v0 dx =

∫

Sδ

(v0∂NT − T∂Nv
0) dsx. (2.42)

Let us observe that dsx = d(n, s)1/2J(n, s) r2 sin θdθdϕ on Sδ , and according to formulae (2.3) the derivative ∂NS

along the normal to the patch Sδ satisfies the relation

∂NS
T = d1/2(Nn∂nT +Ns∂sT +Nν∂νT ) ,

where

Nn = J sin θ cosϕ , Ns = (1 + nκν) sin θ sinϕ , Nν = cos θ(1 + nκs) , (2.43)

d = J2 sin2 θ cos2 ϕ+ (1 + nκν)2 sin2 θ sin2 ϕ+ (1 + nκs) cos2 θ.

We can split the integral (2.42) into several pieces
∫

Ωδ

f3v0 dx = I1 + I2 + I3 + I4 + o(1) (2.44)

with

I1 =

∫ π/2

−π/2

∫ π

0

v0(O)∂NS
Tδ2 sin θdθdφ ,

I2 =

∫ π/2

−π/2

∫ π

0

v0(O)∂NS
Tn(κs(O)(1 + sin2 θ cos2 ϕ+ cos2 θ) + κν(O)(1 + sin2 θ))δ2 sin θdθdφ ,

I3 =

∫ π/2

−π/2

∫ π

0

(∂sv
0(O)s∂NS

T + ∂νv
0(O)ν∂NS

T )δ2 sin θdθdφ ,

I4 = −

∫ π/2

−π/2

∫ π

0

T∂NS
v0d1/2J δ2 sin θdθdφ .
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In view of formulae (2.43), we get the following expansion for ∂NS
T :

∂NS
T = ∂rT + n[∂nT (κν(O) cos2 θ + κs(O)(sin2 θ sin2 ϕ)) sin θ cosϕ

+∂sT (κν(O) cos2 θ + κs(O)(sin2 θ sin2 ϕ− 1)) sin θ sinϕ

+∂νT (−κν(O) cos2 θ + κs(O)(sin2 θ sin2 ϕ)) cos θ] + o(δ).

The asymptotic expansions of integrands in I1 and I2 already derived, lead to

I1 + I2 = v0(O)δ2
∫ π/2

−π/2

∫ π

0

∂rT sin θdθdφ

+v0(O)δ

∫ π/2

−π/2

∫ π

0

n[n∂nT (κν(O) cos2 θ + κs(O)(sin2 θ sin2 ϕ))

+ s∂sT (κν(O) cos2 θ + κs(O)(sin2 θ sin2 ϕ− 1))

+ ν∂νT (−κν(O) cos2 θ + κs(O)(sin2 θ sin2 ϕ))]dθdφ+ o(1).

After simplification of the expression in brackets we get

I1 + I2 =v0(O)δ2
∫ π/2

−π/2

∫ π

0

∂rT sin θdθdφ

+ v0(O)κs(O)δ

∫ π/2

−π/2

∫ π

0

n(2n∂nT + s∂sT + 2ν∂νT )dθdφ

+ v0(O)κν(O)δ

∫ π/2

−π/2

∫ π

0

n(2n∂nT + 2s∂sT + ν∂νT )dθdφ+ o(1)

=v0(O)δ2
∫ π/2

−π/2

∫ π

0

∂rT sin θdθdφ+ o(1).

In the calculation above, we have taken into account the fact that the expressions 2n∂nT + s∂sT + 2ν∂νT and

2n∂nT + 2s∂sT + ν∂νT are odd in either s, or ν, therefore, the corresponding integrals over the patch Sδ vanish.

For integrals I3 and I4, we have

I3 + I4 =∂sv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(s∂NS
T − T∂NS

s) sin θdθdφ

+ ∂νv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(ν∂NS
T − T∂NS

ν) sin θdθdφ+ o(1)

=∂sv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(s∂rt
1 − t1∂rs)|r=δ sin θdθdφ

+ ∂νv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(ν∂rt
1 − t1∂rν)|r=δ sin θdθdφ+ o(1).

Gathering all the integrals in (2.44), we obtain

∫

Ωδ

f3v0 dx =v0(O)δ2
∫ π/2

−π/2

∫ π

0

∂rT |r=δ sin θdθdφ (2.45)

+ ∂sv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(s∂rt
1 − t1∂rs)|r=δ sin θdθdφ (2.46)

+ ∂νv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(ν∂rt
1 − t1∂rν)|r=δ sin θdθdφ+ o(1). (2.47)
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The first integral in (2.45) is equal to

∫ π/2

−π/2

∫ π

0

∂rT |r=δ sin θdθdφ =

∫ π/2

−π/2

∫ π

0

∂rt
1|r=δ sin θdθdφ+

∫ π/2

−π/2

∫ π

0

∂rt
2|r=δ sin θdθdφ,

and according to (2.7) we get ∫ π/2

−π/2

∫ π

0

∂rt
1|r=δ sin θdθdφ = 0.

In view of (2.23) we also obtain

∫ π/2

−π/2

∫ π

0

∂rt
2|r=δ sin θdθdφ = −2πa/δ2.

The two integrals in (2.46) and (2.47) are calculated with the help of (2.13) and (2.14), and we obtain in a similar way

that

∂sv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(s∂rt
1 − t1∂rs)|r=δ sin θdθdφ

+∂νv
0(O)δ2

∫ π/2

−π/2

∫ π

0

(ν∂rt
1 − t1∂rν)|r=δ sin θdθdφ =∇s,νv

0(O)m(Ξ)∇s,νv
0(O),

where m(Ξ) is the virtual mass matrix of the cavity ω in the half-space which depends on the shape of Ξ and is given

by

m(Ξ) =

(
m22 m23

m32 m33

)
. (2.48)

Furthermore,

∇s,νv
0(O) = (∂sv

0(O), ∂νv
0(O))T .

The previous results show that

(f3, v0)Ω = ∇v0(O)m(Ξ)∇v0(O) − 2πa, (2.49)

and finally the perturbation term in the asymptotic ansatz (1.11) of the simple eigenvalue λ0
m takes the form

λ′m = (∇s,νv
0
m(O))T

m(Ξ)∇s,νv
0
m(O) + λ0

m|v0
m(O)|2 mes3(ω). (2.50)

Remark 3. The max-min principle (see, e.g., [?]) reads:

λh
j = max

Eh
j ⊂H1(Ω(h))

inf
uh∈Eh

j \{0}

‖∇xu
h;L2(Ω(h))‖2

‖uh;L2(Ω(h))‖2
, (2.51)

λ0
j = max

E0
j ⊂H1(Ω)

inf
v∈E0

j \{0}

‖∇xv;L
2(Ω)‖2

‖v;L2(Ω)‖2
, (2.52)

where Eh
j and E0

j stand for any subspaces of codimension j − 1, i.e.

dim(H1(Ω(h)) ⊖ Eh
j ) = j − 1, dim(H1(Ω) ⊖ E0

j ) = j − 1.

For the cavity ωh of a general shape, there is no obvious relation between H1(Ω(h)) and H1(Ω) so that (2.52) and

(2.51) do not allow to establish directly a connection between λh
j and λ0

j . Notice that in case mes3 ω > 0, (2.50) can

be made both, negative or positive. Indeed, assume that the eigenfunction vm changes sign on the boundary Γ and put

the coordinate origin O at a point where vm vanishes. Then the last term in (2.50) becomes null and λ′m ≤ 0 due to

the above-mentionned properties of the matrix m(Ξ). On the contrary, if the point O constitutes an extremum of the

function Γ ∋ x 7→ vm(x), then ∇s,νvm(O) = 0 and λ′m > 0 provided vm(O) 6= 0 and mes3 ω > 0.
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In the limiting case of a crack ω, i.e. a domain flattens into a two-dimensional surface (see Figure 7), one easily

observes that H1(Ω) ⊂ H1(Ω(h)) since a function in H1(Ω(h)) can have a nontrivial jump over ωh but v ∈ H1(Ω)
cannot. As a consequence of (2.52), (2.51), we conclude the general relationship

λh
j ≤ λ0

j . (2.53)

This formula is in agreement with (2.50) for the correction term in (1.11) because mes3 ω = 0 for a crack and,

therefore,

λ′m = (∇s,νv
0
m(O))T

m(Ξ)∇s,νv
0
m(O) ≤ 0

since the matrix m(Ξ) in the case of a crack is negative or negative definite (see Example 2).

2.4 Multiple eigenvalues

Assume now, that λ0
m is an eigenvalue of the multiplicity κm > 1, i.e.,

λ0
m−1 < λ0

m = · · · = λ0
m+κm−1 < λ0

m+κm
. (2.54)

In such a case ansätze (1.11) and (1.12) are valid for p = m, . . . ,m + κm − 1, however, the principal terms in

the expansions of the eigenfunctions uh
m, . . . , u

h
m+κm−1 of problem (1.3)-(1.4) are predicted in the form of linear

combinations

vp0 = ap
1v

0
m + · · · + ap

κm
v0

m+κm−1 (2.55)

of eigenfunctions of problem (1.8)-(1.9) corresponding to the eigenvalue λ0
m, and subject to the orthogonality and

normalization conditions (1.10). The coefficients of the columns ap = (ap
1, . . . , a

p
κm

) in (2.55) are to be determined.

If the columns am, . . . , am+κm−1 are unit vectors and

ap · aq = δp,q, p, q = m, . . . ,m+ κm − 1, (2.56)

then the linear combinations (2.55) with p = m, . . . ,m+κm−1, are simply a new orthonormal basis in the eigenspace

of the eigenvalue λm.

The construction of boundary layers is performed in the same way as in the previous section. When solving

problem (2.30)-(2.31) for the regular term vp3, there appear κm compatibility conditions

λp′(vp0, v0
m+k)Ω + (fp3, v0

m+k)Ω = 0, k = 0, . . . ,κm − 1, (2.57)

which can be written in the form of the linear system of κm algebraic equations

Map = λp′ap (2.58)

with the matrix M = (Mik)κm−1
j,k=0 of the size κm × κm,

Mjk = (∇s,νv
0
m+k(O))T

m(Ξ)∇s,νv
0
m+j(O) + λ0

mv
0
m+k(O)v0

m+j(O) mes2(ω). (2.59)

Formula (2.59) is derived in exactly the same way as it is for formula (2.50) The matrix M is symmetric, and its

real eigenvalues λm′, . . . , λm+κm−1′ correspond to eigenvectors am, . . . , am+κm−1, which satisfy conditions (2.56).

Actually, just these attributes of the matrix M with elements (2.59) are included in ansätze (1.11) and (1.12), (2.55)

for eigenvalues λh
p and eigenfunctions uh

p of problem (1.3)-(1.4) for p = m, . . . ,m+ κm − 1 in the case (2.54).

3 Justification of asymptotics

3.1 The weighted Poincaré inequality

Let H1(Ω(h))⊥ denote a subspace of the Sobolev space H1(Ω(h)) which contains functions of zero mean over the

set Ω(h).
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Lemma 1. The following inequality is valid

‖u;L2(Ω(h))‖ ≤ c‖r−1
h u;L2(Ω(h))‖ ≤ C‖∇xu;L2(Ω(h))‖, (3.1)

where rh = r + h and r(x) = dist(x,O) = |x|, and the constants c and C are independent of the parameter

h ∈ (0, h0] and function u ∈ H1(Ω(h))⊥.

Proof. We use the representation

u(x) = u∗(x) + b∗, (3.2)

where the constant b∗ is chosen such that
∫

Ω∗

u∗(x) dx = 0, b∗ = −(mes(Ω∗))
−1

∫

Ω∗

u(x) dx. (3.3)

In (3.3), the domain Ω∗ ⊂ Ω satisfies Ω∗ 6= ∅ and Ω∗ ∩ ωh = ∅ for h ∈ (0, h0]. Let us construct an extension û∗ of

u∗ in the class H1, from the set ΩRh := Ω \BRh onto Ω, in such a way that the following estimate is valid

‖∇xû∗;L2(Ω)‖ ≤ c‖∇xu∗;L2(ΩRh)‖ = c‖∇xu;L2(ΩRh)‖ ≤ c‖∇xu∗;L2(Ω(h))‖. (3.4)

Here BRh is the ball of radius Rh and center O, with R a constant chosen such that wh ⊂ BRh.

The reason for such procedure is that a direct extension form Ω(h) onto Ω may not exist in the class H1, for example

in the case of a crack (cf. Remark 3). Stretching coordinates x 7→ η = h−1x transforms the set ΣRh = {x ∈
Ω : Rh > r > Rh/2} into the three-dimensional half-annulus Υ(h) with fixed radii and gently sloped ends, due

to the smoothness of the boundary ∂Ω. In stretched coordinates, we write U∗(η) = u∗(x). Then, we proceed to the

decomposition

U∗(η) = U⊥(η) + b⊥ (3.5)

where the constant b⊥ is chosen such that
∫

Υ(h)

U⊥(η)dη = 0, b⊥ = (mes(Υ(h))−1

∫

Υ(h)

U∗(η)dη. (3.6)

The extension ought to be made in the stretched variables. Due to the orthogonality condition in (3.6), the Poincaré

inequality holds true for U⊥ in Υ(h)

‖U⊥;L2(Υ(h))‖ ≤ c‖∇ηU⊥;L2(Υ(h))‖ = c‖∇ηU∗;L2(Υ(h))‖

where the constant c does not depend on h because Υ(h) has gently sloped ends. Therefore, there exists an extension

Û⊥ of U⊥ from Υ(h) onto Υ̂(h) = {η : x ∈ Ω, r < Rh}, such that

||Û⊥;H1(Υ̂(h))|| ≤ c||U⊥;H1(Υ(h))|| ≤ c‖∇ηU⊥;L2(Υ(h))‖,

where c is independent of h ∈ (0, h0] and U⊥.

Choosing Ω∗ = Ω \BRh, the required extension û∗ is thus defined as follows:

û∗(x) =

{
u∗(x), x ∈ Ω \BRh

Û⊥(η) + b⊥, Ω ∩BRh.
(3.7)

Now we give estimates for the extension û∗

‖∇xû∗;L2(Ω)‖ = ‖∇xu∗;L2(Ω \BRh)‖ + ‖∇xÛ⊥;L2(Ω ∩BRh)‖,

and further, using the previous estimates, we obtain

‖∇xÛ⊥;L2(Ω ∩BRh)‖ = h1/2‖∇ηÛ⊥;L2(Υ̂(h))‖ ≤ h1/2‖Û⊥;H1(Υ̂(h))‖

≤ ch1/2‖∇ηU⊥;L2(Υ(h))‖

≤ ch1/2‖∇ηU∗;L2(Υ(h))‖ = c‖∇xu∗;L2(ΣRh)‖.
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Gathering the two previous estimates for ∇xû∗ we obtain due to the definition of ΣRh that

‖∇xû∗;L2(Ω)‖ ≤ c‖∇xu∗;L2(Ω \BRh/2)‖ ≤ c‖∇xu;L2(Ω(h))‖. (3.8)

The last inequality is true if Ω \BRh/2 ⊂ Ω(h), which is certainly verified for an appropriate choice of R and h small

enough. The constant c in the previous inequality is independent of h.

We show using the Poincaré inequality that

‖û∗;L2(Ω)‖ ≤ c‖∇xû∗;L2(Ω)‖ ≤ c‖∇xu;L2(Ω(h))‖. (3.9)

Precisely, we use the following auxiliary assertion,

Lemma 2. Let Ω1 ⊂ Ω2 be two smooth domains, with mes3(Ω1) 6= 0, then for any w ∈ H1(Ω2) we have

‖w;L2(Ω2)‖ ≤ c(‖∇xw;L2(Ω2)‖ + ‖w;L2(Ω1)‖), (3.10)

where the constant c depends on Ω1 and Ω2.

Proof. Assume that (3.10) is not true and take a sequence wn such that ‖wn;L2(Ω2)‖ = 1 and the right-hand side of

(3.10) tends to zero. From the boundedness of w and ∇xw in L2(Ω2) we get the boundedness of w in H1(Ω2). Thus,

up to a subsequence, wn converges to some w̄ ∈ H1(Ω2) and since ‖∇xw2;L2(Ω2)‖ → 0 we get ∇xw̄ = 0 and w̄ is

constant. Since ‖w2;L2(Ω1)‖ → 0, this constant is zero and thus w̄ ≡ 0. This implies

‖wn;L2(Ω2)‖ → 0,

in contradiction with ‖wn;L2(Ω2)‖ = 1. Thus, (3.10) holds true. �.

Applying Lemma 2 to our situation, we get

‖û∗;L2(Ω)‖ ≤ c(‖∇xû∗;L2(Ω)‖ + ‖û∗;L2(Ω∗)‖)

≤ c(‖∇xû∗;L2(Ω)‖ + ‖∇xû∗;L2(Ω∗)‖)

≤ c‖∇xû∗;L2(Ω)‖,

where we have also used the Poincaré inequality in Ω∗, since û∗ coincides with u∗ and has zero mean value on this

set. Then with (3.8) and the previous inequality we obtain the desired estimate (3.9).

Next we invoke the one-dimensional Hardy inequality

∫ 1

0

|z(r)|2 dr ≤ 4

∫ 1

0

r2|∂rz(r)|
2 dr, z ∈ C1

c ([0, 1)), (3.11)

which, after the integration in the angular variables θ and φ, leads to

‖r−1û∗;L2(Ω)‖ ≤ ‖∇xû∗;L2(Ω)‖ ≤ c‖∇xu;L2(Ω(h))‖. (3.12)

For the constant b⊥ in decomposition (3.5) we now obtain

|b⊥| =

∣∣∣∣∣(mes(Υ(h)))−1

∫

Υ(h)

U∗(η)dη

∣∣∣∣∣

≤ c‖U∗;L2(Υ(h))‖ = c‖Û∗;L2(Υ(h))‖ = ch−3/2‖û∗;L2(ΣRh)‖

≤ ch−1/2‖r−1û∗;L2(ΣRh)‖.

Further , the image Σω(h) of the set Ω(h)∩BRh under stretching of coordinates, possesses a gently sloped boundary,

hence, applying Lemma 2 we obtain

‖U∗;L2(Σω(h))‖ ≤ c(‖∇ηU∗;L2(Σω(h))‖ + ‖U∗;L2(Υ(h))‖).
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Recall that rh = r + h > h. In this way we have

‖r−1
h u∗;L2(Ω(h) ∩BRh)‖ ≤ h−1‖u∗;L2(Ω(h) ∩BRh)‖

= h1/2‖U∗;L2(Σω(h))‖

≤ ch1/2(‖∇ηU∗;L2(Σω(h))‖ + ‖U∗;L2(Υ(h))‖)

≤ ch1/2(‖∇ηU∗;L2(Σω(h))‖ + ‖U⊥;L2(Υ(h))‖ + |b⊥|).

Using the Poincaré inequality for U⊥ in Υ(h) and the estimate for b⊥, we get from the previous inequality

‖r−1
h u∗;L2(Ω(h) ∩BRh)‖ ≤ c(h‖∇xu∗;L2(Ω(h) ∩BRh)‖ + ‖r−1û∗;L2(ΣRh)‖). (3.13)

We can now, applying (3.12) and (3.13), write

‖r−1
h u∗;L2(Ω(h))‖ = ‖r−1

h u∗;L2(Ω \BRh)‖ + ‖r−1
h u∗;L2(Ω(h) ∩BRh)‖

≤ c‖r−1
h û∗;L2(Ω)‖ + c(h‖∇xu∗;L2(Ω(h) ∩BRh)‖ + ‖r−1û∗;L2(ΣRh)‖)

≤ c‖∇xu∗;L2(Ω(h))‖.

We give an estimate for the constant b∗ as follows:

|b∗| =

∣∣∣∣∣(mes(Ω(h)))−1

∫

Ω(h)

(u(x) − u∗(x)) dx

∣∣∣∣∣ =
∣∣∣∣∣

∫

Ω(h)

u∗(x) dx

∣∣∣∣∣

≤ c‖u∗;L2(Ω(h))‖ ≤ c‖r−1u∗;L2(Ω(h))‖ ≤ c‖∇xu;L2(Ω(h))‖.

Finally we have

‖r−1
h u;L2(Ω(h))‖ ≤ c(‖r−1

h u∗;L2(Ω(h))‖ + ‖r−1
h b∗;L2(Ω(h))‖)

≤ c‖∇xu;L2(Ω(h))‖,

which proves the lemma. �

In the sequel we write |||u; Ω(h)||| = ‖r−1
h u;L2(Ω(h))‖. In the proof of Lemma 1, an extension û := û∗ + b∗ of

the function u ∈ H1(Ω(h))⊥ onto the domain Ω is constructed such that

|||u; Ω(h)||| + ‖∇xû;L2(Ω)‖ ≤ c‖∇xu;L2(Ω(h))‖. (3.14)

Assume that m ≥ 1 and ûh
m is the extension described above of the eigenfunction uh

m; then, in view of (1.6) and the

integral identity [2], namely

(∇xu
h
m,∇xz)Ω(h) = λh

m(uh
m, z)Ω(h), z ∈ H1(Ω(h))⊥, (3.15)

which serves for the problem (1.3)-(1.4), the following relation is valid:

‖ûh
m;H1(Ω)‖2 ≤ c‖∇xu

h
m;L2(Ω(h))‖2 = cλh

m. (3.16)

The max-min principle (see e.g., [8]), where the test functions can be taken from the space C∞
c (Ω∗), show that for an

arbitrary m there exist positive numbers hm and cm, such that

λh
m ≤ cm for h ∈ (0, hm]. (3.17)

therefore the norms ‖ûh
m;H1(Ω)‖ are uniformly bounded with respect to the parameter h ∈ (0, hm] for a fixed m, i.e.

the pairs {λh
m, û

h
m} admit the weak limit {λ0

m, û
h
0} ∈ R×H1(Ω) for h→ +0 and the strong limit in R× L2(Ω).

19



In the integral identity (3.15) we choose a test function z ∈ C∞
c (Ω \ O) with null mean value. For sufficiently small

h, ûh
m = uh

m on the support of the function z, thus passing to the limit in (3.15) leads to the inequality

(∇xv̂
0
m,∇xz)Ω = λ̂0

m(v̂0
m, z)Ω. (3.18)

Since C∞
c (Ω \ O) is dense in H1(Ω) (elements of the Sobolev space H1(Ω) have no traces at a single point), by a

density argument, we can assume that in (3.18), the test function z belongs to H1(Ω)⊥.

In view of (3.14), (3.15) and (3.16), it follows that

∣∣∣∣∣

∫

Ω

ûh
mdx−

∫

Ω(h)

uh
mdx

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

Ω∩BRh

|ûh
m|dx−

∫

Ω(h)∩BRh

|uh
m|dx

∣∣∣∣∣

≤ ch5/2(|||ûh
m; Ω||| + |||uh

m; Ω(h)|||)

≤ ch5/2

and
∣∣∣∣∣

∫

Ω

|ûh
m|2dx−

∫

Ω(h)

|uh
m|2dx

∣∣∣∣∣ ≤ ch2

Since ‖ûh
m;L2(Ω)‖ → ‖v̂0

m;L2(Ω)‖ and ‖ûh
m;L2(Ω)‖ = 1, the previous inequality provides

v̂0
m ∈ H1(Ω) and ‖v̂0

m;L2(Ω)‖ = 1,

i.e. in view of (3.18), λ̂0
m is an eigenvalue and v̂0

m is a normalized eigenfunction of problem (1.8)-(1.9).

Proposition 1. Entries of sequences (1.5) and (1.7) are related by passing to the limit

λh
m → λ0

m as h→ +0. (3.19)

Proof is completed at the end of this section. We only observe that it has been already shown that λh
m → λ0

p, thus

it suffices to prove that p = m.

From Lemma 1 it follows that the left-hand side of identity (3.15) can be chosen as the scalar product 〈uh
m, z〉 in

the space H1(Ω(h))⊥. We define the operator Kh in the space H1(Ω(h))⊥ by the formula

〈Khu, z〉 = (u, z)Ω(h), u, z ∈ H1(Ω(h))⊥. (3.20)

It is easy to check that Kh is symmetric, positive and compact, therefore, self-adjoint. For m ≥ 1 we set µh
m =

(λh
m)−1. The positive eigenvalues and the corresponding eigenfunction of problem (1.3)-(1.4) can be considered in an

abstract framework, so we deal with the spectral equation in the Hilbert space H = H1(Ω(h))⊥:

Khuh = µhuh. (3.21)

The norm, defined by the scalar product 〈·, ·〉H = 〈·, ·〉 is denoted by ‖ · ‖H . The following statement [9] is known as

lemma on almost eigenvalues and eigenvectors.

Lemma 3. Let µ and U ∈ H be such that ‖KhU − µU‖ = α and ‖U‖H = 1. Then there exists an eigenvalue µh
m of

the operator Kh, which satisfies the inequality

|µ− µh
m| ≤ α.

Moreover, for any α• > α the following inequality holds

‖U − U•‖H ≤ 2α/α•

where U• is a linear combination of eigenfunctions of the operator Kh, corresponding to the eigenvalues from the

segment [µ− α•, µ+ α•] and ‖U•‖H = 1.
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The asymptotic approximations µ andU of a solution to equation (3.20) are defined by the number (λ0
m+h3λ′m)−1

and by the function ||V h
m||−1

H V h
m, respectively, where m ≥ 1 and λ′m with V h

m are, respectively, the correction given

by (2.50) and the sum of the first four terms in the ansatz (1.12). In the case of multiple eigenvalue λ0
p, we consider

the specification provided at the end of section 2.4.

We estimate the quantity α from Lemma 3. Since ||V h
m||H ≥ ||v0

m||H − cmh and λ0
m + h3λ′m ≥ λ0

m − cmh
3, for h

sufficiently small it follows that

α = ||KhU − µU ||H

= (λ0
m + h3λ′m)−1||V h

m||−1
H ||(λ0

m + h3λ′m)(Kh − µ)V h
m||H

= (λ0
m + h3λ′m)−1||V h

m||−1
H sup |〈(λ0

m + h3λ′m)(Kh − µ)V h
m, z〉|

≤ cm sup |(λ0
m + h3λ′m)(V h

m, z)Ω(h) − 〈V h
m, z〉Ω(h)|, (3.22)

where the supremum is taken over the set {z ∈ H1(Ω(h))⊥ : ||z||H = 1} and, hence, the L2-norms of the test

function z indicated in inequality (3.1), both standard and weighted, are bounded by a constant N . Besides that, the

standard proof of the trace theorem [2, page 30] implies

h−1/2||z;L2(∂ωh ∩ Γ(h))|| ≤ c(|||z; Ω(h)||| + ||∇z;L2(Ω(h))||) ≤ cN . (3.23)

The expression in the sup in (3.22) can be processed as follows:

I = (λ0
m + h3λ′m)(V h

m, z)Ω(h) − 〈V h
m, z〉Ω(h)

= I1 + h3I2 − h6I3 + I4 − I5 − h3I6

:= (∇xv
0
m,∇xz)Ω(h) − λ0

m(v0
m, z)Ω(h) + h3((∇xv

3
m,∇xz)Ω(h) − (λ0

mv
3
m + λ′mv

0
m, z)Ω(h))

−h6λ′m(v3
m, z)Ω(h) + (∇xχ(hw1

m + h2w2
m),∇xz)Ω(h) − λ0

m(χ(hw1
m + h2w2

m), z)Ω(h)

−h3λ′m(χ(hw1
m + h2w2

m), z)Ω(h). (3.24)

The estimates of I3 and I6 are straightforward, that is

|I3| ≤ cm||v3
m;L2(Ω)||N ≤ cmN , (3.25)

|I6| ≤ cm

∣∣∣∣∣

∫

Ω(h)

χrh(hw1
m + h2w2

m)(r−1
h z) dx

∣∣∣∣∣

≤ cm|||z; Ω(h)|||

(∫

Ω(h)

(χrh(hw1
m + h2w2

m))2 dx

)1/2

≤ cmNh3/2

(∫

Ξ∩BR

h2(1 + ρ)2(hw1
m + h2w2

m)2 dξ +

∫

Ξ\BR

χ2h2(1 + ρ)2(hρ−2 + h2ρ−1)2 dξ

)1/2

≤ cmNh5/2. (3.26)

Here, expressions (2.8) and (2.21) of the boundary layers are taken into account.

The remaining integrals require additional work. In view of relations (1.8)-(1.9) and (2.29)-(2.32) we have

I1 = (∂nhv0
m, z)∂ωh∩Γ(h), (3.27)

I2 = I2
1 + I2

2 + I2
3 := (∂nhv3

m, z)∂ωh∩Γ(h) + (f3, z)Ω(h)

= (∂nhv3
m, z)∂ωh∩Γ(h) + (∆xχ(t1m + t2m), z)Ω(h) + λ0

m(χ(t1m + t2m), z)Ω(h).

To get the estimate for I2
1 , we, first of all, need to prove the following inequality:

‖r−1/2z;L2(Γ(h))‖ + ‖r−1z;L2(Ω(h))‖ ≤ c‖z;H1(Ω(h))‖. (3.28)
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By (3.23) and (3.1), we may write the inequality

‖r
−1/2
h z;L2(Γ(h))‖ + ‖r−1

h z;L2(Ω(h))‖ ≤ c‖z;H1(Ω(h))‖. (3.29)

Thus, we only need to verify that (3.28) is true in a h-neighbourhood of O. Using the dilation by h−1, we are left to

verify inequality

‖ρ−1/2Z;L2(∂ΞR)‖ + ‖ρ−1Z;L2(ΞR)‖ ≤ c‖Z;H1(ΞR)‖, (3.30)

in the parameter-independent case, where ΞR := Ξ ∩ BR, BR is the ball of radius R centered at O = {ρ = 0} and

R > 0 is chosen so that ΞR ⊃ ω. Three situations may then occur: (i) if O lies outside ΞR, then ρ > c > 0 and

(3.30) is trivially satisfied, (ii) if O is inside ΞR, then ρ > c > 0 on ∂ΞR and thus the first norm on the left-hand side

of (3.30) is bounded by c‖Z;H1(ΞR)‖ due to the standard trace inequality. The estimation of ‖ρ−1Z;L2(ΞR)‖ in

(3.30) comes from Hardy’s inequality (3.11), (iii) if O is on ∂ΞR, then we need to rectify the boundary ∂Ξ. Note that

the boundary ∂Ξ is Lipschitz. Without loss of generality, let us assume that there exists a neighbourhood V of O such

that ∂ΞR ∩ V is the graph of a Lipschitz function ψ. We rectify the boundary ∂ΞR ∩ V using the transformation

T : (ξ1, ξ2, ξ3) 7→ (ξ̃1, ξ̃2, ξ̃3) = (ξ1, ξ2, ξ3 − ψ(ξ1, ξ2)).

The image of ∂ΞR ∩ V by T is a piece of plane. Let (ρ̃, θ̃, φ̃) be the spherical coordinate system associated with

(ξ̃1, ξ̃2, ξ̃3). Using the Lipschitz property of ψ, one readily checks that there exist constants c1 > 0 and c2 > 0,

dependent on ψ, such that

c1ρ < ρ̃ < c2ρ.

Using Hardy’s inequality (3.11) and the equivalence of ρ and ρ̃, we have

‖ρ−1Z;L2(ΞR ∩ V)‖ ≤ c‖ρ̃−1Z̃;L2(T (ΞR ∩ V))‖ ≤ c‖Z̃;H1(T (ΞR ∩ V))‖ ≤ c‖Z;H1(ΞR ∩ V)‖.

For the trace inequality, we separate the radial and angular variables and use the two-dimensional trace inequality in

the angular variables:

‖ρ−1/2Z;L2(∂ΞR ∩ V)‖ ≤ c‖ρ̃−1/2Z̃;L2(T (∂ΞR ∩ V))‖

= c

∫ R̃

0

∫ 2π

0

ρ̃−1|Z̃|2ρdθ̃dρ̃

= c

∫ R̃

0

∫ π

0

∫ 2π

0

(
|Z̃|2 + |∂θ̃Z̃|

2 + |∂φ̃Z̃|
2
)
dθ̃dφ̃dρ̃

for some R̃ > 0. Then we may use Friedrich’s inequality to obtain

∫ R̃

0

∫ π

0

∫ 2π

0

(
|Z̃|2 + |∂θ̃Z̃|

2 + |∂φ̃Z̃|
2
)
dθ̃dφ̃dρ̃ ≤ c‖Z̃;H1(T (ΞR ∩ V))‖

≤ c‖Z;H1(ΞR ∩ V)‖.

Therefore, we have proved (3.30) and in view of the previous comments, (3.28) follows. Using (3.28), we get the

estimate for I2
1

|I2
1 | ≤ cm‖r1/2∂nhv3

m;L2(∂ωh ∩ Γ(h))‖‖r−1/2z;L2(∂ωh ∩ Γ(h))‖

≤ cmNh1/2‖r1/2∇v3
m;H1(Ω(h))‖

≤ cmh
1/2, (3.31)

where we have also used the estimates

|∇p
xv

3
m(x)| ≤ cpr

−p, p = 1, 2, ..., (3.32)
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for the solution of (2.30)-(2.31) which follow from the theory of elliptic boundary problems in the domains with

corners or conical points (see e.g. [6]) and from the analysis (2.38) of the right-hand side of equation (2.30).

By remark 2 and (2.28), the following estimates are valid for ρ ≥ R0

|w̃1
m(ξ)| = |w1

m(ξ) − t1m(ξ)| ≤ cρ−3, (3.33)

|w̃2
m(ξ)| = |w2

m(ξ) − t2m(ξ)| ≤ cρ−2, (3.34)

which means that

|I5 − h3I2
3 | ≤ |||z,Ω(h)|||

(∫

Ω(h)

(
rχ(x)(hw̃1

m + h2w̃2
m)
)2
dx

)1/2

≤ N

(∫

Ξ

h2ρ2χ(hξ)
(
hw̃1

m + h2w̃2
m

)2
h3 dξ

)1/2

≤ Nh7/2

(∫ h−1d

R

ρ−4 ρ2dρ

)1/2

≤ Nh7/2, (3.35)

where d is the diameter of the support of χ.

We denote

I4 = I4
1 + I4

2 :=
(
∇x(hw1

m + h2w2
m),∇xχz

)
Ω(h)

−
(
[∆x, χ](hw1

m + h2w2
m), z

)
Ω(h)

I2
2 = I2

4 + I2
5 :=

(
χ∆x(t1m + t2m), z

)
Ω(h)

+
(
[∆x, χ](t1m + t2m), z

)
Ω(h)

.
(3.36)

Here [∆x, χ] = 2∇xχ · ∇x + (∆xχ) is the commutator of the Laplace operator with the cut-off function χ. The

supports of the coefficients of first order differential operator [∆x, χ] are contained in the set supp |∇xχ| which is

located at the distance dχ from the origin. Thus, taking into account relation remark 2 and (2.28), we find

|I4
2 − h2I2

5 | = ([∆x, χ](hw̃1
m + h2w̃2

m), z)Ω(h)

≤ cm

( d∫

dχ

(
h2ρ−6 + h4ρ−4

)∣∣∣∣
ρ=r/h

rdr

)1/2

‖z;L2(Ω(h))‖ ≤ cmh
4N . (3.37)

Moreover,

I4
1 + h3I2

4 = I4
3 + I4

4

:= −
(
∆x(hw̃1

m + h2w̃2
m), χz

)
Ω(h)

+
(
∂nh(hw1

m + h2w2
m), z

)
∂ωh∩Ω(h)

. (3.38)

Remark 4. The presence of corners on the boundary of domain Ξ may result in the singularities of derivatives of the

boundary layers, therefore the inclusions χ∆xw̃
q
m ∈ L2(Ω(h)) and χ∂nhwq

m ∈ L2(Γ(h)), in general are not valid.

However, the terms in (3.38) may be well defined in the sense of duality obtained by the extension of scalar products

(·, ·)Ω(h) and (·, ·)Γ(h) in the Lebesgue spaces to the appropriate weighted Kondratiev classes (see [1] and e.g., [6,

Ch. 2]). Additional weighted factors are local, i.e., the factors are written in fast variables. That is why the norms of

test functions z can be bounded as before by the constant N .

By definition, the function w̃1
m remains harmonic, and according to (2.16)-(2.17) and (2.35), w̃2

m verifies the

equation

−∆ξw̃
2
m(ξ) = L1(ξ1,∇ξ)w̃

1
m(ξ), ξ ∈ Ξ. (3.39)

Therefore,

∆x(hw̃1
m + h2w̃2

m) = h2L1w̃2
m + L2(hw̃1

m + h2w̃2
m). (3.40)
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In (3.40) the operators Lq are written in the slow variables and the function w̃q in fast variables (in contrast to (3.39))

where ∆ξ = h2L0(∂n, ∂s, ∂ν) and L1(ξ1,∇ξ) = hL1(n, ∂n, ∂s, ∂ν). Owing to (3.40), (2.28) and applying Remark

4, we have L2(hw̃1
m) = hO(ρ−3), L1(w̃2

m) = h−1O(ρ−3) and L2(h2w̃2
m) = h2O(ρ−2). Thus, it follows that

|I4
3 | ≤ |||z,Ω(h)|||

(∫

Ω(h)

(
rχ(x)∆x(hw̃1

m + h2w̃2
m)
)2
dx

)1/2

≤ N

(∫

Ξ

h2ρ2χ(hξ)2
(
∆x(hw̃1

m + h2w̃2
m)
)2
h3 dξ

)1/2

≤ Nh5/2

(∫

Ξ\BR

ρ2χ(hξ)2
(
hρ−3 + h2ρ−2 + hρ−3

)2
dξ

)1/2

≤ Nh7/2

(∫ h−1d

d0

ρ−4 ρ2dρ

)1/2

≤ Nh7/2, (3.41)

For the two last terms it suffices to process the difference of integrals from (3.27) and (3.38):

I1 + I4
4 = −

(
∂nh(hw1

m + h2w2
m + v0

m), z
)
∂ωh∩Γ(h)

.

Note that, due to the very construction of w1
m and w2

m we have ∂nh(hw1
m + h2w2

m + v0
m) = O(h2), see (2.16)-(2.19)

for instance. Thus, we get the estimate

|I1 + I4
4 | ≤ cm‖z;L2(∂ωh ∩ Γ(h))‖h2(mes2(∂ωh))1/2

≤ cmh
7/2N , (3.42)

where mes2 denotes the two-dimensional Hausdorff measure. Collecting estimates (3.25)-(3.26), (3.31), (3.35), (3.37),

(3.41) and (3.42) of the terms in (3.24), we arrive at the following estimate of α in (3.22)

α ≤ cmh
7/2. (3.43)

We are ready now to verify the theorem on the asymptotics, which implies the main result of the paper.

Theorem 1. For any positive eigenvalue λ0
m of multiplicity κm in problem (1.8)-(1.9), see (2.54), there exist numbers

cm > 0 and hm > 0 such that for h ∈ (0, hm] the eigenvalues λh
m, . . . , λ

h
m+κm−1 of problem (1.3)-(1.4) and except

for all other eigenvalues in sequence (1.5) satisfy the following inequalities

|λh
q − λ0

m − h3λq′| ≤ cmh
7/2, q = m, . . . ,m+ κm − 1. (3.44)

Moreover, there is a constant Cm and columns ahm, . . . , ahm+κm−1 which define an unitary matrix of the size κm ×
κm such that

‖vq0 + χ(hwq1 + h2wq2) + h3vq3 −
m+κm−1∑

p=m

ahq
p uh

p ;H1(Ω(h))‖ ≤ Cmh, (3.45)

q = m, . . . ,m+ κm − 1.

Here vq0 denotes the linear combination (2.55) of eigenfunctions in problem (1.8)-(1.9), constructed in the end of

Section 2.4, and wq1, wa2 and vq3 are given functions which are determined for fixed vq0 in the way described in

Section 2, finally λq′ is an eigenvalue of the matrix M with entries (2.59). In the case of a simple eigenvalue λ0
m (i.e.,

κm = 1), we have vm0 = v0
m the corresponding eigenfunction, and λm′ = λ′m is given by (2.50).
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Proof. Given eigenvectors am, . . . , am+κm−1 of the matrix M, we construct linear combinations (2.55) and the

associated appropriate terms in asymptotic ansatz (1.12). As a result, approximation solutions
{
(λ0

q + h3λq′)−1, Uq
}

for q = m, . . . ,m+ κm − 1 are obtained for the abstract spectral problem (3.20).

Let λq′ be an eigenvalue of the matrix M of multiplicity κq, i.e.,

λq−1′ < λq′ = · · · = λq+κq−1′ < λq+κq′. (3.46)

We choose the factor c∗ in the value α∗ = c∗h
3 in Lemma 3 so small that the segment

[(λ0
m + h3λq′)−1 − c∗h

3, (λ0
m + h3λq′)−1 + c∗h

3] (3.47)

does not contain the approximation eigenvalues (λ0
m + h3λp′)−1 when p 6∈ {q, q + κq − 1} . Then Lemma 3 delivers

the eigenvalues µh
i(q), . . . , µ

h
i(q+κq−1) of the operator Kh such that

|µh
i(p) − (λ0

m + h3λp′)−1| ≤ α ≤ cmh
7/2, p = q, . . . , q + κq − 1 . (3.48)

We here emphasize that, at the time being, we cannot infer that these eigenvalues are different. At the same moment,

the second part of Lemma 3 gives the normed columns bhp = (bhp
kmq

, . . . , bhp
kmq+Nmq−1) verifying the inequalities

‖Up −

kmq+Nmq−1∑

k=kmq

bhp
k uh

k ;H1(Ω(h))‖ ≤ c
α

α∗
≤ ch1/2. (3.49)

Here {µh
kmq

, . . . , µh
kmq+Nmq−1} implies the list of all eigenvalues of the operator Kh in segment (3.47). Note that the

numbers kmq and Nmq can depend on the parameter h but this fact is not reflected in the notation. Since

‖hχw1;H1(Ω(h))‖ ≤ ch3/2, ‖h2χw2;H1(Ω(h))‖ ≤ ch5/2, (3.50)

‖h2v2;H1(Ω(h))‖ ≤ ch3,

the normalization condition (1.10) for the eigenfunctions of problem (1.8)-(1.9) and similar conditions for eigenvectors

of the matrix M ensure that

|(Up, U t)L2(Ω(h)) − δp,t| ≤ ch3/2, p, t = q, . . . , q + κq + 1. (3.51)

In a similar way, inequalities (3.49) and the orthogonality and normalization conditions (1.6) for eigenfunctions uh
k of

problem (1.3)-(1.4) lead to the relation

∣∣∣(Up, U t)L2(Ω(h)) −

kmq+Nmq−1∑

k=kmq

bhp
k bht

k

∣∣∣ ≤ ch1/2. (3.52)

Formulas (3.51) and (3.52) are true simultaneously if and only if

Nmq ≥ κq , (3.53)

otherwise we arrive at a contradiction where at least one of the coefficients bhp
k has to be close to zero and to one

simultaneously. To actually prove that the equality occurs in (3.53), we first of all, notice that, for a sufficiently small

h > 0, the relations of type (3.53) are valid for all eigenvalues λ0
1, . . . , λ

0
m of problem (1.8)-(1.9) and all eigenvalues

λq′ of the associated matrices M. We have verified above Proposition 1 that each eigenvalue λh
p and the corresponding

eigenfunction uh
p of singularly perturbed problem (1.3)-(1.4) converge to an eigenvalue and an eigenfunction of the

limit problem (1.8)-(1.9), respectively. This observation ensures that the number of entries of the eigenvalue sequence

(1.5), which live on the interval (0, λ0
m), does not exceed m+ κm − 1 for a small h > 0. Summing up the inequalities

(3.53) over all λ0
1, . . . , λ

0
m and λq′, we conclude that the equalities Nmq = κq are necessary. Moreover, we now are

able to confirm that the eigenvalues µh
i(q), . . . , µ

h
i(q+κq−1) can be chosen different one from another. Indeed, we take
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α∗ = C∗h
7/2 in Lemma 3 and fix C∗ so large that the inequality (3.49) with the new bound c/C∗ still guarantees that

the segment

Λq(h) =
[
(λ0

m + h3λq′)−1 − C∗h
7/2, (λ0

m + h3λq′)−1 + C∗h
7/2
]

(3.54)

contains exactly κq eigenvalues of the operator Kh. It suffices to mention two facts. First, for a small h > 0, the

intervals Λq(h) and Λp(h) with λq′ 6= λp′ do not intersect. Second, any eigenvalue µh
k = (λh

k)−1 in the interval (3.54)

meets the inequality (3.44). �

Remark 5. Estimates (3.50) show that the bound in (3.45) is larger than the norms of the functions wq1, wq2 and

vq3 included into the approximation solution and, therefore, estimate (3.45) remains valid for the function vq0 alone,

without three correcting terms. This is the usual situation in the asymptotic analysis of singular spectral problems:

One needs to construct additional asymptotic terms of eigenfunctions in order to prove that the correcting term in the

asymptotics of an eigenvalue is found properly. In theory, one can employ the general procedure [4] and construct

higher order asymptotic terms of eigenvalues and eigenfunctions. We keep the boundary layer and regular corrections

in the estimate (3.45) because they form a so-called asymptotic conglomerate which is replicated in the asymptotic

series (see [4] and [5]; actually the notion of asymptotic conglomerates was introduced in [5]).
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